[go: up one dir, main page]

JPH07254118A - Magnetoresistive head and magnetic recording / reproducing apparatus - Google Patents

Magnetoresistive head and magnetic recording / reproducing apparatus

Info

Publication number
JPH07254118A
JPH07254118A JP6042169A JP4216994A JPH07254118A JP H07254118 A JPH07254118 A JP H07254118A JP 6042169 A JP6042169 A JP 6042169A JP 4216994 A JP4216994 A JP 4216994A JP H07254118 A JPH07254118 A JP H07254118A
Authority
JP
Japan
Prior art keywords
magnetic
layer
multilayer film
head
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6042169A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Hiroyuki Hoshiya
裕之 星屋
Yoshihiro Hamakawa
佳弘 濱川
Katsumi Hoshino
勝美 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6042169A priority Critical patent/JPH07254118A/en
Publication of JPH07254118A publication Critical patent/JPH07254118A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Hall/Mr Elements (AREA)

Abstract

(57)【要約】 【目的】高感度および優れた軟磁気特性を示し、作製プ
ロセスが簡便な、磁気抵抗効果磁気ヘッドを提供する。 【構成】磁気抵抗効果材料として、磁性層15に反強磁
性層16からの交換バイアス磁界を印加し、磁性層13
には直接的には、反強磁性層16からの交換バイアス磁
界を印加しない多層膜を用いた磁気抵抗効果型ヘッドに
おいて、酸化物を主成分とする高耐食性の反強磁性層1
6を、多層膜を形成した基板11から見て磁性層13,
15よりも遠い側に形成した。また、電極17を形成し
た後に、多層膜を形成した。
(57) [Summary] [Object] To provide a magnetoresistive effect magnetic head exhibiting high sensitivity and excellent soft magnetic characteristics, and having a simple manufacturing process. [Structure] As a magnetoresistive material, an exchange bias magnetic field from an antiferromagnetic layer 16 is applied to a magnetic layer 15 to form a magnetic layer 13.
Directly, in a magnetoresistive head using a multilayer film that does not apply the exchange bias magnetic field from the antiferromagnetic layer 16, a highly corrosion-resistant antiferromagnetic layer 1 containing oxide as a main component.
6 is the magnetic layer 13 when viewed from the substrate 11 on which the multilayer film is formed,
It was formed on the side farther than 15. Moreover, after forming the electrode 17, a multilayer film was formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い磁気抵抗効果を有す
る多層磁気抵抗効果膜を用いた磁気抵抗効果型ヘッド、
および、磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head using a multilayer magnetoresistive film having a high magnetoresistive effect,
And a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、高い感度を示
す材料が求められている。最近、フィジカル・レビュー
・B(Pysical Review B)、第43巻,第1号,1297
〜1300ページに記載の「軟磁性多層膜における巨大
磁気抵抗効果(Giant Magnetoresistance in SoftFerrom
agnetic Multilayers)」のように2層の磁性層を非磁性
層で分離し、一方の磁性層に反強磁性層からの交換バイ
アス磁界を印加する方法が考案された。この多層膜は一
層の磁性層の厚さが薄いため、磁気抵抗効果素子を形成
した時の反磁界係数が小さく、このため、低い磁界で磁
気抵抗効果を示す。また、磁気抵抗変化量も大きい。
2. Description of the Related Art With the increase in density of magnetic recording, a material having high sensitivity is required as a magnetoresistive effect material used for a reproducing magnetic head. Recently, Physical Review B, Vol. 43, No. 1, 1297
~ Giant Magnetoresistance in Soft Ferromagnetic Films on page 1300
A method of separating two magnetic layers by a non-magnetic layer and applying an exchange bias magnetic field from an antiferromagnetic layer to one of the magnetic layers has been devised as in "Magnetic Multilayers)". Since the thickness of one magnetic layer is thin in this multilayer film, the demagnetizing field coefficient when the magnetoresistive effect element is formed is small, and therefore, the magnetoresistive effect is exhibited in a low magnetic field. Also, the amount of change in magnetic resistance is large.

【0003】[0003]

【発明が解決しようとする課題】上記の文献に記載の多
層膜では、Fe−Mn系合金からなる反強磁性層が用い
られている。しかし、Fe−Mn系合金は耐食性が悪
く、多層膜を用いた磁気抵抗効果素子の信頼性を劣化さ
せる。そこで、耐食性の優れたNi−O系反強磁性材料
を用いた多層膜が考えられる。しかし、Ni−O系反強
磁性層の上に形成した磁性層は軟磁気特性が劣化し、磁
気抵抗効果素子の感度を低下させる。そこで、磁性層上
にNi−O系反強磁性層を形成すると、磁性層の軟磁気
特性は向上するが、Ni−O系反強磁性層は電気抵抗率
が高く、多層膜上に電極を形成してもセンス電流を流す
ことはできない。
The multilayer film described in the above document uses an antiferromagnetic layer made of a Fe--Mn alloy. However, the Fe-Mn-based alloy has poor corrosion resistance and deteriorates the reliability of the magnetoresistive effect element using the multilayer film. Therefore, a multilayer film using a Ni—O antiferromagnetic material having excellent corrosion resistance can be considered. However, the magnetic layer formed on the Ni—O-based antiferromagnetic layer deteriorates in soft magnetic characteristics, and reduces the sensitivity of the magnetoresistive effect element. Therefore, if a Ni—O-based antiferromagnetic layer is formed on the magnetic layer, the soft magnetic characteristics of the magnetic layer are improved, but the Ni—O-based antiferromagnetic layer has a high electric resistivity and an electrode is formed on the multilayer film. Even if formed, a sense current cannot flow.

【0004】本発明の目的は、多層膜を用いた磁気抵抗
効果型ヘッドの問題の解決手段を提供することにある。
An object of the present invention is to provide a means for solving the problem of a magnetoresistive head using a multilayer film.

【0005】[0005]

【課題を解決するための手段】本発明者等は、多層膜を
用いた種々の構造を有する磁気抵抗効果型ヘッドについ
て鋭意研究を重ねた結果、電極形成後に多層膜を形成す
ることにより、高感度磁気抵抗効果型ヘッドが得られる
ことを見出し、本発明を完成するに至った。
The inventors of the present invention have conducted extensive studies on magnetoresistive heads having various structures using a multilayer film, and as a result, by forming a multilayer film after forming electrodes, They have found that a sensitive magnetoresistive head can be obtained, and completed the present invention.

【0006】すなわち、電極を形成した後に、2層の磁
性層およびそれらを分離する非磁性層を有し、1層の磁
性層が反強磁性層に接触している多層膜を形成する。
That is, after forming the electrodes, a multi-layer film having two magnetic layers and a non-magnetic layer separating them and one magnetic layer in contact with the antiferromagnetic layer is formed.

【0007】反強磁性層は、酸化物を主成分とする高耐
食性の材料を用いる。また、上記反強磁性層を、多層膜
を形成した基板から見て上記2層の磁性層よりも遠い側
に形成する。さらに、基板と電極の間にCo系合金から
なる高保磁力層を形成することにより、バルクハウゼン
ノイズの少ない磁気抵抗効果型ヘッドを得ることができ
る。また、上記磁気抵抗効果型ヘッドを磁気記録再生装
置に用いるには、誘導型磁気ヘッドを組み合わせること
が好ましい。
For the antiferromagnetic layer, a highly corrosion-resistant material containing an oxide as a main component is used. Further, the antiferromagnetic layer is formed on the side farther from the two magnetic layers as viewed from the substrate on which the multilayer film is formed. Furthermore, by forming a high coercive force layer made of a Co-based alloy between the substrate and the electrode, a magnetoresistive head having less Barkhausen noise can be obtained. Further, in order to use the magnetoresistive head in the magnetic recording / reproducing apparatus, it is preferable to combine an inductive magnetic head.

【0008】[0008]

【作用】上述のように、酸化物を主成分とする高耐食性
の反強磁性層を、多層膜を形成した基板から見て上記2
層の磁性層よりも遠い側に形成することにより、磁性層
の軟磁気特性が向上する。また、電極上に多層膜を形成
することにより、多層膜と電極とを電気的に接触させる
ことができる。また、基板と電極の間にCo系合金から
なる高保磁力層を形成することにより、多層膜を構成す
る磁性層にバイアス磁界を印加することが可能になり、
この結果、磁気抵抗効果型ヘッドに生じやすいバルクハ
ウゼンノイズを抑制することができる。また、磁気抵抗
効果型ヘッドと誘導型磁気ヘッドを組み合わせることに
より、高密度磁気記録に好ましい、高性能磁気ヘッドを
得ることができ、この結果、磁気記録再生装置の性能が
著しく向上する。
As described above, the high corrosion-resistant antiferromagnetic layer containing an oxide as a main component is used as described above when viewed from the substrate on which the multilayer film is formed.
By forming the layer on the side farther than the magnetic layer, the soft magnetic characteristics of the magnetic layer are improved. Further, by forming the multilayer film on the electrode, the multilayer film and the electrode can be electrically contacted with each other. Further, by forming a high coercive force layer made of a Co-based alloy between the substrate and the electrode, it becomes possible to apply a bias magnetic field to the magnetic layer forming the multilayer film,
As a result, Barkhausen noise that is likely to occur in the magnetoresistive head can be suppressed. Further, by combining the magnetoresistive head and the induction magnetic head, a high-performance magnetic head suitable for high-density magnetic recording can be obtained, and as a result, the performance of the magnetic recording / reproducing apparatus is significantly improved.

【0009】[0009]

【実施例】【Example】

〔実施例1〕多層膜の形成にはイオンビームスパッタリ
ング法を用いた。到達真空度は、3/105Pa、スパ
ッタリング時のAr圧力は0.02Paである。また、
膜形成速度は、0.01〜0.02nm/sである。
[Example 1] An ion beam sputtering method was used for forming the multilayer film. The ultimate vacuum is 3/10 5 Pa, and the Ar pressure during sputtering is 0.02 Pa. Also,
The film formation rate is 0.01 to 0.02 nm / s.

【0010】多層膜の断面構造を図2に示す。同図のよ
うに、本実施例では2種類の多層膜を形成した。まず、
図2(a)のように、Si100からなる基板21上
に、厚さ50nmのNi−O系からなる反強磁性層22
を形成した。反強磁性層22は、NiOからなるターゲ
ットを用いて形成しているが、スパッタリングによっ
て、Niおよび酸素の組成比は変化しているものと考え
られる。Niおよび酸素の組成比は変化しても、Ni−
O系の層が室温で反強磁性を示せば、多層膜における反
強磁性材料として使用できる。さらに、反強磁性層22
の上に、厚さ5.0nmのNi−20at%Feからな
る磁性層23および25,厚さ2.5nm のCuからな
る非磁性層24を積層した多層膜を形成した。
The cross-sectional structure of the multilayer film is shown in FIG. As shown in the figure, in this example, two types of multilayer films were formed. First,
As shown in FIG. 2A, an antiferromagnetic layer 22 made of Ni—O having a thickness of 50 nm is formed on a substrate 21 made of Si100.
Was formed. The antiferromagnetic layer 22 is formed by using a target made of NiO, but it is considered that the composition ratio of Ni and oxygen is changed by the sputtering. Even if the composition ratio of Ni and oxygen changes, Ni-
If the O-based layer exhibits antiferromagnetism at room temperature, it can be used as an antiferromagnetic material in a multilayer film. Further, the antiferromagnetic layer 22
On top of this, a multilayer film was formed in which magnetic layers 23 and 25 of Ni-20 at% Fe having a thickness of 5.0 nm and a non-magnetic layer 24 of Cu having a thickness of 2.5 nm were laminated.

【0011】また、図2(b)のように、Si100か
らなる基板26上に、厚さ5.0nmのNi−20at
%Feからなる磁性層27および29,厚さ2.5nm
のCuからなる非磁性層28を形成した後、厚さ50n
mのNi−O系からなる反強磁性層30を積層した多層
膜を形成した。
Further, as shown in FIG. 2B, a Ni-20 at thickness of 5.0 nm is formed on a substrate 26 made of Si100.
% Fe magnetic layers 27 and 29, thickness 2.5 nm
After forming the non-magnetic layer 28 made of Cu, a thickness of 50 n
A multi-layered film was formed by laminating the antiferromagnetic layer 30 of m-Ni-O system.

【0012】すなわち、図2(a)に示す多層膜では、
多層膜を形成した基板から見て2層の磁性層よりも近い
側に反強磁性層が形成されている。これに対し、図2
(b)に示す多層膜では、多層膜を形成した基板から見
て2層の磁性層よりも遠い側に反強磁性層が形成されて
いる。
That is, in the multilayer film shown in FIG.
An antiferromagnetic layer is formed on the side closer to the two magnetic layers when viewed from the substrate on which the multilayer film is formed. In contrast, Figure 2
In the multilayer film shown in (b), the antiferromagnetic layer is formed on the side farther from the two magnetic layers when viewed from the substrate on which the multilayer film is formed.

【0013】図2(a)および(b)に示す構造の多層膜の
磁化曲線を、それぞれ、図3(a)および(b)に示
す。前記文献フィジカル・レビュー・B(Pysical Revi
ew B)、第43巻,第1号,1297〜1300ページ
記載のように、反強磁性層に接していない磁性層の磁化
反転により、図3(a)および(b)に示すような零磁
界付近での磁化の急激な変化が生じる。これに対し、反
強磁性層に接している磁性層は、反強磁性層からの交換
バイアス磁界を受けているため、磁化反転する磁界が8
kA/m程度、零磁界よりシフトしている。
Magnetization curves of the multilayer film having the structure shown in FIGS. 2A and 2B are shown in FIGS. 3A and 3B, respectively. Physical Review B (Pysical Revi)
ew B), Vol. 43, No. 1, pp. 1297-1300, due to the magnetization reversal of the magnetic layer not in contact with the antiferromagnetic layer, a zero as shown in FIGS. A rapid change in magnetization occurs near the magnetic field. On the other hand, since the magnetic layer in contact with the antiferromagnetic layer receives the exchange bias magnetic field from the antiferromagnetic layer, the magnetic field for magnetization reversal is 8
It is shifted from the zero magnetic field by about kA / m.

【0014】磁気抵抗効果型磁気ヘッドでは、反強磁性
層に接していない磁性層の磁化反転により、外部磁界を
検出する。このため、反強磁性層に接していない磁性層
の磁気特性が重要である。
In the magnetoresistive head, the external magnetic field is detected by reversing the magnetization of the magnetic layer that is not in contact with the antiferromagnetic layer. Therefore, the magnetic characteristics of the magnetic layer that is not in contact with the antiferromagnetic layer are important.

【0015】図3(a)のように、図2(a)に示す構
造の多層膜では、反強磁性層に接していない磁性層の保
磁力は320A/mである。これに対し、図3(b)の
ように、図2(b)に示す構造の多層膜では、反強磁性
層に接していない磁性層の保磁力は160A/mと、図
2(a)に示す多層膜での値の半分になる。
As shown in FIG. 3A, in the multilayer film having the structure shown in FIG. 2A, the coercive force of the magnetic layer not in contact with the antiferromagnetic layer is 320 A / m. On the other hand, as shown in FIG. 3B, in the multilayer film having the structure shown in FIG. 2B, the coercive force of the magnetic layer not in contact with the antiferromagnetic layer is 160 A / m. It is half the value of the multilayer film shown in.

【0016】図2(a)に示す構造の多層膜において、
反強磁性層に接していない磁性層の保磁力が高くなる原
因は以下のように推察される。すなわち、2層の磁性層
の下部には、あらかじめ反強磁性層を形成する。この反
強磁性層は厚さが厚いため、上部の表面に凹凸が生じ
る。このため、反強磁性層上に形成した磁性層の平坦性
が劣化し、磁性層の保磁力が高くなるものと思われる。
これに対し、図2(b)に示す構造の多層膜では、平坦な
基板上に磁性層を形成するため、磁性層が平坦性にな
り、優れた軟磁気特性を示すものと考えられる。また、
ちなみに、図2(b)に示す構造の多層膜の磁気抵抗変化
率は3.3% であった。
In the multilayer film having the structure shown in FIG. 2 (a),
The reason why the coercive force of the magnetic layer not in contact with the antiferromagnetic layer becomes high is presumed as follows. That is, an antiferromagnetic layer is previously formed under the two magnetic layers. Since this antiferromagnetic layer has a large thickness, unevenness is generated on the upper surface. Therefore, it is considered that the flatness of the magnetic layer formed on the antiferromagnetic layer deteriorates and the coercive force of the magnetic layer increases.
On the other hand, in the multilayer film having the structure shown in FIG. 2B, since the magnetic layer is formed on the flat substrate, the magnetic layer has flatness and is considered to have excellent soft magnetic characteristics. Also,
By the way, the magnetoresistive change rate of the multilayer film having the structure shown in FIG. 2B was 3.3%.

【0017】上述の多層膜の構造による磁性層の保磁力
の違いは、磁性層として厚さ5.0nmのNi−16a
t%Fe−18at%Co合金を用いた場合には、さら
に大きかった。すなわち、図2(a)に示す構造の多層
膜では、反強磁性層に接していない磁性層の保磁力は8
00A/mであり、図2(b)に示す構造の多層膜で
は、反強磁性層に接していない磁性層の保磁力は160
A/mであった。このように、上述の多層膜の構造によ
る磁性層の保磁力の違いは、広くNi−Fe系,Ni−
Fe−Co系の磁性材料に観測される。
The difference in the coercive force of the magnetic layer due to the structure of the above-mentioned multilayer film is that the magnetic layer has a thickness of 5.0 nm of Ni-16a.
It was even larger when the t% Fe-18at% Co alloy was used. That is, in the multilayer film having the structure shown in FIG. 2A, the coercive force of the magnetic layer not in contact with the antiferromagnetic layer is 8
In the multilayer film having the structure shown in FIG. 2B, the coercive force of the magnetic layer not in contact with the antiferromagnetic layer is 160 A / m.
It was A / m. As described above, the difference in the coercive force of the magnetic layer due to the structure of the above-described multilayer film is broadly varied between Ni-Fe system and Ni- system.
Observed in Fe-Co based magnetic materials.

【0018】また、上述の多層膜の構造による磁性層の
保磁力の違いは、反強磁性層として他の酸化物系を用い
ても同様である。他の酸化物系反強磁性材料は、Co−
O系,Fe−O系,Ni−Co−O系などが使用でき
る。しかし、ネール温度の高いNi−O系が最も好まし
い反強磁性材料である。このように、図2(b)に示す
構造の多層膜は、軟磁気特性が優れている。そこで、図
2(b)に示す構造の多層膜を用いて磁気抵抗効果素子
を作製した。
The difference in the coercive force of the magnetic layer due to the structure of the above-mentioned multilayer film is the same even when another oxide type is used as the antiferromagnetic layer. Other oxide-based antiferromagnetic materials are Co-
O-based, Fe-O-based, Ni-Co-O-based, etc. can be used. However, the Ni—O system, which has a high Neel temperature, is the most preferable antiferromagnetic material. As described above, the multilayer film having the structure shown in FIG. 2B has excellent soft magnetic characteristics. Therefore, a magnetoresistive effect element was manufactured using the multilayer film having the structure shown in FIG.

【0019】図1は作製した上記磁気抵抗効果素子の構
造を示す。基板11には、ガラスを用いた。まず、電極
17を基板11の上に形成した。本実施例では、電極1
7の材料としてAuを用いた。電極形成後に多層膜を形
成した。多層膜におけるバッファ層12には、厚さ5.
0nm のHfを用いた。このバッファ層12は、多層
膜の軟磁気特性および耐熱性を向上させる働きがある。
また、厚さ5.0nm のNi−20at%Feを磁性層
13および15,厚さ2.5nm のCuを非磁性層1
4,厚さ50nmのNi−Oを反強磁性層16とした。
FIG. 1 shows the structure of the manufactured magnetoresistive effect element. Glass was used for the substrate 11. First, the electrode 17 was formed on the substrate 11. In this embodiment, the electrode 1
Au was used as the material of No. 7. A multilayer film was formed after the electrodes were formed. The buffer layer 12 in the multilayer film has a thickness of 5.
0 nm Hf was used. The buffer layer 12 has a function of improving soft magnetic characteristics and heat resistance of the multilayer film.
Further, the Ni-20 at% Fe having a thickness of 5.0 nm is the magnetic layers 13 and 15, and the Cu having a thickness of 2.5 nm is the non-magnetic layer 1.
4, Ni-O having a thickness of 50 nm was used as the antiferromagnetic layer 16.

【0020】図1のように、電極形成後に多層膜を形成
しているため、電極上にも多層膜が形成されている。電
極17の形状により、図1のように、電極上の多層膜の
磁性層と、電極間の多層膜の磁性層とが磁気的に分離さ
れる。この場合、外部磁界の検出は電極間の多層膜によ
ってのみ行われるため、実効的なトラック幅を狭くする
ことができる。本発明で使用するような多層膜は、パー
マロイ単層膜よりも後の世代の磁気抵抗効果型ヘッドに
用いられるため、トラック幅は1μm以下になると考え
られる。従って、電極上の多層膜の磁性層と、電極間の
多層膜の磁性層とは磁気的に分離することが望ましい。
Since the multilayer film is formed after the electrodes are formed as shown in FIG. 1, the multilayer film is also formed on the electrodes. Due to the shape of the electrode 17, as shown in FIG. 1, the magnetic layer of the multilayer film on the electrodes and the magnetic layer of the multilayer film between the electrodes are magnetically separated. In this case, since the external magnetic field is detected only by the multilayer film between the electrodes, the effective track width can be narrowed. Since the multilayer film used in the present invention is used in a magnetoresistive head of a later generation than the permalloy single layer film, the track width is considered to be 1 μm or less. Therefore, it is desirable to magnetically separate the multilayer magnetic layer on the electrodes from the multilayer magnetic layer between the electrodes.

【0021】また、本発明の磁気抵抗効果素子は、作製
プロセスが簡便である。このため、量産に対するコスト
が低い。個人向けの小型磁気ディスク装置は、生産コス
トを極力低減する必要があるため、若干、性能を低くし
ても、本実施例のような簡便なプロセスで形成できる磁
気ヘッドが好ましい。
Further, the magnetoresistive effect element of the present invention has a simple manufacturing process. Therefore, the cost for mass production is low. Since a small-sized magnetic disk device for individuals needs to reduce the production cost as much as possible, it is preferable to use a magnetic head that can be formed by the simple process as in this embodiment even if the performance is slightly lowered.

【0022】本発明の磁気抵抗効果素子の出力を測定し
たところ、従来のパーマロイ単層膜を用いた磁気抵抗効
果素子と比較して、本発明の磁気抵抗効果素子は2.1
倍高い出力を示した。
When the output of the magnetoresistive effect element of the present invention was measured, the magnetoresistive effect element of the present invention was 2.1 in comparison with the conventional magnetoresistive effect element using a permalloy single layer film.
The output was twice as high.

【0023】本実施例では、非磁性層として、Cuを用
いたが、電気抵抗率の低い、Au,Ag,Alを用いて
も同様の結果が得られる。
In this embodiment, Cu is used as the non-magnetic layer, but similar results can be obtained by using Au, Ag, and Al, which have low electric resistivity.

【0024】また、本実施例では、バッファ層12とし
て、Hfを用いたが、実質的にHfを主成分とする非磁
性合金であれば、上記実施例と同様の効果が得られる。
また、バッファ層材料は、Ti,Zr,Ta,Nb、あ
るいは、これらを主成分とする合金が好ましい。これ
は、Hf,Ti,Zr,Ta,Nb、あるいは、これら
を主成分とする合金をバッファ層材料とすると、磁性層
が強い(111)配向となり、磁性層が薄くても、優れ
た軟磁気特性が得られるためである。
Although Hf is used as the buffer layer 12 in this embodiment, the same effect as that of the above embodiment can be obtained as long as it is a non-magnetic alloy containing Hf as a main component.
Further, the buffer layer material is preferably Ti, Zr, Ta, Nb, or an alloy containing these as the main components. This is because when the buffer layer material is Hf, Ti, Zr, Ta, Nb, or an alloy containing these as the main components, the magnetic layer has a strong (111) orientation, and even if the magnetic layer is thin, excellent soft magnetic properties are obtained. This is because the characteristics can be obtained.

【0025】〔実施例2〕実施例1と同様の方法で、図
4に示す多層膜を形成した。同図のように、本実施例に
おいても、2種類の多層膜を形成した。まず、図4
(a)のように、Si100からなる基板41上に、厚
さ50nmのNi−O系からなる反強磁性層42を形成
した。さらに、反強磁性層42の上に、厚さ3.0nm
のNi−20at%Feからなる磁性層43,厚さ2.
0nm のCoからなる磁性層44,厚さ2.5nmのC
uからなる非磁性層45,厚さ1.0nmのCoからな
る磁性層46,厚さ4.0nm のNi−20at%Fe
からなる磁性層47の順に積層した多層膜を形成した。
Example 2 By the same method as in Example 1, the multilayer film shown in FIG. 4 was formed. As shown in the figure, also in this example, two types of multilayer films were formed. First, FIG.
As shown in (a), a 50-nm-thick Ni—O-based antiferromagnetic layer 42 was formed on a substrate 41 made of Si100. Furthermore, a thickness of 3.0 nm is formed on the antiferromagnetic layer 42.
Magnetic layer 43 of Ni-20 at% Fe, thickness 2.
Magnetic layer 44 consisting of 0 nm Co, 2.5 nm thick C
a non-magnetic layer 45 made of u, a magnetic layer 46 made of Co having a thickness of 1.0 nm, and Ni-20 at% Fe having a thickness of 4.0 nm.
A multi-layered film was formed by laminating the magnetic layer 47 consisting of.

【0026】また、図4(b)のように、Si100か
らなる基板51上に、厚さ4.0nmのNi−20at
%Feからなる磁性層52,厚さ1.0nm のCoから
なる磁性層53,厚さ2.5nmのCuからなる非磁性
層54,厚さ2.0nmのCoからなる磁性層55,厚
さ3.0nm のNi−20at%Feからなる磁性層5
6,厚さ50nmのNi−O系からなる反強磁性層57
の順に積層した多層膜を形成した。
Further, as shown in FIG. 4 (b), a Ni-20at film having a thickness of 4.0 nm is formed on a substrate 51 made of Si100.
% Magnetic layer 52 made of Fe, magnetic layer 53 made of Co having a thickness of 1.0 nm, non-magnetic layer made of Cu having a thickness of 2.5 nm, magnetic layer 55 made of Co having a thickness of 2.0 nm, thickness Magnetic layer 5 made of Ni-20 at% Fe of 3.0 nm
6, antiferromagnetic layer 57 made of Ni-O system having a thickness of 50 nm
To form a multilayer film.

【0027】図4(a)に示す多層膜では、多層膜を形
成した基板から見て2層の磁性層よりも近い側に反強磁
性層が形成されている。これに対し、図4(b)に示す
多層膜では、多層膜を形成した基板から見て2層の磁性
層よりも遠い側に反強磁性層が形成されている。
In the multilayer film shown in FIG. 4A, an antiferromagnetic layer is formed on the side closer to the two magnetic layers as seen from the substrate on which the multilayer film is formed. On the other hand, in the multilayer film shown in FIG. 4B, the antiferromagnetic layer is formed on the side farther than the two magnetic layers when viewed from the substrate on which the multilayer film is formed.

【0028】図5(a)のように、図4(a)に示す構
造の多層膜では、反強磁性層に接していない磁性層の保
磁力は640A/mである。これに対し、図5(b)の
ように、図4(b)に示す構造の多層膜では、反強磁性
層に接していない磁性層の保磁力は160A/mと、図
4(a)に示す多層膜での値の1/4になる。また、図
4(b)に示す構造の多層膜の磁気抵抗変化率は5.7
% であった。
As shown in FIG. 5A, in the multilayer film having the structure shown in FIG. 4A, the coercive force of the magnetic layer not in contact with the antiferromagnetic layer is 640 A / m. On the other hand, as shown in FIG. 5B, in the multilayer film having the structure shown in FIG. 4B, the coercive force of the magnetic layer not in contact with the antiferromagnetic layer is 160 A / m. It becomes 1/4 of the value in the multilayer film shown in. In addition, the magnetoresistive change rate of the multilayer film having the structure shown in FIG. 4B is 5.7.
% Met.

【0029】図4(b)に示す構造の多層膜を用い、図
1に示す構造の磁気抵抗効果素子を作製したところ、従
来のパーマロイ単層膜を用いた磁気抵抗効果素子と比較
して、本発明の磁気抵抗効果素子は3.1 倍高い出力を
示した。
When the magnetoresistive effect element having the structure shown in FIG. 1 was manufactured using the multilayer film having the structure shown in FIG. 4B, it was compared with the conventional magnetoresistive effect element using the permalloy single layer film. The magnetoresistive element of the present invention showed a 3.1 times higher output.

【0030】〔実施例3〕実施例1と類似した構造を有
する磁気抵抗効果素子を形成した。図6に磁気抵抗効果
素子の構造を示す。基板61には、ガラスを用いた。電
極67にはCuを用い、さらに、電極67と基板61と
の間に、Co−17at%Ptからなる磁性層68を形
成した。多層膜におけるバッファ層62には、厚さ5.
0nm のHfを用いた。また、厚さ5.0nm のNi
−20at%Feを磁性層63および65,厚さ2.5
nm のCuを非磁性層64,厚さ50nmのNi−O
を反強磁性層66とした。また、Co−17at%Pt
からなる磁性層68は、80kA/m程度の保磁力を示
す高保磁力材料である。これは、磁性層63のトラック
幅方向にバイアス磁界を印加するために形成した。この
磁性層63に対するバイアス磁界の印加により、本発明
の磁気抵抗効果素子のバルクハウゼンノイズが抑制され
た。
Example 3 A magnetoresistive effect element having a structure similar to that of Example 1 was formed. FIG. 6 shows the structure of the magnetoresistive effect element. Glass was used for the substrate 61. Cu was used for the electrode 67, and a magnetic layer 68 made of Co-17 at% Pt was formed between the electrode 67 and the substrate 61. The buffer layer 62 in the multilayer film has a thickness of 5.
0 nm Hf was used. In addition, the thickness of Ni is 5.0 nm.
-20 at% Fe in magnetic layers 63 and 65, thickness 2.5
nm Cu to the non-magnetic layer 64, thickness 50 nm Ni-O
Was used as the antiferromagnetic layer 66. Also, Co-17 at% Pt
The magnetic layer 68 made of is a high coercive force material having a coercive force of about 80 kA / m. This was formed in order to apply a bias magnetic field in the track width direction of the magnetic layer 63. By applying a bias magnetic field to the magnetic layer 63, Barkhausen noise of the magnetoresistive effect element of the present invention was suppressed.

【0031】磁性層68は、他の高保磁力材料を用いる
ことができる。薄い層厚で高い保磁力を示す材料が好ま
しく、Co系合金にこのような材料が多い。Co系合金
は、Co−Ta−Pt,Co−Cr−Pt,Co−Cr
などが好ましい。
For the magnetic layer 68, another high coercive force material can be used. A material having a small layer thickness and high coercive force is preferable, and many Co-based alloys have such a material. Co-based alloys include Co-Ta-Pt, Co-Cr-Pt, Co-Cr
Are preferred.

【0032】さらに、図7に示す磁気抵抗効果素子を形
成した。基板71には、ガラスを用いた。バッファ層7
2には、厚さ5.0nmのNbを用いた。また、厚さ5.
0nmのNi−20at%Feを磁性層73および7
5,厚さ2.5nm のCuを非磁性層74,厚さ50n
mのNi−Oを反強磁性層76とした。また、電極77
にはCuを用いた。電極77は、実施例1の磁気抵抗効
果素子とは異なり、若干のテーパを有する。図7に示す
磁気抵抗効果素子は、実施例1で述べた図1に示す磁気
抵抗効果素子と、ほぼ同様の特性を示した。
Further, the magnetoresistive effect element shown in FIG. 7 was formed. Glass was used for the substrate 71. Buffer layer 7
For No. 2, Nb with a thickness of 5.0 nm was used. Also, thickness 5.
0 nm of Ni-20 at% Fe was added to the magnetic layers 73 and 7.
5, Cu of 2.5 nm thickness is non-magnetic layer 74, thickness of 50 n
The Ni-O of m was used as the antiferromagnetic layer 76. Also, the electrode 77
Cu was used for. The electrode 77 has a slight taper unlike the magnetoresistive effect element according to the first embodiment. The magnetoresistive effect element shown in FIG. 7 showed substantially the same characteristics as the magnetoresistive effect element shown in FIG. 1 described in the first embodiment.

【0033】さらに、図8に示す磁気抵抗効果素子のよ
うに、電極87と基板81との間に高保磁力層88を形
成することにより、磁性層83にバイアス磁界が印加さ
れ、バルクハウゼンノイズが抑制される。
Further, as in the magnetoresistive effect element shown in FIG. 8, by forming the high coercive force layer 88 between the electrode 87 and the substrate 81, a bias magnetic field is applied to the magnetic layer 83 and Barkhausen noise is generated. Suppressed.

【0034】〔実施例4〕本発明の磁気抵抗効果素子を
用い、磁気ヘッドを作製した。磁気ヘッドの構造を以下
に示す。
Example 4 A magnetic head was manufactured using the magnetoresistive effect element of the present invention. The structure of the magnetic head is shown below.

【0035】図9は、記録再生分離型ヘッドの一部分を
切断した場合の斜視図である。Al23・TiCを主成
分とする焼結体をスライダ用の基板97とした。基板9
7の上に、スパッタリング法でNi−20at%Fe合
金からなるシールド層92を形成した。シールド層92
の膜厚は1.0μm とした。シールド層92の上にスパ
ッタリング法により層厚0.1μm のAl23からなる
ギャップ層を形成した後、実施例1で述べたプロセスに
より多層磁気抵抗効果膜91および電極98からなる磁
気抵抗効果素子を形成した。
FIG. 9 is a perspective view when a part of the recording / reproducing separated type head is cut. A sintered body containing Al 2 O 3 .TiC as a main component was used as the substrate 97 for the slider. Board 9
A shield layer 92 made of a Ni-20 at% Fe alloy was formed on No. 7 by a sputtering method. Shield layer 92
Had a thickness of 1.0 μm. After forming a gap layer made of Al 2 O 3 having a layer thickness of 0.1 μm on the shield layer 92 by the sputtering method, the magnetoresistive effect made up of the multilayer magnetoresistive effect film 91 and the electrode 98 is made by the process described in the first embodiment. The device was formed.

【0036】多層磁気抵抗効果膜91は、Ni−O(5
0nm)/Ni−20at%Fe(3.0nm)/Co
(2.0nm)/Cu(2.5nm)/Co(1.0n
m)/Ni−20at%Fe(4.0nm)/Hf(5.
0nm)を用いた。また、電極98には、Cr/Cu/
Crという多層構造の材料を用いた。
The multilayer magnetoresistive effect film 91 is formed of Ni--O (5
0 nm) / Ni-20 at% Fe (3.0 nm) / Co
(2.0 nm) / Cu (2.5 nm) / Co (1.0 n)
m) / Ni-20 at% Fe (4.0 nm) / Hf (5.
0 nm) was used. In addition, the electrode 98 contains Cr / Cu /
A multi-layered material called Cr was used.

【0037】本実施例では、電極間隔は1.0μm であ
る。また、多層磁気抵抗効果膜91の幅(磁気記録媒体
面の法線方向の長さ)は、1.0μm である。さらに、
上述のギャップ層と同様のギャップ層を形成した後、ス
パッタリング法で、1.0μmの膜厚を有するNi−2
0at%Fe合金からなるシールド層93を形成した。
以上、述べた部分が再生ヘッドとして働く。
In this embodiment, the electrode interval is 1.0 μm. The width of the multilayer magnetoresistive effect film 91 (length in the direction normal to the surface of the magnetic recording medium) is 1.0 μm. further,
After forming a gap layer similar to the above-mentioned gap layer, Ni-2 having a thickness of 1.0 μm is formed by a sputtering method.
A shield layer 93 made of a 0 at% Fe alloy was formed.
The part described above functions as a reproducing head.

【0038】次に、厚さ約3μmのAl23からなるギ
ャップ層を形成した後、下部磁極95,上部磁極96お
よびコイル94からなる記録ヘッドを形成した。下部磁
極95,上部磁極96には、スパッタリング法で形成し
た膜厚3.0μm のNi−20at%Fe合金を用い
た。下部磁極95および上部磁極96の間のギャップ層
には、スパッタリング法で形成した膜厚0.2μm のA
23を用いた。コイル94には膜厚3μmのCuを使
用した。
Next, after forming a gap layer of Al 2 O 3 having a thickness of about 3 μm, a recording head composed of a lower magnetic pole 95, an upper magnetic pole 96 and a coil 94 was formed. For the lower magnetic pole 95 and the upper magnetic pole 96, a Ni-20 at% Fe alloy having a film thickness of 3.0 μm formed by a sputtering method was used. The gap layer between the lower magnetic pole 95 and the upper magnetic pole 96 has a thickness of 0.2 μm and is formed by sputtering.
1 2 O 3 was used. Cu having a film thickness of 3 μm was used for the coil 94.

【0039】また、磁気ヘッド作製プロセスの研磨など
の工程を全て行った後、磁気ヘッドに400kA/mの
磁界中で、230℃、10分間の熱処理を行い、Ni−
O系反強磁性層の交換バイアス磁界の向きを、磁気記録
媒体面の法線方向とした。また、Ni−O系反強磁性層
に接していない磁性層の磁化容易方向は、反強磁性層の
交換バイアス磁界の向きとは直交する方向である。
After all the steps such as polishing in the magnetic head manufacturing process are performed, the magnetic head is heat-treated at 230 ° C. for 10 minutes in a magnetic field of 400 kA / m to form Ni--
The direction of the exchange bias magnetic field of the O-based antiferromagnetic layer was set to the direction normal to the surface of the magnetic recording medium. Further, the easy magnetization direction of the magnetic layer not in contact with the Ni—O antiferromagnetic layer is a direction orthogonal to the direction of the exchange bias magnetic field of the antiferromagnetic layer.

【0040】以上述べた構造の磁気ヘッドで記録再生実
験を行った。磁気抵抗効果素子に流すセンス電流は3×
107A/cm2とした。さらに、厚さ30nmのNi−F
e単層膜を用いた磁気ヘッド作製し、本発明の磁気ヘッ
ドと出力を比較したところ、本発明の磁気ヘッドは、
3.2 倍高い再生出力を示した。これは、本発明の再生
ヘッドに高磁気抵抗効果を示す多層膜を用いたためと考
えられる。
A recording / reproducing experiment was conducted with the magnetic head having the above-described structure. The sense current flowing through the magnetoresistive element is 3 ×
It was set to 10 7 A / cm 2 . Furthermore, Ni-F with a thickness of 30 nm
A magnetic head using a single-layer film was produced and the output was compared with that of the magnetic head of the present invention.
The reproduction output was 3.2 times higher. It is considered that this is because the reproducing head of the present invention uses a multilayer film having a high magnetoresistive effect.

【0041】また、図2(a)に示す実施例1で述べた
多層膜を用いた磁気ヘッドも作製したところ、本発明の
磁気抵抗効果型ヘッドと同様、出力は高いが、バルクハ
ウゼンノイズが非常に頻繁に観測された。また、出力波
形に歪が観測された。これは、図2(a)に示す実施例
1で述べた多層膜の保磁力が高いためと考えられる。こ
れに対し、本発明の磁気抵抗効果型ヘッドでは、バルク
ハウゼンノイズは頻繁には観測されず、また、出力波形
には歪が観測されなかった、これは、本発明の磁気ヘッ
ドでは、多層膜の上部にNi−O系反強磁性層を形成し
ているため、磁性層の保磁力が低いためと考えられる。
A magnetic head using the multilayer film described in the embodiment 1 shown in FIG. 2A was also manufactured. As with the magnetoresistive head of the present invention, the output is high, but Barkhausen noise is generated. It was observed very often. In addition, distortion was observed in the output waveform. It is considered that this is because the coercive force of the multilayer film described in Example 1 shown in FIG. On the contrary, in the magnetoresistive head of the present invention, Barkhausen noise was not frequently observed, and no distortion was observed in the output waveform. It is considered that the coercive force of the magnetic layer is low because the Ni—O antiferromagnetic layer is formed on the upper part of the.

【0042】また、図6に示す構造を有する磁気抵抗効
果素子を用いて磁気ヘッドを作製したところ、バルクハ
ウゼンノイズを示さない良好な特性の磁気ヘッドを得る
ことができた。
When a magnetic head was manufactured using the magnetoresistive effect element having the structure shown in FIG. 6, a magnetic head having good characteristics without showing Barkhausen noise could be obtained.

【0043】〔実施例5〕実施例4で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。図10
に磁気ディスク装置の構造の概略図を示す。
[Embodiment 5] Using the magnetic head of the present invention described in Embodiment 4, a magnetic disk device was manufactured. Figure 10
A schematic diagram of the structure of the magnetic disk device is shown in FIG.

【0044】磁気記録媒体101には、残留磁束密度
0.75T のCo−Ni−Pt−Ta系合金からなる材
料を用いた。磁気ヘッド103の記録ヘッドのトラック
幅は1μm、再生ヘッドのトラック幅も1μmとした。
磁気ヘッド103における磁気抵抗効果素子は、従来の
パーマロイ単層膜を用いた磁気抵抗効果素子の約3倍の
出力を示すため、特に、1Gb/in2 以上の記録密度を
有する磁気記録再生装置に有効である。また、10Gb
/in2 以上の記録密度を有する磁気記録再生装置には必
須であると考えられる。
For the magnetic recording medium 101, a material made of a Co-Ni-Pt-Ta alloy having a residual magnetic flux density of 0.75T was used. The track width of the recording head of the magnetic head 103 was 1 μm, and the track width of the reproducing head was 1 μm.
Since the magnetoresistive effect element in the magnetic head 103 exhibits an output about three times that of a conventional magnetoresistive effect element using a permalloy single layer film, it is particularly suitable for a magnetic recording / reproducing apparatus having a recording density of 1 Gb / in 2 or more. It is valid. Also, 10 Gb
It is considered essential for a magnetic recording / reproducing apparatus having a recording density of / in 2 or more.

【0045】[0045]

【発明の効果】本発明によれば、酸化物を主成分とする
高耐食性の反強磁性層を、多層膜を形成した基板から見
て2層の磁性層よりも遠い側に形成しても、多層膜にセ
ンス電流を流すことができ、高感度および優れた軟磁気
特性を示す磁気抵抗効果型ヘッドが得られる。また、バ
ルクハウゼンノイズの少ない磁気抵抗効果型ヘッドを得
ることができる。さらに、高密度磁気記録再生装置に有
利な高性能磁気ヘッドを得ることができる。
According to the present invention, even if a highly corrosion-resistant antiferromagnetic layer containing an oxide as a main component is formed on the side farther than the two magnetic layers when viewed from the substrate on which the multilayer film is formed. A sense current can be passed through the multilayer film, and a magnetoresistive head having high sensitivity and excellent soft magnetic characteristics can be obtained. Further, it is possible to obtain a magnetoresistive head having less Barkhausen noise. Further, it is possible to obtain a high performance magnetic head advantageous for a high density magnetic recording / reproducing apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の磁気抵抗効果素子の断面
図。
FIG. 1 is a sectional view of a magnetoresistive effect element according to an embodiment of the present invention.

【図2】多層膜の構造を示す断面図。FIG. 2 is a cross-sectional view showing the structure of a multilayer film.

【図3】多層膜の構造による磁化曲線の変化を示す特性
図。
FIG. 3 is a characteristic diagram showing changes in a magnetization curve due to the structure of a multilayer film.

【図4】多層膜の構造を示す断面図。FIG. 4 is a cross-sectional view showing the structure of a multilayer film.

【図5】多層膜の構造による磁化曲線の変化を示す特性
図。
FIG. 5 is a characteristic diagram showing changes in a magnetization curve due to the structure of a multilayer film.

【図6】本発明の第二実施例の磁気抵抗効果素子の断面
図。
FIG. 6 is a sectional view of a magnetoresistive effect element according to a second embodiment of the present invention.

【図7】本発明の第三実施例の磁気抵抗効果素子の断面
図。
FIG. 7 is a sectional view of a magnetoresistive effect element according to a third embodiment of the present invention.

【図8】本発明の第四実施例の磁気抵抗効果素子の断面
図。
FIG. 8 is a sectional view of a magnetoresistive effect element according to a fourth embodiment of the present invention.

【図9】本発明の磁気抵抗効果素子を用いた磁気ヘッド
の斜視図。
FIG. 9 is a perspective view of a magnetic head using the magnetoresistive effect element of the present invention.

【図10】本発明の磁気記録再生装置の説明図。FIG. 10 is an explanatory diagram of a magnetic recording / reproducing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…バッファ層、13,15…磁性層、
14…非磁性層、16…反強磁性層、17…電極。
11 ... Substrate, 12 ... Buffer layer, 13, 15 ... Magnetic layer,
14 ... Nonmagnetic layer, 16 ... Antiferromagnetic layer, 17 ... Electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 星野 勝美 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Hoshino 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】2層の磁性層およびそれらを分離する非磁
性層を有し、1層の磁性層が反強磁性層に接触している
多層膜、およびセンス電流を流す一対の電極を有する磁
気抵抗効果型ヘッドにおいて、上記電極を形成した後に
上記多層膜が形成されており、上記多層膜を形成した基
板から見て上記2層の磁性層よりも遠い側に上記反強磁
性層が形成されており、上記反強磁性層が酸化物を主成
分とすることを特徴とする磁気抵抗効果型ヘッド。
1. A multi-layered film having two magnetic layers and a non-magnetic layer separating them, one magnetic layer being in contact with an antiferromagnetic layer, and a pair of electrodes for flowing a sense current. In the magnetoresistive head, the multilayer film is formed after forming the electrodes, and the antiferromagnetic layer is formed on the side farther from the two magnetic layers when viewed from the substrate on which the multilayer film is formed. A magnetoresistive head, wherein the antiferromagnetic layer contains an oxide as a main component.
【請求項2】請求項1において、上記電極上の上記多層
膜の上記磁性層と、上記電極間の上記多層膜の上記磁性
層とが分離されている磁気抵抗効果型ヘッド。
2. The magnetoresistive head according to claim 1, wherein the magnetic layer of the multilayer film on the electrode is separated from the magnetic layer of the multilayer film between the electrodes.
【請求項3】請求項1または2において、上記一対の電
極と上記基板との間にCo系合金からなる磁性層が形成
されている磁気抵抗効果型ヘッド。
3. The magnetoresistive head according to claim 1, wherein a magnetic layer made of a Co-based alloy is formed between the pair of electrodes and the substrate.
【請求項4】請求項1,2または3において、上記磁気
抵抗効果型ヘッドおよび上記2層の磁気シールド層から
なる磁気抵抗効果型ヘッド。
4. The magnetoresistive head according to claim 1, 2 or 3, comprising the magnetoresistive head and the two magnetic shield layers.
【請求項5】請求項4において、上記磁気抵抗効果型ヘ
ッドと誘導型磁気ヘッドを組み合わせた複合型磁気ヘッ
ド。
5. A composite magnetic head according to claim 4, wherein the magnetoresistive head and the inductive magnetic head are combined.
【請求項6】請求項1,2,3,4または5において、
上記磁気ヘッドを用いた磁気記録再生装置。
6. The method according to claim 1, 2, 3, 4 or 5.
A magnetic recording / reproducing apparatus using the above magnetic head.
JP6042169A 1994-03-14 1994-03-14 Magnetoresistive head and magnetic recording / reproducing apparatus Pending JPH07254118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6042169A JPH07254118A (en) 1994-03-14 1994-03-14 Magnetoresistive head and magnetic recording / reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6042169A JPH07254118A (en) 1994-03-14 1994-03-14 Magnetoresistive head and magnetic recording / reproducing apparatus

Publications (1)

Publication Number Publication Date
JPH07254118A true JPH07254118A (en) 1995-10-03

Family

ID=12628477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6042169A Pending JPH07254118A (en) 1994-03-14 1994-03-14 Magnetoresistive head and magnetic recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JPH07254118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920021B2 (en) 2002-08-26 2005-07-19 Hitachi Global Storage Technologies Netherlands B.V. Sunken electrical lead defined narrow track width magnetic head
JP2006208255A (en) * 2005-01-31 2006-08-10 Alps Electric Co Ltd Angle detection sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920021B2 (en) 2002-08-26 2005-07-19 Hitachi Global Storage Technologies Netherlands B.V. Sunken electrical lead defined narrow track width magnetic head
JP2006208255A (en) * 2005-01-31 2006-08-10 Alps Electric Co Ltd Angle detection sensor

Similar Documents

Publication Publication Date Title
JP3447468B2 (en) Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
JP2003045011A (en) Spin valve type magneto-resistance effect reproducing head and its manufacturing method
JPH0969211A (en) Magnetoresistive film, magnetic head, and magnetic recording / reproducing device
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH0950612A (en) Magnetoresistive film, magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus
JPH07220246A (en) Magnetoresistive film, magnetoresistive head, and magnetic recording / reproducing apparatus
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH076329A (en) Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same
JPH07254118A (en) Magnetoresistive head and magnetic recording / reproducing apparatus
JPH06310329A (en) Multilayer magnetoresistive film and magnetic head
JPH0992904A (en) Giant magnetoresistance material film, its manufacture, and magnetic head using the same
JP2656449B2 (en) Magnetoresistive head
JPH0774022A (en) Multilayer magnetoresistive film and magnetic head
JPH05175572A (en) Magnetoresistive element, magnetic head and recording / reproducing apparatus using the same
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JPH0766036A (en) Multilayer magnetoresistive effect film, magnetoresistive effect element and magnetic head using the same
JPH09245320A (en) Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus
JPH06260337A (en) Multilayer magnetoresistive film and magnetic head
JPH09161243A (en) Multilayer magnetoresistive film and magnetic head
JPH103620A (en) Magnetoresistive element, method of manufacturing the same, and magnetic head using the same
JPH08241506A (en) Multilayer magnetoresistive film and magnetic head
JPH0661048A (en) Multilayer magnetoresistive film and magnetic head
JPH08153314A (en) Multilayer magnetoresistive film and magnetic head
JPH05258248A (en) Multilayer magnetoresistive film, magnetic head and magnetic recording / reproducing apparatus using the same