[go: up one dir, main page]

JPH07248516A - Nonlinear optical material and its production - Google Patents

Nonlinear optical material and its production

Info

Publication number
JPH07248516A
JPH07248516A JP6784194A JP6784194A JPH07248516A JP H07248516 A JPH07248516 A JP H07248516A JP 6784194 A JP6784194 A JP 6784194A JP 6784194 A JP6784194 A JP 6784194A JP H07248516 A JPH07248516 A JP H07248516A
Authority
JP
Japan
Prior art keywords
metal
nonlinear optical
oxide
optical material
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6784194A
Other languages
Japanese (ja)
Other versions
JP2772411B2 (en
Inventor
Masanori Andou
昌儀 安藤
Kohei Sumino
広平 角野
Masaki Haruta
正毅 春田
Susumu Sakaguchi
享 阪口
Masaru Miya
勝 見矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6067841A priority Critical patent/JP2772411B2/en
Publication of JPH07248516A publication Critical patent/JPH07248516A/en
Priority to US08/640,714 priority patent/US5688442A/en
Application granted granted Critical
Publication of JP2772411B2 publication Critical patent/JP2772411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a novel low-cost nonlinear optical material stably exhibiting a high nonlinear optical effect and excellent in safety. CONSTITUTION:A thin film of a substance contg. oxide of at least one kind of metal (A) selected from the group consisting of V, Cr Mn, Fe, Co, Ni and Cu is formed on a transparent substrate to obtain a tert. nonlinear optical material. A thin film of a composite obtd. by dispersing and depositing at least one kind of metal (B) selected from among Au, Ag and Cu as fine particles of <=500nm particle diameter in the interior or on the surface of a substance contg. oxide of the metal A is formed on a transparent substrate to obtain a tert. nonlinear optical material. A substance contg. oxide of the metal A is dispersed and deposited as fine particles of <=500nm particle diameter in a transparent substance to produce a tert. nonlinear optical material. A substance contg. oxide of the metal A and the metal B are dispersed and deposited as fine particles of <=500nm particle diameter in a transparent substance to produce a tert. nonlinear optical material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非線形光学効果を利用し
た光デバイスの基礎をなす非線形光学材料およびその製
造方法、さらに詳細には非線形光学効果の大きな金属酸
化物薄膜、金属微粒子を分散析出した金属酸化物薄膜、
および、金属酸化物および/または金属を微粒子化して
透明物質中に分散析出した物質およびそれらの製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical material which is the basis of an optical device utilizing the non-linear optical effect and a method for producing the same, and more specifically, a metal oxide thin film and a metal fine particle having a large non-linear optical effect are dispersed and deposited. Metal oxide thin film,
The present invention also relates to a substance in which a metal oxide and / or a metal is made into fine particles and dispersed and precipitated in a transparent substance, and a method for producing them.

【0002】[0002]

【従来の技術およびその問題点】従来見いだされてきた
比較的大きな非線形光学効果を有する物質として、CdS
等の半導体微粒子を分散析出したガラスやAu等の貴金属
微粒子を分散析出したガラス等が知られている。これら
の物質においては、半導体あるいは貴金属を微粒子化し
た場合においてのみ、大きな非線形光学効果が得られ、
微粒子化しない場合にはほとんど非線形光学効果を発現
しない。また、それらの材料においては、ガラスは微粒
子を分散するためのマトリックスとしての役割しかもた
ず、非線形光学効果の増大には寄与しないので、半導体
あるいは貴金属の微粒子をガラス中に多量に含有させる
程非線形光学効果は大きくなる。
[Prior Art and its Problems] CdS is a substance having a relatively large non-linear optical effect that has been found in the past.
Glass in which semiconductor fine particles such as are dispersed and deposited and glass in which precious metal fine particles such as Au are dispersed and deposited are known. In these substances, a large nonlinear optical effect can be obtained only when the semiconductor or the noble metal is made into fine particles.
When the particles are not made fine, almost no nonlinear optical effect is exhibited. Further, in those materials, glass only serves as a matrix for dispersing fine particles, and does not contribute to the increase of the nonlinear optical effect. Therefore, when a large amount of semiconductor or noble metal fine particles are contained in the glass, the nonlinearity is increased. The optical effect increases.

【0003】しかしながら、このような半導体微粒子あ
るいは貴金属微粒子をガラス中に含有させ得る割合には
物質の性質および技術的制約による上限が存在する。金
微粒子を例にとると、現在最も多量にシリカガラス中に
分散析出させ得るイオン注入法を用いた技術によって
も、6.3原子%(40重量%)程度以上の割合で含有させ
ることは困難である。したがって、金微粒子に起因する
3次非線形光学効果も分散量に制限される。また、貴金
属微粒子分散ガラスは安定性は高いが、原料となる貴金
属が高価であるため、より安価な原料を用いた非線形光
学材料が要望されている。一方、CdS等の半導体微粒子
分散ガラスは光照射による非線形光学効果の低下や黒化
現象を起こし易く、また、多孔質ガラス中に分散析出し
たものでは長期間放置すると酸化分解が進んで硫黄を遊
離する等の経時変化を起こす場合があるので安定性に問
題があり、人体に有害なカドミウムを含むため安全面か
らも問題がある。さらに、半導体あるいは貴金属を微粒
子状にガラス中に分散析出させ、任意の形状のファイバ
ーや薄膜等に加工するには複雑な工程が必要であるた
め、生産性は高いとは言い難い。したがって、半導体微
粒子分散ガラスや貴金属微粒子分散ガラスは非線形光学
材料として難点がある。
However, there is an upper limit for the ratio of such fine semiconductor particles or fine noble metal particles to be contained in the glass due to the nature of the substance and technical restrictions. Taking fine gold particles as an example, it is difficult to contain at least about 6.3 atom% (40% by weight) even by the technique using the ion implantation method capable of dispersing and depositing the largest amount in silica glass at present. . Therefore, the third-order nonlinear optical effect due to the fine gold particles is also limited to the amount of dispersion. Further, although the noble metal fine particle-dispersed glass has high stability, since the noble metal as a raw material is expensive, a nonlinear optical material using a cheaper raw material is desired. On the other hand, semiconductor fine particle-dispersed glass such as CdS is liable to cause a decrease in the nonlinear optical effect due to light irradiation and a blackening phenomenon, and those dispersed and precipitated in the porous glass undergo oxidative decomposition and liberate sulfur when left for a long time. There is a problem in stability because it may change over time, such as due to the presence of cadmium, which is harmful to the human body. Further, it is difficult to say that the productivity is high because a complicated process is required to disperse and precipitate the semiconductor or the noble metal in the form of fine particles in the glass and process it into a fiber or a thin film having an arbitrary shape. Therefore, the semiconductor fine particle-dispersed glass and the noble metal fine particle-dispersed glass have drawbacks as nonlinear optical materials.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、非線
形光学材料の現状に鑑み、高い非線形光学効果を安定に
発現し、かつ、安価で安全性にも優れた新たな非線形光
学材料及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION In view of the current state of nonlinear optical materials, an object of the present invention is to provide a novel nonlinear optical material that stably exhibits a high nonlinear optical effect, is inexpensive, and is excellent in safety, and its It is to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであり、本発明の3次非線形
光学材料は、V, Cr, Mn, Fe, Co, Ni, Cuからなる群か
ら選ばれた少なくとも1種の金属の酸化物を含む薄膜を
透明基板上に形成してなるものである(以下第1の発明
という)。
The present invention has been made in order to achieve the above object, and the third-order nonlinear optical material of the present invention comprises V, Cr, Mn, Fe, Co, Ni and Cu. A thin film containing an oxide of at least one metal selected from the group consisting of: is formed on a transparent substrate (hereinafter referred to as the first invention).

【0006】本第1の発明において使用する「金属酸化
物」は、金属の酸化状態に関して特に限定はなく、例え
ばCr2O3, MnO2, Mn3O4, Fe2O3, Fe3O4, CoO, Co3O4, Cu
Oなどの種々の酸化状態のものがいずれも用いられ、特
に好ましい金属酸化物としては、Cr2O3, Mn3O4, Fe2O3,
Co3O4, CuOが挙げられる。なお、金属の酸化物には、
上記のような単一の金属の酸化物の他に、MnCo2O4, NiC
o2O4, NiMnCo4O8などの複合酸化物も含まれる。
The "metal oxide" used in the first invention is not particularly limited with respect to the oxidation state of the metal, and for example, Cr 2 O 3 , MnO 2 , Mn 3 O 4 , Fe 2 O 3 , Fe 3 O. 4 , CoO, Co 3 O 4 , Cu
Any of various oxidation states such as O is used, and particularly preferred metal oxides are Cr 2 O 3 , Mn 3 O 4 , Fe 2 O 3 ,
Examples include Co 3 O 4 and CuO. In addition, in the metal oxide,
Besides the single metal oxides mentioned above, MnCo 2 O 4 , NiC
Complex oxides such as o 2 O 4 and NiMnCo 4 O 8 are also included.

【0007】本第1発明の金属酸化物を含む物質の薄膜
には、それ自体は該金属酸化物の非線形光学効果に寄与
しないが、添加することによって該金属酸化物の薄膜製
造を容易にする働き、或いは薄膜の構造安定性や機械的
強度を向上させる働きを持ち、且つ光学的な透明性が高
い添加成分を加えてもよい。このような添加成分として
は、特に限定されないが、Al2O3, ZnO, ZrO2などが例示
される。金属酸化物中の金属原子数と、添加成分中の金
属原子数の比率は、通常(1:0.01)〜(1:0.
10)程度である。
The thin film of the substance containing the metal oxide of the first invention does not itself contribute to the nonlinear optical effect of the metal oxide, but by adding it, the thin film production of the metal oxide is facilitated. An additive component having a high optical transparency and a function of improving the structural stability and mechanical strength of the thin film may be added. Although such an additive component is not particularly limited, Al 2 O 3 , ZnO, ZrO 2 and the like are exemplified. The ratio of the number of metal atoms in the metal oxide to the number of metal atoms in the additive component is usually (1: 0.01) to (1: 0.
It is about 10).

【0008】上記薄膜が適用される透明基板としては、
SiO2を主成分とするガラス、石英、Al2O3からなるサフ
ァイアなどが挙げられる。これらの材料は、平板状の形
状である。
As a transparent substrate to which the above thin film is applied,
Examples thereof include glass containing SiO 2 as a main component, quartz, and sapphire containing Al 2 O 3 . These materials have a flat plate shape.

【0009】さらに、本発明の3次非線形光学材料は、
V, Cr, Mn, Fe, Co, Ni, Cuからなる群から選ばれた少
なくとも1種の金属の酸化物を含む物質の内部あるいは
表面に、Au, Ag, Cuからなる群から選ばれた少なくとも
1種の金属の粒径500nm以下の微粒子を分散析出させた
複合体の薄膜を透明基板上に形成してなるものである
(以下第2の発明という)。
Further, the third-order nonlinear optical material of the present invention is
At least one selected from the group consisting of Au, Ag, and Cu is provided inside or on the surface of a substance containing an oxide of at least one metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu. A thin film of a composite in which fine particles of one kind of metal having a particle size of 500 nm or less are dispersed and deposited is formed on a transparent substrate (hereinafter referred to as a second invention).

【0010】本第2の発明において、金属の酸化物及び
透明基板は、上記第1の発明と同様である。
In the second invention, the metal oxide and the transparent substrate are the same as those in the first invention.

【0011】本第2の発明で用いるAu, Ag, Cuは、通常
単体の金属として用いられる。
Au, Ag, and Cu used in the second invention are usually used as a simple metal.

【0012】V, Cr, Mn, Fe, Co, Ni, Cuからなる群か
ら選ばれた少なくとも1種の金属の酸化物を含む物質中
の金属原子数と、Au, Ag, Cuからなる群から選ばれた少
なくとも1種の金属の原子数の配合比率は、特に限定さ
れないが、好ましくは(1:0.05)〜(1:4)程
度、より好ましくは(1:0.2)〜(1:2)程度で
ある。上記の金属の酸化物とAu, Ag, Cuからなる群から
選ばれた少なくとも1種の金属が上記の範囲内のとき
は、レーザー光照射時の熱により金属微粒子同士が凝集
するなどの構造変化が起こり難く、また望まれる非線形
光学効果が得られるため好ましい。
From the group consisting of Au, Ag, and Cu, the number of metal atoms in the substance containing the oxide of at least one metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, and Cu. The compounding ratio of the number of atoms of at least one selected metal is not particularly limited, but is preferably about (1: 0.05) to (1: 4), more preferably (1: 0.2) to (( It is about 1: 2). When at least one metal selected from the group consisting of oxides of the above metals and Au, Ag, Cu is within the above range, structural changes such as aggregation of metal fine particles due to heat during laser light irradiation Is less likely to occur and a desired nonlinear optical effect can be obtained, which is preferable.

【0013】本第2の発明で用いられるAu, Ag, Cuから
なる群から選ばれた少なくとも1種の金属の微粒子の粒
径は、500nm以下であるが、好ましくは5〜100
nmである。本第2発明において、V, Cr, Mn, Fe, Co,
Ni, Cuからなる群から選ばれた少なくとも1種の金属
の酸化物の粒径は、該酸化物を含む物質が薄膜である限
り任意であり、該薄膜が微粒子の集合体からなる場合で
も粒子径は任意である。
The fine particles of at least one metal selected from the group consisting of Au, Ag and Cu used in the second invention have a particle size of 500 nm or less, preferably 5 to 100.
nm. In the second invention, V, Cr, Mn, Fe, Co,
The particle diameter of the oxide of at least one metal selected from the group consisting of Ni and Cu is arbitrary as long as the substance containing the oxide is a thin film, and even when the thin film is an aggregate of fine particles, the particles are The diameter is arbitrary.

【0014】さらに、本発明は、V, Cr, Mn, Fe, Co, N
i, Cuからなる群から選ばれた少なくとも1種の金属の
酸化物を含む物質を粒径500nm以下の微粒子として透明
物質中に分散析出させることを特徴とする3次非線形光
学材料の製造方法(以下第3の発明という)および第3
の発明の方法により製造される3次非線形光学材料でも
ある。
Furthermore, the present invention relates to V, Cr, Mn, Fe, Co, N
A method for producing a third-order nonlinear optical material, characterized in that a substance containing an oxide of at least one metal selected from the group consisting of i and Cu is dispersed and precipitated as fine particles having a particle size of 500 nm or less in a transparent substance ( Hereinafter referred to as the third invention) and the third
It is also a third-order nonlinear optical material manufactured by the method of the invention.

【0015】金属の酸化物としては、上記第1及び第2
発明と同様のものが用いられる。
As the metal oxide, there are the above-mentioned first and second metal oxides.
The same thing as the invention is used.

【0016】本第3の発明で使用する透明物質として
は、第1の発明で使用する透明基板で使用されるものが
すべて使用できる。但し、その形状は限定されない。
As the transparent material used in the third invention, all the materials used in the transparent substrate used in the first invention can be used. However, the shape is not limited.

【0017】本第3発明で使用される金属の酸化物は、
第1及び第2の発明と同様なものが用いられるが、その
粒子径としては500nm以下、好ましくは5〜100
nmである。
The metal oxide used in the third invention is
The same thing as the first and second inventions is used, but its particle size is 500 nm or less, preferably 5 to 100.
nm.

【0018】さらに、本発明は、V, Cr, Mn, Fe, Co, N
i, Cuからなる群から選ばれた少なくとも1種の金属の
酸化物を含む物質、並びに、Au, Ag, Cuからなる群から
選ばれた少なくとも1種の金属を、粒径500nm以下の微
粒子として透明物質中に分散析出することを特徴とする
3次非線形光学材料の製造方法(以下、第4の発明とい
う)および第4の発明の方法により製造される3次非線
形光学材料でもある。
Further, the present invention relates to V, Cr, Mn, Fe, Co, N
A substance containing an oxide of at least one metal selected from the group consisting of i and Cu, and at least one metal selected from the group consisting of Au, Ag, and Cu as fine particles having a particle size of 500 nm or less. It is also a third-order nonlinear optical material produced by the method for producing a third-order nonlinear optical material (hereinafter referred to as the fourth invention), which is characterized in that it is dispersed and precipitated in a transparent substance, and the method according to the fourth invention.

【0019】以下、本第1から第4の発明を詳細に説明
する。
The first to fourth inventions will be described in detail below.

【0020】本第1の発明では、非線形光学材料の主成
分としては、V, Cr, Mn, Fe, Co, Ni, Cuから選ばれた
少なくとも1種の金属の酸化物を用いる。これらの酸化
物は、レーザー光のような強い光の照射下において高い
3次非線形光学効果を発現する性質を有するものであ
る。このような現象の生じる理由は明確ではないが、以
下のような原理によるものであると推測される。即ち、
これらの金属酸化物は、紫外・可視・近赤外におよぶ広
い波長範囲に連続的な吸収帯をもち、半導体的な性質を
もつ。したがって、バンドギャップ近傍の周波数のレー
ザー光を金属酸化物に照射したとき、励起状態のキャリ
ア密度が顕著に増大し、飽和吸収を起こして屈折率が変
化する、いわゆるバンドフィリング効果によって高い3
次非線形光学効果が発現すると推測される。また、レー
ザー光の照射に伴う温度上昇による屈折率の変化も3次
非線形光学効果の発現に寄与していると考えられる。
In the first aspect of the present invention, an oxide of at least one metal selected from V, Cr, Mn, Fe, Co, Ni and Cu is used as the main component of the nonlinear optical material. These oxides have the property of exhibiting a high third-order nonlinear optical effect under the irradiation of intense light such as laser light. The reason why such a phenomenon occurs is not clear, but it is presumed that it is due to the following principle. That is,
These metal oxides have continuous absorption bands in a wide wavelength range including ultraviolet, visible, and near infrared, and have semiconductor-like properties. Therefore, when the metal oxide is irradiated with laser light having a frequency near the band gap, the carrier density in the excited state remarkably increases, saturation absorption occurs, and the refractive index changes.
It is presumed that the second-order nonlinear optical effect appears. Further, it is considered that the change of the refractive index due to the temperature rise accompanying the irradiation of the laser beam also contributes to the expression of the third-order nonlinear optical effect.

【0021】このような現象は全ての金属酸化物で現れ
るのではなく、(イ)照射レーザー光の波長に吸収帯を
もつこと、(ロ)半導体的性質をもつこと、の2条件を
満足する金属酸化物でのみ達成されるものと考えられ
る。上記したV, Cr, Mn, Fe, Co, Ni, Cuから選ばれた
少なくとも1種の金属の酸化物の薄膜は、いずれも高い
3次非線形光学効果を示すものである。
Such a phenomenon does not appear in all metal oxides, but satisfies the two conditions of (a) having an absorption band at the wavelength of the irradiation laser beam and (b) having a semiconducting property. It is considered to be achieved only with metal oxides. The above-mentioned thin films of oxides of at least one metal selected from V, Cr, Mn, Fe, Co, Ni, and Cu all exhibit a high third-order nonlinear optical effect.

【0022】薄膜は、通常ガラス、石英、サファイア等
の透明基板上に形成する。薄膜の形成方法は特に限定は
なく、スパッタ堆積法、真空蒸着法、CVD法等のいわ
ゆる気相法や、金属アルコキシド、金属硝酸塩、有機酸
金属塩等の溶液を基板上に塗布し、熱分解する方法等、
各種の公知法が適用できる。薄膜の厚さは特に限定され
ないが、薄膜にレーザー光を透過して非線形光学材料と
して使用する場合には、薄膜が厚くなりすぎると、光の
透過割合が少なくなり、出力光が薄膜に再吸収されて弱
まるので非線形光学材料としての有用性が低下する。通
常、スパッタ堆積法で形成される薄膜のように緻密な薄
膜の場合には、通常2〜50nm程度、好ましくは5〜20nmが
適当であり、溶液を塗布し、熱分解する方法では、形成
される薄膜が比較的緻密でないので、より厚い膜厚でも
非線形光学材料として用いることができる。一方、光導
波路表面に非線形光学材料の薄膜を形成し、光導波路か
らしみ出すエバネッセント波を用いる場合には、薄膜が
厚過ぎても使用上問題はないが、薄膜が薄過ぎると非線
形光学効果に優れた材料とならないため、薄膜の厚さは
2nm以上であることが好ましく、より好ましくは2〜100n
m、さらに好ましくは5〜50nm程度である。
The thin film is usually formed on a transparent substrate such as glass, quartz or sapphire. The method for forming the thin film is not particularly limited, and a so-called vapor phase method such as a sputter deposition method, a vacuum vapor deposition method, a CVD method, or a solution of a metal alkoxide, a metal nitrate salt, an organic acid metal salt, or the like is applied on the substrate and thermally decomposed. How to do
Various known methods can be applied. The thickness of the thin film is not particularly limited, but when used as a nonlinear optical material by transmitting laser light to the thin film, if the thin film becomes too thick, the light transmission rate will decrease and the output light will be reabsorbed by the thin film. As a result, the usefulness as a nonlinear optical material is reduced. Usually, in the case of a dense thin film such as a thin film formed by the sputter deposition method, it is usually about 2 to 50 nm, preferably 5 to 20 nm is appropriate, and is formed by a method of applying a solution and thermally decomposing. Since the thin film is relatively not dense, it can be used as a nonlinear optical material even with a thicker film. On the other hand, when a thin film of a nonlinear optical material is formed on the surface of an optical waveguide and an evanescent wave exuding from the optical waveguide is used, there is no problem in using the thin film if it is too thick, but if the thin film is too thin, the nonlinear optical effect will occur. Since it is not an excellent material, the thickness of the thin film is
2nm or more, more preferably 2 ~ 100n
m, more preferably about 5 to 50 nm.

【0023】本第2の発明では、上記の金属酸化物を主
成分とする薄膜中あるいは薄膜表面に、Au, Ag, Cuから
選ばれた少なくとも1種の金属の微粒子を分散析出させ
ている。本発明の複合材料における金属微粒子の混入の
目的は、金属酸化物薄膜の非線形光学効果を増強するた
めである。上記の金属酸化物薄膜と金属微粒子はいずれ
も高い非線形光学効果を示すので、いずれか単独成分の
みを含む薄膜と比較して非線形光学効果が増強される。
In the second aspect of the invention, fine particles of at least one metal selected from Au, Ag and Cu are dispersed and deposited in or on the surface of the thin film containing the above metal oxide as a main component. The purpose of mixing the metal fine particles in the composite material of the present invention is to enhance the nonlinear optical effect of the metal oxide thin film. Since the metal oxide thin film and the metal fine particles each have a high non-linear optical effect, the non-linear optical effect is enhanced as compared with a thin film containing only one of the components.

【0024】このような第2の発明の金属微粒子分散金
属酸化物複合膜の形成方法は、特に限定はなく、金属酸
化物ターゲットと金属ターゲットを用いて基板上に同時
スパッタあるいは交互スパッタ法で堆積させる方法、金
属酸化物の前駆体となる金属アルコキシド、金属硝酸
塩、有機酸金属塩等の溶液と金属微粒子の前駆体となる
塩化金酸のような物質の溶液あるいは金属微粒子分散液
とを混合し、スピンコート法等で基板上に成膜した後、
空気のような酸素を含む雰囲気中で焼成する方法、多孔
質あるいは平滑な金属酸化物薄膜上にスパッタ堆積法、
金属微粒子分散液の塗布等の方法で金属微粒子を固定化
する方法等が適用できる。
The method for forming such a metal fine particle-dispersed metal oxide composite film of the second invention is not particularly limited, and a metal oxide target and a metal target are used to deposit on the substrate by simultaneous sputtering or alternate sputtering. Method, a solution of a metal alkoxide, which is a precursor of a metal oxide, a metal nitrate, a metal salt of an organic acid, etc., and a solution of a substance, such as chloroauric acid, which is a precursor of metal fine particles, or a metal fine particle dispersion liquid. After forming a film on the substrate by spin coating, etc.,
A method of firing in an atmosphere containing oxygen such as air, a sputter deposition method on a porous or smooth metal oxide thin film,
A method of immobilizing metal fine particles by a method such as coating with a metal fine particle dispersion can be applied.

【0025】本第3の発明では、透明物質としては、Si
O2を含むガラスマトリックス、Al2O3, ZrO2などが挙げ
られ、上記の金属酸化物の微粒子が透明物質中に0.1重
量%以上、好ましくは2〜80重量%、より好ましくは
10〜50重量%の割合で分散析出している。第1の発
明における金属酸化物は、微粒子化することにより、Cd
S等の半導体と同様に、量子サイズ効果によって、単位
原子数当たりで比較すると、微粒子化しない薄膜状の金
属酸化物よりも大きな非線形光学効果を示す。したがっ
て、ガラス等の透明なマトリックス中にある一定量以上
の金属酸化物微粒子を分散させた材料は、微粒子化しな
い連続的な金属酸化物薄膜よりも大きな非線形光学効果
を示す。ガラスマトリックス中に析出させる金属酸化物
の粒径は、量子サイズ効果により非線形光学効果を増大
させるため、500nm以下であることが必要であり、好ま
しくは5〜100nm、より好ましくは5〜50nmである。
In the third invention, the transparent material is Si.
Glass matrix containing O 2, Al 2 O 3, ZrO 2 or the like can be mentioned fine particles of the metal oxide is 0.1% by weight or more transparent substance, preferably 2 to 80 wt%, more preferably 10 to 50 Dispersed and precipitated at a weight percentage. The metal oxide in the first invention is made into Cd by forming fine particles.
Similar to semiconductors such as S, due to the quantum size effect, when compared per unit number of atoms, it shows a larger nonlinear optical effect than thin-film metal oxides without atomization. Therefore, a material in which a certain amount or more of metal oxide fine particles are dispersed in a transparent matrix such as glass exhibits a larger nonlinear optical effect than a continuous metal oxide thin film which is not made into fine particles. The particle size of the metal oxide to be precipitated in the glass matrix is required to be 500 nm or less, in order to increase the nonlinear optical effect by the quantum size effect, preferably 5 to 100 nm, more preferably 5 to 50 nm. .

【0026】このような第3の発明により製造される金
属酸化物含有ガラスは、金属酸化物微粒子の含有濃度を
高くすることが容易である点、金属酸化物微粒子の大き
さの制御が可能である点、分散析出させ得る金属酸化物
の種類が豊富である点等から、多孔質ガラスマトリック
スを利用して製造、あるいはスパッタ堆積法により製造
する。
In the metal oxide-containing glass produced according to the third aspect of the invention, it is easy to increase the content concentration of the metal oxide fine particles, and the size of the metal oxide fine particles can be controlled. From a certain point, since there are many kinds of metal oxides that can be dispersed and precipitated, it is manufactured by using a porous glass matrix or by a sputter deposition method.

【0027】従来、多孔質ガラスマトリックスに金属酸
化物微粒子分散液を浸透させ、乾燥後、酸素を含む雰囲
気中で1500℃まで加熱して非線形光学材料を作製する方
法が開示されている(特開平2-44031)。しかし、この
方法では金属酸化物微粒子の直径よりも大きな細孔径を
もつ多孔質ガラスマトリックスしか用いることができ
ず、また、金属酸化物微粒子分散液が得られる金属酸化
物の種類および金属酸化物微粒子の寸法も限られている
欠点がある。従って、目的に応じた高い自由度で金属酸
化物微粒子の種類および寸法を選択して多孔質ガラスマ
トリックス中に分散析出できる方法が要望されている。
Conventionally, a method has been disclosed in which a dispersion of metal oxide fine particles is infiltrated into a porous glass matrix, dried, and then heated to 1500 ° C. in an atmosphere containing oxygen to prepare a nonlinear optical material (Japanese Patent Laid-Open No. Hei 10 (1999) -242242). 2-44031). However, in this method, only a porous glass matrix having a pore size larger than the diameter of the metal oxide fine particles can be used, and the type of metal oxide and the metal oxide fine particles from which the metal oxide fine particle dispersion liquid can be obtained. There is a drawback that the size of is limited. Therefore, there is a demand for a method in which the type and size of the metal oxide fine particles can be selected and dispersed and precipitated in the porous glass matrix with a high degree of freedom according to the purpose.

【0028】このような問題点を解決するため、多孔質
ガラスマトリックスを用いて第3の発明の金属酸化物含
有ガラスを製造するにあたっては、例えば多孔質ガラス
マトリックスにバナジルイソプロポキシド、バナジルエ
トキシドなどの金属アルコキシド、硝酸マンガン、硝酸
コバルト、硝酸第1鉄、硝酸銅などの金属硝酸塩、オク
チル酸バナジウム、オクチル酸ニッケル、ナフテン酸ク
ロム、ナフテン酸銅などの有機酸金属塩等の溶液を含浸
させ、乾燥後、熱分解する方法等を用いる。
In order to solve such problems, when the glass containing a metal oxide of the third invention is produced using a porous glass matrix, for example, vanadyl isopropoxide or vanadyl ethoxide is added to the porous glass matrix. Impregnated with a solution of metal alkoxides such as, metal nitrates such as manganese nitrate, cobalt nitrate, ferrous nitrate, and copper nitrate, organic acid metal salts such as vanadium octylate, nickel octylate, chromium naphthenate, and copper naphthenate. The method of thermal decomposition after drying is used.

【0029】スパッタ堆積法を用いて第3の発明の金属
酸化物含有ガラスの製造法を行うにあたっては、例えば
シリカガラスターゲットと金属酸化物ターゲットを用い
て、同時スパッタあるいは交互スパッタ法で基板上、あ
るいは、光導波路を構成する屈折率の異なるガラス上に
堆積させる方法等をとることができる。
In carrying out the method for producing the metal oxide-containing glass of the third invention by using the sputter deposition method, for example, a silica glass target and a metal oxide target are used and the substrate is subjected to simultaneous sputtering or alternating sputtering, Alternatively, it is possible to adopt a method of depositing on the glass having different refractive indexes forming the optical waveguide.

【0030】本第4の発明では、上記の金属酸化物の微
粒子と共に金属の微粒子がそれぞれ0.1重量%以上好
ましくは2〜80重量%、より好ましくは10〜50重
量%の割合でガラスマトリックスなどの透明物質中に分
散析出している。本発明の複合材料における金属微粒子
の混入の目的は、金属酸化物微粒子の非線形光学効果を
増強するためである。上記の金属酸化物微粒子と金属微
粒子はいずれも高い非線形光学効果を示すので、いずれ
か単独成分のみが透明物質中に分散析出されている材料
と比較して非線形光学効果が増強される。透明物質中に
析出させる金属酸化物の粒径および金属の粒径は、量子
サイズ効果により非線形光学効果を増大させるため、50
0nm以下であることが必要である。透明物質中に析出さ
せる金属酸化物および金属の割合は特に限定的ではない
が、金属酸化物および金属の透明物質に対する割合が0.
1重量%未満では、非線形光学効果に優れた金属酸化物
・金属含有ガラスとならないため、金属酸化物および金
属の割合は0.1重量%以上とすることが好ましい。
In the fourth aspect of the present invention, the glass matrix is contained in a proportion of 0.1% by weight or more, preferably 2 to 80% by weight, more preferably 10 to 50% by weight, together with the above-mentioned metal oxide fine particles. Dispersed and precipitated in a transparent substance such as. The purpose of mixing the metal fine particles in the composite material of the present invention is to enhance the nonlinear optical effect of the metal oxide fine particles. Since both the metal oxide fine particles and the metal fine particles have a high non-linear optical effect, the non-linear optical effect is enhanced as compared with a material in which only one of the single components is dispersed and precipitated in the transparent substance. The grain size of the metal oxide and the grain size of the metal to be precipitated in the transparent substance is 50 because the quantum size effect increases the nonlinear optical effect.
It must be 0 nm or less. The ratio of the metal oxide and the metal to be precipitated in the transparent substance is not particularly limited, but the ratio of the metal oxide and the metal to the transparent substance is 0.
If it is less than 1% by weight, a metal oxide / metal-containing glass having an excellent non-linear optical effect cannot be obtained. Therefore, the ratio of the metal oxide and the metal is preferably 0.1% by weight or more.

【0031】このような第4の発明により製造される金
属酸化物・金属含有ガラスは、金属酸化物・金属微粒子
の含有濃度を高くすることが容易である点、金属酸化物
・金属微粒子の大きさの制御が可能である点、分散析出
させ得る金属酸化物・金属の種類が豊富である点等か
ら、多孔質ガラスマトリックスを利用して製造、あるい
はスパッタ堆積法により製造する。
In the metal oxide / metal-containing glass produced according to the fourth aspect of the invention, it is easy to increase the concentration of the metal oxide / metal fine particles, and the size of the metal oxide / metal fine particles is large. The porous glass matrix is used for the production, or the sputter deposition method is used because of the large amount of metal oxides and metals that can be dispersed and precipitated.

【0032】多孔質ガラスマトリックスを用いて第4の
発明の方法に従い金属酸化物・金属含有ガラスを製造す
るにあたっては、例えば多孔質ガラスマトリックスに金
属酸化物の前駆体となる金属アルコキシド、金属硝酸
塩、有機酸金属塩等の溶液および金属の前駆体となる塩
化金酸のような物質の溶液を含浸させ、乾燥後、熱分解
する方法等をとることができる。
When a metal oxide / metal-containing glass is produced by using the porous glass matrix according to the method of the fourth aspect of the invention, for example, a metal alkoxide or a metal nitrate, which is a precursor of the metal oxide, is added to the porous glass matrix. A method of impregnating with a solution of an organic acid metal salt or the like and a solution of a substance such as chloroauric acid serving as a metal precursor, drying and then thermally decomposing it can be used.

【0033】スパッタ堆積法を用いて第4の発明の方法
に従い金属酸化物・金属含有ガラスを製造するにあたっ
ては、例えばシリカガラスターゲット、金属酸化物ター
ゲット、ならびに金属ターゲットを用いて、同時スパッ
タ法あるいは交互スパッタ法で基板上、あるいは光導波
路を構成する屈折率の異なるガラス上に堆積させる方法
等をとることができる。
When the metal oxide / metal-containing glass is produced by the sputter deposition method according to the method of the fourth aspect of the invention, for example, a silica glass target, a metal oxide target, and a metal target are used to perform a co-sputtering method or It is possible to adopt a method of depositing on the substrate or on the glass constituting the optical waveguide having different refractive indexes by the alternate sputtering method.

【0034】本第1〜第4の発明では、これらの金属酸
化物を単独または混合して用いることができる。また、
単成分の金属元素の酸化物として用いるだけでなく、複
合酸化物として用いてもよい。
In the first to fourth inventions, these metal oxides can be used alone or in combination. Also,
It may be used not only as an oxide of a single component metal element but also as a composite oxide.

【0035】本第3および第4の発明では、多孔質ガラ
ス中に残存する空隙に起因する光の散乱を減少させ、非
線形光学効果を向上させるために、製造した材料を600
℃以上の高温で熱処理する等の後処理を行ってもよい。
In the third and fourth inventions, in order to reduce the scattering of light due to the voids remaining in the porous glass and to improve the non-linear optical effect, the manufactured material is adjusted to 600
Post-treatment such as heat treatment at a high temperature of ℃ or more may be performed.

【0036】[0036]

【発明の効果】本発明によれば、高い非線形光学効果を
安定に発現し、かつ、安価で安全性にも優れた新たな非
線形光学材料およびその製造方法を提供できる。
According to the present invention, it is possible to provide a novel nonlinear optical material which stably exhibits a high nonlinear optical effect, is inexpensive, and is excellent in safety, and a method for producing the same.

【0037】[0037]

【実施例】以下、本発明の実施例を実施例を用いてより
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, examples of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0038】実施例1 ガラス基板上(片面)にナフテン酸銅膜をスピンコート
法で形成し、380℃で2時間焼成し、厚み約35nmの淡褐
色透明を呈する酸化銅(CuO)薄膜を調製した。この酸化
銅薄膜の3次非線形感受率(χ(3))は波長532nmで縮退
4光波混合法(DFWM)によって測定した結果5x10-8esuで
あり非線形光学材料として使用できる高い性能をもつこ
とがわかった。
Example 1 A copper naphthenate film was formed on a glass substrate (one surface) by a spin coating method, and baked at 380 ° C. for 2 hours to prepare a light brown transparent copper oxide (CuO) thin film having a thickness of about 35 nm. did. The third-order nonlinear susceptibility (χ (3) ) of this copper oxide thin film was 5x10 -8 esu as measured by the degenerate four-wave mixing method (DFWM) at a wavelength of 532 nm, and it has high performance that can be used as a nonlinear optical material. all right.

【0039】実施例2 ガラス基板上(片面)にスパッタ法で厚み約60nmの淡褐
色透明を呈する酸化コバルト(Co3O4)薄膜を調製した。
この酸化コバルト薄膜の3次非線形感受率(χ(3))は
波長532nmで縮退4光波混合法(DFWM)によって測定した
結果4x10-8esuであった。
Example 2 A cobalt oxide (Co 3 O 4 ) thin film having a thickness of about 60 nm and showing a transparent light brown color was prepared on a glass substrate (one surface) by a sputtering method.
The third-order nonlinear susceptibility (χ (3) ) of this cobalt oxide thin film was 4 × 10 -8 esu as measured by the degenerate four-wave mixing method (DFWM) at a wavelength of 532 nm.

【0040】実施例3 ナフテン酸鉄のトルエン溶液と、平均粒径10nmの金微粒
子のトルエン分散液を混合し、この溶液をガラス基板上
(片面)にスピンコートしてナフテン酸鉄と金微粒子の
混合膜を形成した。この混合膜を380℃で2時間焼成
し、厚み約30nmの赤紫色を帯びた淡褐色透明を呈する酸
化鉄(Fe2O3)・金微粒子複合薄膜を調製した。この複合
薄膜の3次非線形感受率(χ(3))は波長532nmで縮退4
光波混合法(DFWM)によって測定した結果1x10-7esuであ
り複合化によって非線形光学材料としての性能が向上し
た。
Example 3 A toluene solution of iron naphthenate and a toluene dispersion of fine gold particles having an average particle size of 10 nm were mixed, and this solution was spin-coated on a glass substrate (one surface) to form iron naphthenate and fine gold particles. A mixed film was formed. This mixed film was baked at 380 ° C. for 2 hours to prepare an iron oxide (Fe 2 O 3 ) -gold fine particle composite thin film having a thickness of about 30 nm and exhibiting reddish purple and light brown transparency. The third-order nonlinear susceptibility (χ (3) ) of this composite thin film degenerates at a wavelength of 532 nm 4
The measurement result by the optical wave mixing method (DFWM) was 1x10 -7 esu, and the performance as a nonlinear optical material was improved by compounding.

【0041】実施例4 硝酸マンガンと硝酸コバルトの混合トルエン溶液を、平
均細孔径4nm、気孔率28%、比表面積200m2/gの多孔質ガ
ラスマトリックスに含浸させ、乾燥後、380℃で2時間
焼成し、マンガン・コバルト複合酸化物を多孔質ガラス
の細孔内に固定化した褐色の材料を調製した。このマン
ガン・コバルト複合酸化物微粒子分散ガラスの3次非線
形感受率(χ(3))は波長532nmで縮退4光波混合法(DFW
M)によって測定した結果10-10esuであった。
Example 4 A mixed toluene solution of manganese nitrate and cobalt nitrate was impregnated into a porous glass matrix having an average pore diameter of 4 nm, a porosity of 28% and a specific surface area of 200 m 2 / g, and dried and then dried at 380 ° C. for 2 hours. A brown material was prepared by firing to fix the manganese-cobalt composite oxide in the pores of the porous glass. The third-order nonlinear susceptibility (χ (3) ) of this manganese-cobalt composite oxide fine particle-dispersed glass has a degenerate four-wave mixing method (DFW) at a wavelength of 532 nm.
The result measured by M) was 10 -10 esu.

【0042】実施例5 オクチル酸コバルトのトルエン・ブタノール混合溶液に
塩化金酸を加えて溶解し、得られた混合溶液を、平均細
孔径4nm、気孔率28%、比表面積200m2/gの多孔質ガラス
マトリックスに含浸させ、乾燥後、380℃で2時間焼成
し、酸化コバルトと金を多孔質ガラスの細孔内に固定化
した紫褐色の材料を調製した。この酸化コバルト微粒子
・金微粒子分散ガラスの3次非線形感受率(χ(3))は
波長532nmで縮退4光波混合法(DFWM)によって測定した
結果10-9esuであった。
Example 5 Chloroauric acid was added to and dissolved in a toluene / butanol mixed solution of cobalt octylate, and the resulting mixed solution was subjected to porosity having an average pore diameter of 4 nm, a porosity of 28% and a specific surface area of 200 m 2 / g. The glass matrix was impregnated, dried, and then baked at 380 ° C. for 2 hours to prepare a purple-brown material in which cobalt oxide and gold were immobilized in the pores of the porous glass. The third-order nonlinear susceptibility (χ (3) ) of the cobalt oxide fine particle / gold fine particle-dispersed glass was 10 -9 esu as measured by the degenerate four-wave mixing method (DFWM) at a wavelength of 532 nm.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例で作製した薄膜の光吸収
特性を表す図である。
FIG. 1 is a diagram showing light absorption characteristics of a thin film manufactured in a first example of the present invention.

【図2】本発明の第3の実施例で作製した薄膜の光吸収
特性を表す図である。
FIG. 2 is a diagram showing light absorption characteristics of a thin film manufactured in a third embodiment of the present invention.

【図3】本発明の第5の実施例のプロセスを表す図であ
る。
FIG. 3 is a diagram showing a process of a fifth embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪口 享 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 見矢 勝 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sakaguchi Ryo 1-831 Midorigaoka, Ikeda City, Osaka Prefecture Industrial Technology Institute, Osaka Institute of Industrial Technology (72) Inventor Masaru Miya, 1-8, Midorigaoka, Ikeda, Osaka Prefecture No. 31 Industrial Technology Institute Osaka Institute of Technology

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】V, Cr, Mn, Fe, Co, Ni, Cuからなる群か
ら選ばれた少なくとも1種の金属の酸化物を含む物質の
薄膜を透明基板上に形成してなる3次非線形光学材料。
1. A third-order nonlinearity obtained by forming a thin film of a substance containing an oxide of at least one metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni and Cu on a transparent substrate. Optical material.
【請求項2】V, Cr, Mn, Fe, Co, Ni, Cuからなる群か
ら選ばれた少なくとも1種の金属の酸化物を含む物質の
内部あるいは表面に、Au, Ag, Cuからなる群から選ばれ
た少なくとも1種の金属の粒径500nm以下の微粒子を分
散析出させた複合体の薄膜を透明基板上に形成してなる
3次非線形光学材料。
2. A group consisting of Au, Ag and Cu inside or on the surface of a substance containing an oxide of at least one metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni and Cu. A third-order nonlinear optical material comprising a transparent substrate and a thin film of a composite in which fine particles of at least one kind of metal selected from the group having a particle size of 500 nm or less are dispersed and deposited.
【請求項3】V, Cr, Mn, Fe, Co, Ni, Cuからなる群か
ら選ばれた少なくとも1種の金属の酸化物を含む物質を
粒径500nm以下の微粒子として透明物質中に分散析出さ
せることを特徴とする3次非線形光学材料の製造方法。
3. A substance containing an oxide of at least one metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni and Cu, dispersed and precipitated in a transparent substance as fine particles having a particle size of 500 nm or less. A method of manufacturing a third-order nonlinear optical material, comprising:
【請求項4】請求項3に記載の方法により製造される3
次非線形光学材料。
4. A product manufactured by the method according to claim 3.
Non-linear optical material.
【請求項5】V, Cr, Mn, Fe, Co, Ni, Cuからなる群か
ら選ばれた少なくとも1種の金属の酸化物を含む物質、
並びに、Au, Ag, Cuからなる群から選ばれた少なくとも
1種の金属を、粒径500nm以下の微粒子として透明物質
中に分散析出することを特徴とする3次非線形光学材料
の製造方法。
5. A substance containing an oxide of at least one metal selected from the group consisting of V, Cr, Mn, Fe, Co, Ni and Cu,
Also, a method for producing a third-order nonlinear optical material, characterized in that at least one metal selected from the group consisting of Au, Ag, and Cu is dispersed and precipitated as fine particles having a particle size of 500 nm or less in a transparent substance.
【請求項6】請求項5に記載の方法により製造される3
次非線形光学材料。
6. A device manufactured by the method according to claim 5.
Non-linear optical material.
JP6067841A 1994-03-11 1994-03-11 Nonlinear optical material and manufacturing method thereof Expired - Lifetime JP2772411B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6067841A JP2772411B2 (en) 1994-03-11 1994-03-11 Nonlinear optical material and manufacturing method thereof
US08/640,714 US5688442A (en) 1994-03-11 1996-05-01 Nonlinear optical materials and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6067841A JP2772411B2 (en) 1994-03-11 1994-03-11 Nonlinear optical material and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP31014596A Division JP3265354B2 (en) 1996-11-05 1996-11-05 Method of manufacturing third-order nonlinear optical material and third-order nonlinear optical material

Publications (2)

Publication Number Publication Date
JPH07248516A true JPH07248516A (en) 1995-09-26
JP2772411B2 JP2772411B2 (en) 1998-07-02

Family

ID=13356588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6067841A Expired - Lifetime JP2772411B2 (en) 1994-03-11 1994-03-11 Nonlinear optical material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2772411B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993701A (en) * 1996-11-27 1999-11-30 Industrial Science & Technology Third-order nonlinear optical material and method for production thereof
US6790502B1 (en) 1999-10-15 2004-09-14 Hitachi, Ltd. Optically functional element and production method and application therefor
US6844092B2 (en) 2002-08-22 2005-01-18 Hitachi, Ltd. Optically functional element and production method and application therefor
JP2006200009A (en) * 2005-01-21 2006-08-03 National Institute Of Advanced Industrial & Technology Metal fine particle dispersed composite and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244031A (en) * 1988-08-05 1990-02-14 Nippon Telegr & Teleph Corp <Ntt> Production of nonlinear optical glass
JPH05127206A (en) * 1991-11-05 1993-05-25 Matsushita Electric Ind Co Ltd Nonlinear optical material and production thereof
JPH05224262A (en) * 1992-02-17 1993-09-03 Ricoh Co Ltd Nonlinear optical material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244031A (en) * 1988-08-05 1990-02-14 Nippon Telegr & Teleph Corp <Ntt> Production of nonlinear optical glass
JPH05127206A (en) * 1991-11-05 1993-05-25 Matsushita Electric Ind Co Ltd Nonlinear optical material and production thereof
JPH05224262A (en) * 1992-02-17 1993-09-03 Ricoh Co Ltd Nonlinear optical material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993701A (en) * 1996-11-27 1999-11-30 Industrial Science & Technology Third-order nonlinear optical material and method for production thereof
US6790502B1 (en) 1999-10-15 2004-09-14 Hitachi, Ltd. Optically functional element and production method and application therefor
US6844092B2 (en) 2002-08-22 2005-01-18 Hitachi, Ltd. Optically functional element and production method and application therefor
JP2006200009A (en) * 2005-01-21 2006-08-03 National Institute Of Advanced Industrial & Technology Metal fine particle dispersed composite and method for producing the same

Also Published As

Publication number Publication date
JP2772411B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
Xu et al. Recent advances in VO 2-based thermochromic composites for smart windows
US5800925A (en) Nonlinear optical materials and process for producing the same
US5597614A (en) Ultrafine particle dispersed glassy material and method
JP3772194B2 (en) Light limiting material
KR100643658B1 (en) Visible Light Titanium Oxide Photocatalyst and its Manufacturing Method and Application
WO2001054811A1 (en) Photocatalyst
Ashok et al. Structural and physical characteristics of Au2O3‐doped sodium antimonate glasses–Part I
Vignesh et al. Optical constants, optical dispersion and group index parameters of Mn2O3 thin films
JPH07248516A (en) Nonlinear optical material and its production
Wang et al. Microstructure and optical absorption properties of Au-dispersed CoO thin films
JP3265354B2 (en) Method of manufacturing third-order nonlinear optical material and third-order nonlinear optical material
JP2849703B2 (en) Metal oxide-based third-order nonlinear optical materials
JPH08131524A (en) Multi-functional material having photocatalytic function and manufacture thereof
Atlam et al. Enhanced structural, dielectric, and antibacterial properties of Sr (1− x) CuxO2 nanoparticles synthesized via sol–gel method
KR101979321B1 (en) A inorganic colar coating layer containg metal nanoparticles and method for manufauring the same
WO2023079766A1 (en) Photocatalyst antibacterial deodorizing material, method for producing same, antibacterial deodorizing material, and antibacterial deodorizing filter
JP2000237598A (en) Production of visible ray response type photocatalyst
JP2010163318A (en) Crystallized glass, photocatalyst member using the same and optical member using the same
JP2535303B2 (en) Ultra fine particle dispersed glass and its manufacturing method
Zhang et al. Construction and nonlinear optical characterization of CuO quantum dots doped Na2O–CaO–B2O3–SiO2 bulk glass
Manzanares-Martı́nez et al. Stabilization of copper-based colloidal particles in sol–gel SiO2 thin films
JP2678336B2 (en) Method for producing ultrafine particle-dispersed glassy material
JP6095156B2 (en) Photocatalytic glass
JP2795590B2 (en) Nonlinear optical material and manufacturing method thereof
Tomar et al. Optical Properties of Nanocomposite Materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term