JPH07239291A - Analysis of body fluid sample - Google Patents
Analysis of body fluid sampleInfo
- Publication number
- JPH07239291A JPH07239291A JP6054614A JP5461494A JPH07239291A JP H07239291 A JPH07239291 A JP H07239291A JP 6054614 A JP6054614 A JP 6054614A JP 5461494 A JP5461494 A JP 5461494A JP H07239291 A JPH07239291 A JP H07239291A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- biological fluid
- acid
- analysis
- fluid sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 21
- 210000001124 body fluid Anatomy 0.000 title abstract 3
- 239000010839 body fluid Substances 0.000 title abstract 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000002253 acid Substances 0.000 claims abstract description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 12
- 239000011707 mineral Substances 0.000 claims abstract description 12
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 4
- 230000001678 irradiating effect Effects 0.000 claims abstract description 3
- 239000013060 biological fluid Substances 0.000 claims description 42
- 239000000758 substrate Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 21
- 210000002966 serum Anatomy 0.000 claims description 12
- 239000012086 standard solution Substances 0.000 claims description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 238000000624 total reflection X-ray fluorescence spectroscopy Methods 0.000 claims description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 102000004169 proteins and genes Human genes 0.000 abstract description 10
- 108090000623 proteins and genes Proteins 0.000 abstract description 10
- 230000001788 irregular Effects 0.000 abstract description 4
- 235000011837 pasties Nutrition 0.000 abstract description 3
- 229960002050 hydrofluoric acid Drugs 0.000 abstract 4
- 238000005336 cracking Methods 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 77
- 235000012431 wafers Nutrition 0.000 description 21
- 239000012488 sample solution Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 235000010755 mineral Nutrition 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000011002 quantification Methods 0.000 description 5
- 239000011573 trace mineral Substances 0.000 description 5
- 235000013619 trace mineral Nutrition 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000037303 wrinkles Effects 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 210000004880 lymph fluid Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000008359 toxicosis Effects 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、生体液試料の分析方法
に関する。より具体的には、生体液中に微少量存在する
元素を蛍光X線分析法により定量する方法に関する。TECHNICAL FIELD The present invention relates to a method for analyzing a biological fluid sample. More specifically, the present invention relates to a method of quantifying an element present in a minute amount in a biological fluid by a fluorescent X-ray analysis method.
【0002】[0002]
【従来技術】生体液中の鉄、銅、亜鉛、マンガン等の微
量元素の定量は、重金属汚染の度合いや生体への影響を
評価する上で必要不可欠な技術である。また、生体液中
の微量元素含有量は薬物の影響や代謝障害等によっても
変化するため、かかる元素の定量分析は、特定元素の欠
乏症または過多症(中毒症)の病理学的な検討を通し
て、薬物副作用の評価や代謝機構の研究に重要な役割を
果たしている。従来、こうした微量元素の定量は、原子
吸光法やICP発光分光分析法によっていた。しかし、
原子吸光法においては測定に長い時間を要し、特に定量
しようとする元素ごとに測定光の波長を変える必要があ
るため、多数の元素の定量を行なうのには適していな
い。また、ICP発光分光分析法では定量精度が低い。
そこで、最近では、蛍光X線分析法を用いた生体液試料
の分析が提案されている。例えば、エネルギー分散型分
光システムを用いることにより血液中および組織中の微
量Seの定量がppb レベルで可能であることが報告され
ている(B.Ska他、Radiochem.Radioanal.Lett.,31,No.
3,pp.165-170(1977)) 。また、かかる方法において散乱
放射によるバックグラウンドを減少させるため、平滑な
試料基板表面を用い全反射X線により定量を行なうこと
も提案されている(P. Wobrauschek 他、X-ray Spectro
m.,8,No.2,pp.57-62(1979))。Quantification of trace elements such as iron, copper, zinc and manganese in biological fluids is an indispensable technique for evaluating the degree of heavy metal contamination and the effect on the living body. In addition, since the content of trace elements in biological fluids also changes due to the influence of drugs and metabolic disorders, quantitative analysis of such elements can be carried out by pathological examination of deficiency or hyperplasia (toxicosis) of specific elements. It plays an important role in the evaluation of drug side effects and the study of metabolic mechanisms. Conventionally, such trace elements have been quantified by atomic absorption method or ICP emission spectroscopy. But,
In the atomic absorption method, it takes a long time for measurement, and it is particularly necessary to change the wavelength of the measurement light for each element to be quantified. Therefore, it is not suitable for quantifying many elements. Further, the quantification accuracy is low in the ICP emission spectroscopy.
Therefore, recently, analysis of a biological fluid sample using a fluorescent X-ray analysis method has been proposed. For example, it has been reported that quantification of a trace amount of Se in blood and tissue can be performed at a ppb level by using an energy dispersive spectroscopy system (B. Ska et al., Radiochem. Radioanal. Lett., 31 , No. .
3, pp.165-170 (1977)). In order to reduce the background due to scattered radiation in such a method, it has been proposed to perform quantification by total internal reflection X-ray using a smooth sample substrate surface (P. Wobrauschek et al., X-ray Spectroscopy).
m., 8 , No. 2, pp. 57-62 (1979)).
【0003】全反射X線蛍光分析は、試料を平滑な基板
上に滴下して乾燥固化させ、この試料表面にX線を照射
したときに生じる2次X線によって試料中の含有元素を
定量する方法であり、照射X線の乱反射を生じないよう
に出来るだけ表面が平滑な基板を用いる必要があり、従
来はガラス板などが用いられていた。ところが、試料中
の微量元素の検出精度を高めるには、高純度のガラス板
が必要であり、通常のガラス板ではバックグランドが高
くなり、正確な分析ができない。このため、基板成分の
純度が高く平滑性に優れた材料としてSiウエハやGa
−Asウエハを基板に利用することが知られている。こ
れらのウエハを基板に用いる際には、あらかじめフッ酸
でウエハ表面を洗浄し、表面の汚れを除去した後に試料
液を滴下しているが、ウエハ表面をフッ酸で洗浄する
と、洗浄した部分の自然酸化膜が除去され、活性な疎水
性の面となる。このため、生体液を滴下すると試料が弾
かれて球状に近くなり、僅かな振動や衝撃で試料が散
り、取扱いが不便であると共に乾固しても不安定で剥離
し易い。さらに試料が膨出した状態で乾固するので、生
体液試料の場合には蛋白の凝固などによって生じた表面
の皺の影響が大きくなり分析精度が低下するなどの問題
がある。In the total reflection X-ray fluorescence analysis, the sample is dropped on a smooth substrate, dried and solidified, and the secondary X-ray generated when the sample surface is irradiated with X-rays determines the contained element in the sample. This is a method, and it is necessary to use a substrate whose surface is as smooth as possible so as not to cause irregular reflection of irradiated X-rays, and a glass plate or the like has been conventionally used. However, in order to improve the detection accuracy of trace elements in a sample, a high-purity glass plate is required, and an ordinary glass plate has a high background, which makes accurate analysis impossible. Therefore, as a material having a high purity of substrate components and excellent smoothness, Si wafers and Ga
-It is known to use As wafers as substrates. When these wafers are used as substrates, the wafer surface is washed with hydrofluoric acid in advance and the sample solution is dropped after removing the dirt on the surface. However, if the wafer surface is washed with hydrofluoric acid, The native oxide film is removed, leaving an active hydrophobic surface. For this reason, when the biological fluid is dropped, the sample is repelled and becomes almost spherical, and the sample scatters due to slight vibrations and shocks, which is inconvenient to handle and unstable and easily peeled off even when dried. Further, since the sample is dried and solidified in a swollen state, in the case of a biological fluid sample, there is a problem that the influence of wrinkles on the surface caused by the coagulation of proteins becomes large and the accuracy of analysis is lowered.
【0004】[0004]
【発明の解決課題】本発明は従来の全反射蛍光X線分析
における上記課題を解決した分析方法を提供するもので
あって、複数の元素を同時に定量することが可能な蛍光
X線分析法を生体液試料に適用するに際し、特別な前処
理や乾燥処理を必要とせず、しかも測定感度の高い分析
方法を達成したものである。DISCLOSURE OF THE INVENTION The present invention provides an analysis method which solves the above problems in conventional total reflection X-ray fluorescence analysis, and provides a fluorescent X-ray analysis method capable of simultaneously quantifying a plurality of elements. When applied to a biological fluid sample, it achieves an analysis method that does not require special pretreatment or drying treatment and has high measurement sensitivity.
【0005】[0005]
【課題の解決手段】本発明によれば以下の構成を有する
生体液試料の分析方法が提供される。 (1)蛍光X線分析法による生体液試料中の含有元素分
析方法であって、生体液試料に鉱酸を混合して基板上に
滴下し、乾固させた後、X線を照射し全反射蛍光X線分
析を行なうことを特徴とする生体液試料の分析方法。 (2)生体液試料に混合する鉱酸がフッ酸であり、試料
を滴下する基板がSiウエハである上記(1) の分析方
法。 (3)生体液試料に混合する鉱酸が塩酸、硫酸または硝
酸であり、試料を滴下する基板がGa−Asウエハであ
る上記(1) の分析方法。 (4)試料が血清試料であり、滴下試料の単位容量あた
り0.1〜2倍の0.1〜40%鉱酸を混合する上記
(1) 〜(3) の何れかの分析方法。 (5)生体液試料に標準液を添加する上記(1) 〜(4) の
何れかの分析方法。According to the present invention, there is provided a method for analyzing a biological fluid sample having the following constitution. (1) A method for analyzing an element contained in a biological fluid sample by a fluorescent X-ray analysis method, which comprises mixing a biological fluid sample with a mineral acid, dropping the mixture on a substrate, and allowing it to dry, and then irradiating it with X-rays. A method for analyzing a biological fluid sample, which comprises performing a reflected fluorescent X-ray analysis. (2) The analysis method according to (1) above, wherein the mineral acid mixed with the biological fluid sample is hydrofluoric acid, and the substrate onto which the sample is dropped is a Si wafer. (3) The analysis method according to (1) above, wherein the mineral acid mixed with the biological fluid sample is hydrochloric acid, sulfuric acid or nitric acid, and the substrate onto which the sample is dropped is a Ga-As wafer. (4) The sample is a serum sample, and 0.1 to 2 times 0.1 to 40% mineral acid is mixed per unit volume of the dropped sample
The analysis method according to any one of (1) to (3). (5) The analysis method according to any one of (1) to (4) above, wherein the standard solution is added to the biological fluid sample.
【0006】本発明は全反射蛍光X線分析によって生体
液中に含有される元素の定量分析を行う。全反射蛍光X
線分析は、図1に示すように、基板1の表面に試料2を
滴下し、上記試料に対し1次X線を小さな入射角φで照
射し、試料中の元素による蛍光X線(2次特性X線)r
の強度を検出器3で検出・計数し、この強度によって試
料中の元素量を測定する。入射角は全反射条件を満たす
範囲であればよく、具体的には、0.01〜0.1度で
あればよい。また検出器3としては、波長分散型システ
ムでは分光結晶が主に用いられ、エネルギー分散型シス
テムでは半導体検出器(SSD)が一般に使用される。
全反射蛍光X線分析によれば、液中の蛋白質などを除去
する前処理の必要がなく、含有元素を同時に定量できる
利点がある。The present invention performs quantitative analysis of elements contained in biological fluid by total reflection X-ray fluorescence analysis. Total reflection fluorescence X
In the line analysis, as shown in FIG. 1, the sample 2 is dropped on the surface of the substrate 1, the primary X-ray is irradiated to the sample with a small incident angle φ, and the fluorescent X-ray (secondary Characteristic X-ray) r
Is detected and counted by the detector 3, and the amount of element in the sample is measured by this intensity. The incident angle may be in a range satisfying the condition of total reflection, and specifically, may be 0.01 to 0.1 degree. As the detector 3, a dispersive crystal is mainly used in the wavelength dispersive system, and a semiconductor detector (SSD) is generally used in the energy dispersive system.
According to the total reflection X-ray fluorescence analysis, there is an advantage that the contained elements can be quantified at the same time without the need for pretreatment for removing proteins and the like in the liquid.
【0007】試料を滴下する基板には、高純度であり表
面が平滑な材料として半導体級純度を有するSiウエハ
やGs−Asウエハ等が好ましい。AlやPなどのよう
に特性X線のピークがSiに近い比較的原子番号の小さ
い元素を定量しようとする場合には、ピークが重ならな
いようにGa−Asウエハを用いるのが好ましい。これ
らのウエハの表面粗さは概ね4nm以下であり、X線照
射の際に生じる散乱が小さいので定量の精度や感度を高
めるうえで有利である。上記基板表面には自然酸化膜が
生じているので、分析の際には、表面をフッ酸で洗浄
し、自然酸化膜を除去すると良い。洗浄に用いるフッ酸
はウエハの酸洗浄において常用されているものでよく、
概ね0.1〜5%濃度である。The substrate on which the sample is dropped is preferably a Si wafer, a Gs-As wafer, or the like having a high purity and a smooth surface so as to have a semiconductor grade purity. When quantifying an element having a relatively small atomic number such as Al or P having a characteristic X-ray peak close to Si, it is preferable to use a Ga-As wafer so that the peaks do not overlap. The surface roughness of these wafers is approximately 4 nm or less, and the scattering that occurs during X-ray irradiation is small, which is advantageous in improving the accuracy and sensitivity of quantitative determination. Since a natural oxide film is formed on the surface of the substrate, the surface may be washed with hydrofluoric acid to remove the natural oxide film during analysis. The hydrofluoric acid used for cleaning may be one commonly used in acid cleaning of wafers,
The concentration is approximately 0.1 to 5%.
【0008】分析対象の生体液試料には生体から採取さ
れる各種の液体が含まれ、具体的には、血液、リンパ液
等の循環液、消化液等の分泌液、髄液、羊水、滲出液、
細胞液等の液体あるいは固形生体試料や培地等からの抽
出液等が挙げられる。血液は全血試料や血清が用いられ
る。これらの生体液は、必要に応じ、純水や有機溶媒等
で希釈して粘度や試料中のタンパク質もしくは塩濃度を
調整し、あるいは成分が既知の各種添加剤を加えてもよ
い。1回の測定に必要とされる試料の量は基板上に滴下
される程度でよく、通常、1〜10μl (0.001 〜0.01
ml)あれば足りる。[0008] The biological fluid sample to be analyzed includes various liquids collected from a living body. Specifically, circulating fluid such as blood and lymph fluid, secretory fluid such as digestive fluid, cerebrospinal fluid, amniotic fluid, exudate ,
Examples include liquids such as cell liquids or extracts from solid biological samples and culture media. For blood, a whole blood sample or serum is used. If necessary, these biological fluids may be diluted with pure water, an organic solvent or the like to adjust the viscosity and the protein or salt concentration in the sample, or various additives having known components may be added. The amount of sample required for one measurement may be such that it is dropped on the substrate, and is usually 1 to 10 μl (0.001 to 0.01).
ml) is enough.
【0009】本発明においては、生体液試料を基板上に
滴下する際、試料に鉱酸を混合することが本質的に重要
である。鉱酸は基板の種類によって選択され、Siウエ
ハを基板に用いる場合にはフッ酸が適当であり、Ga−
Asウエハを用いるときは塩酸、硫酸または硝酸などが
適当である。以下、基板にSiウエハを用い、生体液試
料にフッ酸を混合する場合について主に述べるが、Ga
−Asウエハを用い、塩酸、硫酸または硝酸などを生体
液試料に混合する場合も同様である。試料に混合するフ
ッ酸の純度は半導体用超高純度(99.9999 %)のものが
好ましく、濃度は0.1〜40%が適当であり、10〜
25%がより好ましい。フッ酸濃度が0.1%未満であ
ると生体液試料に含まれるタンパク質の変性が殆どな
く、基板と試料液との固着性が低いので好ましくない。
一方、フッ酸濃度が40%を超えると生体液試料中のタ
ンパク質の変性が著しくなり、試料表面の平滑性が大幅
に損なわれる。また、フッ酸の添加量は、試料の単位容
量あたり0.1〜2倍が好ましい。添加量が単位容量あ
たり0.1倍未満であると試料の固着性改善の効果がみ
られない。またフッ酸の添加量が試料の単位容量あたり
2倍を超えると変性したタンパク質による誤差が大きく
なる。試料液とフッ酸の混合は、滴下前に予め生体液試
料とフッ酸を混合して基板に滴下するのが好ましい。フ
ッ酸を滴下した直後に試料液を滴下する。または試料を
滴下した直後にフッ酸を滴下すると試料表面の平滑性お
よび基板との固着性が低下する。なお、生体液とフッ酸
の混合後、長時間放置すると液中の蛋白質の凝固が進み
滴下し難くなるので混合後、直ちに滴下するのが良い。In the present invention, when the biological fluid sample is dropped on the substrate, it is essentially important to mix the sample with a mineral acid. The mineral acid is selected according to the type of the substrate, and hydrofluoric acid is suitable when using a Si wafer as the substrate.
When using an As wafer, hydrochloric acid, sulfuric acid, nitric acid or the like is suitable. Hereinafter, a case where a Si wafer is used as a substrate and hydrofluoric acid is mixed with a biological fluid sample will be mainly described.
The same applies when a hydrochloric acid, sulfuric acid, nitric acid or the like is mixed with a biological fluid sample using an As wafer. The purity of hydrofluoric acid to be mixed with the sample is preferably ultra-high purity for semiconductors (99.9999%), and the concentration is suitably 0.1 to 40%.
25% is more preferable. When the concentration of hydrofluoric acid is less than 0.1%, the protein contained in the biological fluid sample is hardly denatured and the adherence between the substrate and the sample solution is low, which is not preferable.
On the other hand, when the concentration of hydrofluoric acid exceeds 40%, the denaturation of the protein in the biological fluid sample becomes remarkable, and the smoothness of the sample surface is significantly impaired. Further, the addition amount of hydrofluoric acid is preferably 0.1 to 2 times per unit volume of the sample. If the addition amount is less than 0.1 times per unit volume, the effect of improving the adherence of the sample cannot be seen. Further, when the amount of hydrofluoric acid added exceeds twice the unit volume of the sample, the error due to denatured protein becomes large. As for the mixing of the sample solution and hydrofluoric acid, it is preferable to mix the biological fluid sample and hydrofluoric acid in advance before dropping, and drop the mixture on the substrate. Immediately after dropping the hydrofluoric acid, the sample solution is dropped. Alternatively, if hydrofluoric acid is dropped immediately after dropping the sample, the smoothness of the sample surface and the adherence to the substrate are deteriorated. If the biological fluid and hydrofluoric acid are left to stand for a long time, the protein in the fluid will coagulate and it will be difficult to add drops, so it is preferable to add drops immediately after mixing.
【0010】生体液の滴下量は通常1〜10μl程度で
良く、この場合、フッ酸混合後の粘性にもよるが基板表
面で直径1.5〜10mm程度に広がる。試料濃度が十分
でない場合には、滴下を複数回繰り返してもよい。滴下
後、水平な基板上に試料液が平坦に広がり、生体液試料
中の蛋白質などの有機物とフッ酸とが反応して、0.5
〜1分程度で糊状になる。試料液は滴下後に自然乾燥さ
せ、あるいは1〜10分間、基板ごと40〜120℃の
温度下に静置して乾燥し、フッ酸および水分等を揮発さ
せて固化させる。The amount of the biological fluid dropped is usually about 1 to 10 μl, and in this case, the diameter spreads to about 1.5 to 10 mm on the substrate surface depending on the viscosity after mixing with hydrofluoric acid. When the sample concentration is not sufficient, the dropping may be repeated multiple times. After the dropping, the sample solution spreads flat on a horizontal substrate, and organic substances such as proteins in the biological fluid sample react with hydrofluoric acid to give 0.5
It becomes pasty in about 1 minute. The sample solution is naturally dried after dropping, or is allowed to stand for 1 to 10 minutes together with the substrate at a temperature of 40 to 120 ° C. to be dried to volatilize hydrofluoric acid and water to be solidified.
【0011】図2に示すように、本発明の生体液とフッ
酸の混合試料液21は、ウエハ表面23で球状に膨出す
る従来の試料22と異なり、基板上で平坦に広がる。こ
のため、試料液が乾燥して表面に小さな皺などが生じて
も照射X線の乱反射による影響が少なくなる。従来の試
料22は、ウエハ表面に膨出した状態で乾燥するので、
試料表面に生じる皺の凹凸が大きく、しかも不規則であ
るため、照射X線の乱反射による影響が大きい。また、
本発明による試料は基板表面に広がるので、従来の滴下
試料よりも基板との接触面積が大きく、基板との密着性
が良い。さらに混合したフッ酸によって生体液中の蛋白
質などが変質して糊状になり、これが基板との接着強度
を高めるので基板との接着性が一層向上する。さらに、
この糊状に変質した有機物によって試料表面のひび割れ
が防止されるので、照射X線の乱反射が抑えられる。こ
の他に、生体液にフッ酸を混合することにより、試料が
乾固する際の濃度偏析が防止され、信頼性の検出精度を
得ることができる。通常、血清などの高塩濃度試料は試
料が乾固する際に塩濃度が不均一になり易く、滴下液の
中心部ほど濃度が高い。ところが、血清にフッ酸を添加
することにより、このような濃度偏析が防止されるので
検出精度の信頼性が高い。As shown in FIG. 2, the mixed sample solution 21 of the biological fluid and hydrofluoric acid of the present invention spreads flat on the substrate unlike the conventional sample 22 which bulges into a spherical shape on the wafer surface 23. Therefore, even if the sample liquid dries to cause small wrinkles on the surface, the influence of diffused reflection of irradiated X-rays is reduced. Since the conventional sample 22 dries in a state of bulging on the wafer surface,
Since the wrinkles formed on the surface of the sample are large and irregular, the irregular reflection of the irradiated X-rays has a large effect. Also,
Since the sample according to the present invention spreads on the surface of the substrate, it has a larger contact area with the substrate and better adhesion to the substrate than the conventional dropped sample. Further, the mixed hydrofluoric acid causes proteins and the like in the biological fluid to be denatured to form a paste, which enhances the adhesive strength with the substrate, thereby further improving the adhesiveness with the substrate. further,
Cracks on the surface of the sample are prevented by the organic substance that has been transformed into a paste, so that diffused reflection of irradiated X-rays is suppressed. In addition to this, by mixing hydrofluoric acid into the biological fluid, concentration segregation when the sample is dried and solidified can be prevented, and reliability detection accuracy can be obtained. Usually, in a high salt concentration sample such as serum, the salt concentration is likely to be non-uniform when the sample is dried, and the concentration is higher toward the center of the dropping solution. However, since the concentration segregation is prevented by adding hydrofluoric acid to the serum, the detection accuracy is high.
【0012】本発明により定量し得る元素は、蛍光X線
分析により分析し得るすべての元素であり、実質的に全
元素である。例えば、鉄、銅、鉛、亜鉛、クロム、マン
ガン、コバルト、ニッケル、水銀等の重金属、カルシウ
ム、マグネシウム等のアルカリ金属もしくはアルカリ土
類金属、アルミニウム等のその他の金属元素、あるいは
セレンやヒ素、リン等の非金属元素が分析の対象とな
る。定量分析は、例えば、濃度既知の試料を用いて予め
作成した検量線や、標準液を添加して得た検量線を用
い、定量しようとする測定試料について得た2次X線の
強度の測定結果を検量線に照合することにより行なう。
なお、通常、毎秒カウント数(積分強度)の対数値が濃
度に対して線形関係にあるため、照合は比較的容易に行
なうことができる。1回の測定で各元素に応じたピーク
の積分強度の測定が可能であるので、複数の元素の定量
を同時に行なうことができる。定量し得る濃度は100
ppb程度〜0.1%であり、50ppb程度の測定精
度を有する。特定の元素を多量に含む場合は、他元素の
定量への影響を最小限とするために、当該元素の除去等
の既知の手法を用いてもよい。The elements that can be quantified according to the present invention are all elements that can be analyzed by fluorescent X-ray analysis, and are substantially all elements. For example, iron, copper, lead, zinc, chromium, manganese, heavy metals such as cobalt, nickel and mercury, alkali metals or alkaline earth metals such as calcium and magnesium, other metal elements such as aluminum, selenium, arsenic and phosphorus. Non-metal elements such as are subject to analysis. Quantitative analysis uses, for example, a calibration curve prepared in advance using a sample of known concentration or a calibration curve obtained by adding a standard solution to measure the intensity of the secondary X-ray obtained for the measurement sample to be quantified. This is done by matching the results with a calibration curve.
Since the logarithmic value of the number of counts per second (integrated intensity) usually has a linear relationship with the concentration, collation can be performed relatively easily. Since it is possible to measure the integrated intensity of the peak corresponding to each element by one measurement, it is possible to quantify a plurality of elements simultaneously. The quantifiable concentration is 100
It is about ppb to 0.1% and has a measurement accuracy of about 50 ppb. When a large amount of a specific element is contained, a known method such as removal of the element may be used in order to minimize the influence on the quantification of other elements.
【0013】本発明の定量分析には標準添加法を利用す
ることができる。予め、生体液試料に標準液を諸定量添
加し、これに25%フッ酸を生体液と等量混合してSi
ウエハ表面に滴下し、自然乾燥させ、試料表面に蛍光X
線を照射して、その反射強度を測定する。ヒトの血清試
料に対しては次のような既知濃度の元素を含有する標準
液を用いると良い。標準液の添加量は、血清試料液1ml
に対して10〜100μl程度が適当である。 Ca:1000〜10000 ppb 、 Cu: 50 〜 400 ppb、
Fe: 50 〜 400 ppb、Zn: 25 〜 200 ppb、 P
t: 25〜 200 ppbA standard addition method can be used for the quantitative analysis of the present invention. In advance, various amounts of standard solution were added to the biological fluid sample, and 25% hydrofluoric acid was mixed with the biological fluid in the same amount to obtain Si.
Drop on the surface of the wafer, let it air dry, and fluoresce X on the surface of the sample.
Irradiate a line and measure its reflection intensity. For human serum samples, it is advisable to use the following standard solutions containing elements with known concentrations. Addition amount of standard solution is 1 ml of serum sample solution
On the other hand, about 10 to 100 μl is suitable. Ca: 1000 to 10000 ppb, Cu: 50 to 400 ppb,
Fe: 50-400 ppb, Zn: 25-200 ppb, P
t: 25 to 200 ppb
【0014】標準液の含有元素の種類と濃度は、測定す
べき生体液の種類に応じて適宜定められる。例えば、尿
については、以下の標準液を用いると良い。標準液の添
加量は尿試料1mlあたり10〜100μl程度であ
る。 Al: 0.5〜 5 mg/l、 Co: 10 〜 20 mg/l、 C
u: 0.2〜 1 mg/l、Fe: 3 〜 30 mg/l、 Hg:
0.1〜 20 mg/l、 Mn: 10 〜100 mg/l、Zn: 40
〜 80 mg/lThe type and concentration of the element contained in the standard solution are appropriately determined according to the type of biological fluid to be measured. For example, for urine, the following standard solution may be used. The addition amount of the standard solution is about 10 to 100 μl per 1 ml of the urine sample. Al: 0.5-5 mg / l, Co: 10-20 mg / l, C
u: 0.2-1 mg / l, Fe: 3-30 mg / l, Hg:
0.1 to 20 mg / l, Mn: 10 to 100 mg / l, Zn: 40
~ 80 mg / l
【0015】[0015]
【実施例および比較例】以下に本発明の実施例および比
較例を示す。実施例1 半導体デバイス用の高純度単結晶Siウエハのチップ
(50mm角、厚さ 2mm、表面粗さ 4nm)の表面に25%濃
度のフッ酸(純度 99.9999%)を滴下してチップ表面を
洗浄した。次に、ヒトの血清500μlに、表2に示す
濃度の元素を含む標準液を所定量(0μl,10μl,20μl)添
加したものに、さらに25%濃度のフッ酸(純度 99.99
99%)を500μl混合し、これを上記チップの表面に
10μl滴下した。自然乾燥後、試料表面に蛍光X線を
照射し(照射条件:Moターゲット、電圧40Kv、電流5m
A、照射角0.03°)、その2次X線生成強度により血清
試料中に含まれる元素の濃度を測定した。この結果を表
1に示した。なお、本分析方法の精度を確認するため
に、同一生体液試料について、従来法(高周波誘導結合
プラズマ、発光分光法)により試料中の元素濃度を分析
した。この結果を併せて表1に示した。EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of the present invention are shown below. Example 1 A chip of a high-purity single crystal Si wafer for a semiconductor device (50 mm square, thickness 2 mm, surface roughness 4 nm) was dropped onto a surface thereof with 25% hydrofluoric acid (purity 99.9999%) to clean the chip surface. did. Next, 500 μl of human serum was added with a predetermined amount (0 μl, 10 μl, 20 μl) of the standard solution containing the element at the concentration shown in Table 2, and further added with 25% hydrofluoric acid (purity 99.99).
99%) was mixed in an amount of 500 μl, and 10 μl of this was dropped on the surface of the chip. After natural drying, the sample surface is irradiated with fluorescent X-rays (irradiation conditions: Mo target, voltage 40 Kv, current 5 m
A, irradiation angle 0.03 °), and the concentration of elements contained in the serum sample was measured by the secondary X-ray generation intensity. The results are shown in Table 1. In order to confirm the accuracy of this analysis method, the same biological fluid sample was analyzed for elemental concentration in the sample by a conventional method (high-frequency inductively coupled plasma, emission spectroscopy). The results are also shown in Table 1.
【0016】比較例1 表2に示す標準液を所定量(0μl,20μl,40μl)添加した
血清を用い、実施例1のSiウエハチップの表面に25
%濃度のフッ酸を滴下して表面の自然酸化膜を除去した
後に、血清試料液を滴下し、実施例1と同様の条件で血
清試料中に含まれる元素の濃度を測定した。この結果を
表1に纏めて示した。 Comparative Example 1 A serum containing a predetermined amount (0 μl, 20 μl, 40 μl) of the standard solution shown in Table 2 was used, and 25 was added to the surface of the Si wafer chip of Example 1.
After the concentration of hydrofluoric acid was dropped to remove the natural oxide film on the surface, the serum sample solution was dropped, and the concentrations of the elements contained in the serum sample were measured under the same conditions as in Example 1. The results are summarized in Table 1.
【0017】[0017]
【表1】 [Table 1]
【0018】[0018]
【表2】 [Table 2]
【0019】表1に示すように、本発明の分析方法によ
れば、試料と基板の固着性に優れ、試料表面の平坦度を
確保できるため反射X線の検出感度が高い。また比較例
の方法では検出できないPtなどの極微量元素について
も濃度を検出でき、さらに従来のIPCなどによる測定
値との対比から明らかなように、検出した測定値につい
ても比較例より測定精度が高い。As shown in Table 1, according to the analysis method of the present invention, the adherence between the sample and the substrate is excellent, and the flatness of the sample surface can be secured, so that the detection sensitivity of reflected X-rays is high. In addition, the concentration of trace elements such as Pt, which cannot be detected by the method of the comparative example, can be detected. Further, as is clear from the comparison with the measured value by the conventional IPC, etc., the detected accuracy is higher than that of the comparative example. high.
【0020】[0020]
【発明の効果】本発明の分析方法によれば、生体液試料
と基板との密着性が良く、取扱いが容易であると共に、
試料が基板表面に平坦に付着するので、乾固した試料表
面の皺による影響が少なく、検出感度が良く、測定精度
が高い。また本発明の方法は全反射蛍光X線分析である
ので、試料生体液中の含有元素を同時に定量することが
でき、従来のような液中有機物を除去する前処理の必要
が無い。According to the analysis method of the present invention, the adhesion between the biological fluid sample and the substrate is good, the handling is easy, and
Since the sample adheres evenly to the surface of the substrate, it is less affected by wrinkles on the dried sample surface, has good detection sensitivity, and has high measurement accuracy. Further, since the method of the present invention is total reflection X-ray fluorescence analysis, the contained elements in the sample biological fluid can be quantified at the same time, and there is no need for a pretreatment for removing organic matter in the liquid as in the conventional case.
【図1】 本発明の全反射蛍光X線分析の概略を示す断
面図FIG. 1 is a cross-sectional view showing the outline of total reflection X-ray fluorescence analysis of the present invention.
【図2】 本発明の滴下試料と従来の滴下試料の状態を
比較して示す模式図FIG. 2 is a schematic diagram showing a state in which a dropped sample of the present invention and a conventional dropped sample are compared.
1−基板、 2−試料、 3−検出器、 4−B
e窓、5−コリメーター、 6−アノード 21−本発明の試料液、 22−従来の試料液、
23−基板表面1-Substrate, 2-Sample, 3-Detector, 4-B
e window, 5-collimator, 6-anode 21-sample solution of the present invention, 22-conventional sample solution,
23-Substrate surface
Claims (5)
有元素分析方法であって、生体液試料に鉱酸を混合して
基板上に滴下し、乾固させた後、X線を照射し全反射蛍
光X線分析を行なうことを特徴とする生体液試料の分析
方法。1. A method for analyzing an element contained in a biological fluid sample by a fluorescent X-ray analysis method, which comprises mixing a biological fluid sample with a mineral acid, dropping the mixture on a substrate, and drying the mixture, and then irradiating with X-rays. A method for analyzing a biological fluid sample, which comprises performing a total reflection X-ray fluorescence analysis.
り、試料を滴下する基板がSiウエハである請求項1の
分析方法。2. The analysis method according to claim 1, wherein the mineral acid mixed with the biological fluid sample is hydrofluoric acid, and the substrate onto which the sample is dropped is a Si wafer.
または硝酸であり、試料を滴下する基板がGa−Asウ
エハである請求項1の分析方法。3. The analysis method according to claim 1, wherein the mineral acid mixed with the biological fluid sample is hydrochloric acid, sulfuric acid or nitric acid, and the substrate onto which the sample is dropped is a Ga-As wafer.
容量あたり0.1〜2倍の0.1〜40%鉱酸を混合す
る請求項1〜3の何れかの分析方法。4. The analysis method according to claim 1, wherein the sample is a serum sample, and 0.1 to 2 times 0.1 to 40% of mineral acid is mixed per unit volume of the dropped sample.
〜4の何れかの分析方法。5. The standard solution is added to the biological fluid sample.
Analysis method according to any one of 4 to 4.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6054614A JPH07239291A (en) | 1994-02-28 | 1994-02-28 | Analysis of body fluid sample |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6054614A JPH07239291A (en) | 1994-02-28 | 1994-02-28 | Analysis of body fluid sample |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07239291A true JPH07239291A (en) | 1995-09-12 |
Family
ID=12975624
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6054614A Withdrawn JPH07239291A (en) | 1994-02-28 | 1994-02-28 | Analysis of body fluid sample |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07239291A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7585624B2 (en) | 2001-09-07 | 2009-09-08 | University Of Leicester | Detection of the energy of photons from biological assays |
-
1994
- 1994-02-28 JP JP6054614A patent/JPH07239291A/en not_active Withdrawn
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7585624B2 (en) | 2001-09-07 | 2009-09-08 | University Of Leicester | Detection of the energy of photons from biological assays |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kayani et al. | A red luminescent europium metal organic framework (Eu-MOF) integrated with a paper strip using smartphone visual detection for determination of folic acid in pharmaceutical formulations | |
| Gong et al. | A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks | |
| Lin et al. | Direct and simultaneous determination of copper, chromium, aluminum, and manganese in urine with a multielement graphite furnace atomic absorption spectrometer | |
| AU2004200506B2 (en) | Method for Reducing Effect of Hematocrit on Measurement of an Analyte in Whole Blood, and Test Kit and Test Article Useful in the Method | |
| Gong et al. | Fluorescence enhancement of CdTe quantum dots by HBcAb-HRP for sensitive detection of H2O2 in human serum | |
| RU2002131153A (en) | COMPOSITIONS OF STABILIZED TETRAZOLI-PHENAZINE REAGENT AND METHODS OF APPLICATION | |
| US20090038380A1 (en) | Oral Fluid Assays for the Detection of Heavy Metal Exposure | |
| Kumtabtim et al. | Analysis of trace metals in single droplet of urine by laser ablation inductively coupled plasma mass spectrometry | |
| CA2141313C (en) | Electrochemical metal analysis | |
| Folin et al. | Trace element determination in humans: The use of blood and hair | |
| CN106324072B (en) | Application of iron oxide matrix in cerebrospinal fluid mass spectrometry | |
| Song et al. | Amorphous/Crystalline Urchin‐Like TiO2 SERS Platform for Selective Recognition and Efficient Identification of Glutathione | |
| Matysiak et al. | Direct voltammetric detection of ceruloplasmin in blood in presence of other paramagnetic species | |
| JPH07239291A (en) | Analysis of body fluid sample | |
| Lin et al. | Droplet detection: simplification and optimization of detecting conditions towards high sensitivity quantitative determination of melamine in milk without any pretreatment | |
| Dou et al. | One-step fabrication of high-density Si nanotips as SALDI-MS substrate for highly sensitive detection | |
| Bellisola et al. | The use of total-reflection X-ray fluorescence to track the metabolism and excretion of selenium in humans | |
| Hellin et al. | Validation of vapor phase decomposition–droplet collection–total reflection X-ray fluorescence spectrometry for metallic contamination analysis of silicon wafers | |
| CN103901030A (en) | Mercury ion colloidal gold colorimetric detection method and mercury ion detection kit | |
| Ejima et al. | Determination of selenium in the human brain by graphite furnace atomic absorption spectrometry | |
| EP0701862A1 (en) | Microwave irradiation method and microwave irradiation device | |
| KR101978683B1 (en) | Method for detecting toxic metal ions in sample | |
| Zhu et al. | Temporally and spatially resolved molecular profiling in fingerprint analysis using indium vanadate nanosheets-assisted laser desorption ionization mass spectrometry | |
| TWI445946B (en) | Method and kit for detecting lead ions | |
| Wu et al. | Membrane-based detection of lead ions in seawater, urine and drinking straws through laser desorption/ionization |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010508 |