JPH07251079A - Exhaust gas purification catalyst metal carrier and manufacturing method - Google Patents
Exhaust gas purification catalyst metal carrier and manufacturing methodInfo
- Publication number
- JPH07251079A JPH07251079A JP6046065A JP4606594A JPH07251079A JP H07251079 A JPH07251079 A JP H07251079A JP 6046065 A JP6046065 A JP 6046065A JP 4606594 A JP4606594 A JP 4606594A JP H07251079 A JPH07251079 A JP H07251079A
- Authority
- JP
- Japan
- Prior art keywords
- honeycomb body
- exhaust gas
- metal carrier
- heat
- inflow side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chimneys And Flues (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
(57)【要約】
【目的】熱による金属疲労や、破損の起こらないハニカ
ム体を備えるメタル担体を提供する。
【構成】内燃機関の排気管1途中に設けられ、平板と波
板を積層させて形成されたハニカム体3と、ハニカム体
3を内設可能な外筒4とを備える排気ガス浄化用触媒の
メタル担体3であって、ハニカム体3の排気ガス流入側
で中心軸から所定距離離間した部位に環状の断熱層5を
設けることを特徴とするものである。こうして内燃機関
始動直後から排気管1を通じてハニカム体3内に排気ガ
スが流入しハニカム体3内は加熱されるが、所定部位に
設けられる断熱層5によりハニカム体3の断熱層5の周
囲の部位には熱が伝わりにくい。このためハニカム体3
の排気ガス流入側の外周部4cの過度の温度上昇を防ぐ
ことが可能となり、熱劣化を防ぐことができる。
(57) [Abstract] [Purpose] To provide a metal carrier including a honeycomb body which is free from metal fatigue and damage due to heat. A catalyst for exhaust gas purification, comprising a honeycomb body 3 provided in the middle of an exhaust pipe 1 of an internal combustion engine and formed by laminating a flat plate and a corrugated plate, and an outer cylinder 4 in which the honeycomb body 3 can be installed. The metal carrier 3 is characterized in that an annular heat insulating layer 5 is provided in a portion on the exhaust gas inflow side of the honeycomb body 3 which is separated from the central axis by a predetermined distance. Thus, immediately after the internal combustion engine is started, the exhaust gas flows into the honeycomb body 3 through the exhaust pipe 1 and the inside of the honeycomb body 3 is heated, but the heat insulating layer 5 provided at a predetermined portion causes a portion around the heat insulating layer 5 of the honeycomb body 3. Is difficult to transfer heat to. Therefore, the honeycomb body 3
It is possible to prevent an excessive temperature rise of the outer peripheral portion 4c on the exhaust gas inflow side, and it is possible to prevent thermal deterioration.
Description
【0001】[0001]
【産業上の利用分野】本発明は、排気ガス浄化触媒用メ
タル担体および製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal carrier for an exhaust gas purification catalyst and a manufacturing method.
【0002】[0002]
【従来の技術】従来のメタル担体には例えば特開平3−
80939に開示されるようなものがある。これは図8
に示されるようなメタル担体101であり、平板と波板
とを重ねてロール状に巻いて形成されたハニカム体10
2と、ハニカム体102を圧入してハニカム体102の
外周に同軸的に配置させる外筒103とから形成され
る。図8のD−D断面を示すものが図9である。ハニカ
ム体102は、平板と波板を重ねてロール状に巻くこと
によりその壁面104の面積が平板のみを巻いたものの
壁面の面積よりも大きく形成されている。またハニカム
体102の壁面104には例えばPt、Pd、Rh等の
触媒物質が一様に担持されている。2. Description of the Related Art A conventional metal carrier is disclosed in, for example, JP-A-3-
80939. This is Figure 8
Which is a metal carrier 101 as shown in FIG. 1, and is formed by stacking a flat plate and a corrugated plate and winding them in a roll shape.
2 and an outer cylinder 103 that press-fits the honeycomb body 102 and is coaxially arranged on the outer periphery of the honeycomb body 102. FIG. 9 shows a DD cross section of FIG. 8. The honeycomb body 102 is formed by stacking a flat plate and a corrugated plate and winding them in a roll shape so that the wall surface 104 has a larger area than the wall surface of the flat plate. In addition, a catalytic material such as Pt, Pd, or Rh is uniformly carried on the wall surface 104 of the honeycomb body 102.
【0003】このメタル担体101を図示しない内燃機
関に接続される排気通路105途中に配置させ、内燃機
関始動とともに内燃機関側から排気ガスをハニカム体1
02内へ流入させる。すると排気ガスの熱でハニカム体
102の壁面104は加熱されて、所定温度にまで達す
ると壁面104に担持された触媒物質が活性化温度とな
り、排気ガス中の有害物質を浄化する反応を開始し、排
気ガスの浄化を行なう。この時ハニカム体102の壁面
104の面積は比較的大きくとられているため、壁面1
04に排気ガスを接触しやすくして排気ガスの浄化を好
適に行うことが可能である。This metal carrier 101 is arranged in the middle of an exhaust passage 105 connected to an internal combustion engine (not shown), and exhaust gas is discharged from the internal combustion engine side when the internal combustion engine is started.
It is made to flow into 02. Then, the wall surface 104 of the honeycomb body 102 is heated by the heat of the exhaust gas, and when the temperature reaches a predetermined temperature, the catalytic substance carried on the wall surface 104 reaches the activation temperature, and a reaction for purifying harmful substances in the exhaust gas is started. , Purify exhaust gas. At this time, since the area of the wall surface 104 of the honeycomb body 102 is relatively large, the wall surface 1
It is possible to easily contact the exhaust gas with the exhaust gas 04, and to appropriately purify the exhaust gas.
【0004】[0004]
【発明が解決しようとする課題】ハニカム体102が前
述のような構造である場合、内燃機関始動の直後から排
気ガスがハニカム体102に侵入し、排気ガスの熱によ
りハニカム体102の壁面104が加熱される。この時
ハニカム体102内の排気ガスの流速分布に伴いハニカ
ム体102の排気ガス流入側で半径方向断面の中心部A
がその外周部Bよりも排気ガスの流速が速く且つ流量も
多いため、ハニカム体102の中心部Aが最も速く触媒
物質の活性化温度にまで上昇する。When the honeycomb body 102 has the above-described structure, the exhaust gas enters the honeycomb body 102 immediately after the internal combustion engine is started, and the heat of the exhaust gas causes the wall surface 104 of the honeycomb body 102 to move. Be heated. At this time, along with the flow velocity distribution of the exhaust gas in the honeycomb body 102, the central portion A of the radial cross section on the exhaust gas inflow side of the honeycomb body 102.
However, since the flow velocity and the flow rate of the exhaust gas are higher than those of the outer peripheral portion B, the central portion A of the honeycomb body 102 rises to the activation temperature of the catalytic substance fastest.
【0005】図10は排気ガス流入後約14秒後内燃機
関アイドル時の前述のハニカム体内の温度分布を示す図
であり、図10の左側が排気ガス流入側、横軸がハニカ
ム体の軸方向の長さ、縦軸がハニカム体の半径方向の長
さを示している。排気ガス流入側でハニカム体の半径方
向断面の中心部Aは排気ガスの流量が外周部Bよりも多
いため外周部Bよりも速く温度上昇するが、中心部Aは
流入する排気ガスの流速が速いため熱が排気ガスととも
に図9の右側の流出側へ流されて、中心部Aの熱が外周
部B向きよりも流出側向きに多く伝えられる。FIG. 10 is a diagram showing the temperature distribution in the honeycomb body when the internal combustion engine is idle approximately 14 seconds after the exhaust gas has flowed in. The left side of FIG. 10 is the exhaust gas inflow side and the horizontal axis is the axial direction of the honeycomb body. And the vertical axis represents the radial length of the honeycomb body. On the exhaust gas inflow side, the central portion A of the radial cross section of the honeycomb body has a higher exhaust gas flow rate than the outer peripheral portion B, so the temperature rises faster than the outer peripheral portion B, but the central portion A has a flow velocity of the inflowing exhaust gas. Since it is fast, heat is sent to the outflow side on the right side of FIG. 9 together with the exhaust gas, and more heat in the central portion A is transferred to the outflow side than to the outer peripheral portion B.
【0006】中心部Aが活性化温度に達するとともに、
ハニカム体壁面104に担持された触媒物質が反応を開
始して排気ガスの浄化を始める。排気ガスの浄化を行う
とその浄化反応により反応熱が発生し、ハニカム体壁面
104は更に加熱されて所定時間後に排気ガスの温度よ
りも高温となる。図11は排気ガス流入後約50秒後内
燃機関アイドル時のハニカム体102内の温度分布を示
す図である。図11の横軸、縦軸の表示は図10に示さ
れたものと同じである。ハニカム体102の中心軸付近
の部位、すなわち図11の横軸付近は比較的流速が速い
ため、熱が排気ガスとともにハニカム体102の流出側
へ流されて略均一な温度分布を示す。As the center portion A reaches the activation temperature,
The catalytic substance carried on the honeycomb body wall surface 104 starts the reaction to start purification of the exhaust gas. When the exhaust gas is purified, reaction heat is generated by the purification reaction, and the honeycomb body wall surface 104 is further heated and becomes higher than the temperature of the exhaust gas after a predetermined time. FIG. 11 is a diagram showing the temperature distribution in the honeycomb body 102 when the internal combustion engine is idle, approximately 50 seconds after the exhaust gas has flowed in. The display of the horizontal axis and the vertical axis of FIG. 11 is the same as that shown in FIG. Since the flow velocity is relatively high in the vicinity of the central axis of the honeycomb body 102, that is, in the vicinity of the horizontal axis in FIG. 11, heat is caused to flow to the outflow side of the honeycomb body 102 together with the exhaust gas, and a substantially uniform temperature distribution is exhibited.
【0007】しかしながらハニカム体102の外周部B
については、中心部Aに比べて流入する排気ガスの流速
が遅い。このため排気ガスとともに流出側に奪われる熱
量が少なく中心部Aから反応熱が伝導されて加熱される
にもかかわらず、流入する排気ガスの流速が遅いため排
気ガスに奪われる熱量が少なくなる。こうして図11に
示すように排気ガス流入側の外周部Bの温度がますます
上昇する。例えばハニカム体の排気ガス流入口から軸方
向に10.125mmの距離のハニカム体半径方向断面
の温度の時間変化は、図12のように表される。図12
からわかるように、排気ガスがハニカム体に流入後約3
0秒以後には外周部Bは中心部Aよりも高温となる。However, the outer peripheral portion B of the honeycomb body 102
With respect to, the flow velocity of the inflowing exhaust gas is slower than that in the central portion A. Therefore, although the amount of heat taken to the outflow side together with the exhaust gas is small and the reaction heat is conducted from the central portion A to be heated, the amount of heat taken to the exhaust gas is small because the flow velocity of the inflowing exhaust gas is slow. Thus, as shown in FIG. 11, the temperature of the outer peripheral portion B on the exhaust gas inflow side is further increased. For example, the time change of the temperature of the honeycomb radial cross section at a distance of 10.125 mm in the axial direction from the exhaust gas inlet of the honeycomb body is represented as shown in FIG. 12
As can be seen from the figure, about 3 after the exhaust gas flows into the honeycomb body
The outer peripheral portion B becomes higher in temperature than the central portion A after 0 seconds.
【0008】尚、中心部Aよりも流出側の半径方向断面
の中心部Pは中心部Aから排気ガスとともに熱が伝導さ
れるため加熱され、触媒物質の活性化温度に達するが、
中心部Aで排気ガスの中の有害物質が浄化されるため、
流出側中心部Pでは浄化作用が流入側中心部Aほど起き
ない。このため浄化作用に伴う反応熱が生成されないた
め、中心部Pは中心部Aよりも高温とはならない。この
ため中心部Pの外周部Qへ伝導される熱は、中心部Aか
ら外周部Bに伝導される熱よりも小さくなる。つまりハ
ニカム体の排気ガス流入側の外周部Bほど顕著に温度上
昇が起きる。The central portion P of the radial cross section on the outflow side of the central portion A is heated because the heat is conducted together with the exhaust gas from the central portion A and reaches the activation temperature of the catalytic substance,
Since the harmful substances in the exhaust gas are purified in the center part A,
At the outflow side central portion P, the purifying action does not occur as much as at the inflow side central portion A. Therefore, the reaction heat associated with the purifying action is not generated, so that the temperature of the central portion P does not become higher than that of the central portion A. Therefore, the heat conducted to the outer peripheral portion Q of the central portion P is smaller than the heat conducted to the outer peripheral portion B from the central portion A. That is, the temperature rises more markedly in the outer peripheral portion B on the exhaust gas inflow side of the honeycomb body.
【0009】ハニカム体102の壁面104は、温度上
昇が進むとともに壁面104の膨張も進む。ハニカム体
102が外筒103内に圧入されて設けられるか、ハニ
カム体102が熱膨張すると外筒に接触するようにハニ
カム体102と外筒103の間に若干の隙間をもって設
けられる場合、ハニカム体102は外筒103よりその
膨張を規制されるため、所定量を越えて膨張することが
できない。しかしながら壁面104は加熱され続けるた
め、所定の温度を越えると図13の実線で示す壁面10
4は膨張する力を受けて破線で示すような塑性変形を起
こす。次いで図示しない内燃機関を停止させるとハニカ
ム体102への排気ガスの供給がなくなるため、排気ガ
スの浄化作用も起きなくなってハニカム体102は冷却
される。これに伴いハニカム体102は収縮を始めて、
塑性変形を起こさなかった中心部Aは弾性復元されて元
の状態に戻るが、塑性変形を起こした外周部Bは弾性復
元することができない。これにより塑性変形を起こした
外周部Bと塑性変形を起こさなかった中心部Aの境界に
変形量の差異が集中し、応力となって蓄積される。図1
3で平板104aと波板104bの接触する部位Rが蝋
付けされている場合は応力が顕著に蓄積される。On the wall surface 104 of the honeycomb body 102, as the temperature rises, the wall surface 104 also expands. When the honeycomb body 102 is provided by being press-fitted into the outer cylinder 103, or when the honeycomb body 102 is provided with a slight gap between the honeycomb body 102 and the outer cylinder 103 so as to come into contact with the outer cylinder when the honeycomb body 102 thermally expands, the honeycomb body 102 Since the expansion of the outer tube 102 is restricted by the outer tube 103, the outer tube 102 cannot expand beyond a predetermined amount. However, since the wall surface 104 continues to be heated, the wall surface 10 shown by the solid line in FIG.
4 receives the force of expansion and causes plastic deformation as shown by the broken line. Next, when an internal combustion engine (not shown) is stopped, the exhaust gas is not supplied to the honeycomb body 102, so that the purification effect of the exhaust gas does not occur and the honeycomb body 102 is cooled. Along with this, the honeycomb body 102 begins to shrink,
The central portion A that has not undergone plastic deformation is elastically restored and returns to its original state, but the outer peripheral portion B that has undergone plastic deformation cannot be elastically restored. As a result, the difference in the amount of deformation is concentrated on the boundary between the outer peripheral portion B that has undergone plastic deformation and the central portion A that has not caused plastic deformation, and accumulates as stress. Figure 1
When the contacting portion R between the flat plate 104a and the corrugated plate 104b is brazed in 3, the stress is remarkably accumulated.
【0010】また図14に示されるように、少なくとも
ハニカム体102の排気ガス流入側Sの平板と波板とが
蝋付けされていて、ハニカム体102が外筒103内に
圧入されない場合、またはハニカム体102が膨張して
も外筒103に接触しない場合、すなわちシール材10
7を介してハニカム体102を固定する場合でもハニカ
ム体102の壁面104の膨張は起きる。壁面104の
膨張は図13の平板104aと波板104bの蝋付けに
よる接合点Rで規制されるため、外周部は所定温度を越
えて加熱されやすく、中心部に比べ塑性変形を起こしや
すい。そして外周部が塑性変形を起こした場合機関停止
後ハニカム体は冷却されると中心部は弾性復元するが外
周部は弾性復元することができないため、中心部Aと外
周部Bの境界に変形量の差異が集中し、応力となって蓄
積される。この応力の集中が所定回数を越えて行われる
と、壁面104がこの応力に耐えきれずにハニカム体1
02を破損させるという問題を生じていた。Further, as shown in FIG. 14, at least the flat plate on the exhaust gas inflow side S of the honeycomb body 102 and the corrugated plate are brazed so that the honeycomb body 102 is not press-fitted into the outer cylinder 103, or Even if the body 102 expands, it does not contact the outer cylinder 103, that is, the sealing material 10
Even when the honeycomb body 102 is fixed via 7, the expansion of the wall surface 104 of the honeycomb body 102 occurs. Since the expansion of the wall surface 104 is restricted at the joint point R by brazing the flat plate 104a and the corrugated plate 104b in FIG. 13, the outer peripheral portion is more likely to be heated over a predetermined temperature and is more likely to be plastically deformed than the central portion. When the outer peripheral portion undergoes plastic deformation, after the engine is stopped, when the honeycomb body is cooled, the central portion elastically restores but the outer peripheral portion cannot elastically restore. Therefore, the amount of deformation at the boundary between the central portion A and the outer peripheral portion B is reduced. Differences are concentrated and accumulated as stress. When this stress concentration is performed over a predetermined number of times, the wall surface 104 cannot withstand this stress and the honeycomb body 1
There was a problem of damaging 02.
【0011】本発明は上記問題点に鑑みてなされたもの
であり、ハニカム体の排気ガス流入側で半径方向断面中
心部から外周部へ従来よりも熱の伝達を減少させるか、
或いはハニカム体の排気ガス流入側の外周の熱を放熱す
ることにより、外周部の温度を所定値以上に上昇させな
いことを課題とするものである。The present invention has been made in view of the above problems, and is to reduce the heat transfer from the central portion of the radial cross section to the outer peripheral portion on the exhaust gas inflow side of the honeycomb body as compared with the conventional one.
Alternatively, another object is to prevent the temperature of the outer peripheral portion from rising above a predetermined value by radiating the heat of the outer peripheral portion of the honeycomb body on the exhaust gas inflow side.
【0012】[0012]
【課題を解決するための手段】上記課題を解決するため
の本発明の請求項1記載のメタル担体は、内燃機関の排
気通路途中に設けられ、平板と波板とが積層されて形成
されたハニカム体と、ハニカム体を内設可能な外筒とを
備える排気ガス浄化触媒用メタル担体であって、ハニカ
ム体の排気ガス流入側に断熱層を備えることを特徴とす
るものである。A metal carrier according to claim 1 of the present invention for solving the above-mentioned problems is provided in the middle of an exhaust passage of an internal combustion engine, and is formed by laminating a flat plate and a corrugated plate. A metal carrier for an exhaust gas purification catalyst, comprising a honeycomb body and an outer cylinder into which the honeycomb body can be provided, characterized by comprising a heat insulating layer on the exhaust gas inflow side of the honeycomb body.
【0013】本発明の請求項2記載のメタル担体の製造
方法は、波板の所定部位に切欠を設ける工程と、波板と
平板とを重ねてロール状に巻いてハニカム体を形成する
工程と、ハニカム体を同軸的に外筒に内設させる工程と
を有することを特徴とするものである。A method of manufacturing a metal carrier according to a second aspect of the present invention comprises a step of forming a notch in a predetermined portion of a corrugated plate, and a step of stacking the corrugated plate and a flat plate and winding them in a roll to form a honeycomb body. And a step of coaxially providing the honeycomb body internally in the outer cylinder.
【0014】また本発明の請求項3記載のメタル担体
は、内燃機関の排気通路途中に設けられ、平板と波板と
が積層されて形成されたハニカム体と、ハニカム体を内
設可能な外筒とを備える排気ガス浄化触媒用メタル担体
であって、ハニカム体の排気ガス流入側の外周に放熱手
段を備えることを特徴とするものである。The metal carrier according to claim 3 of the present invention is provided in the middle of the exhaust passage of an internal combustion engine, and has a honeycomb body formed by laminating a flat plate and a corrugated plate, and an outer body in which the honeycomb body can be internally provided. An exhaust gas purifying catalyst metal carrier including a cylinder, characterized in that a heat dissipation means is provided on the outer periphery of the exhaust gas inflow side of the honeycomb body.
【0015】[0015]
【作用】本発明の請求項1記載の排気ガス浄化触媒用メ
タル担体の作用を説明する。内燃機関始動直後から排気
ガスは排気通路を通じてメタル担体内へ流入する。排気
通路内の排気ガスの流速の分布により排気ガスの流量が
最も多いハニカム体の排気ガス流入側で半径方向断面の
中心部が排気ガスの熱により加熱される。ハニカム体壁
面は所定温度まで温度上昇された後、ハニカム体壁面に
担持された触媒物質の活性化温度となって排気ガスの浄
化を始める。この排気ガスの浄化に伴う反応熱でハニカ
ム体内は更に加熱されて温度が上昇する。The function of the metal carrier for exhaust gas purifying catalyst according to claim 1 of the present invention will be described. Immediately after starting the internal combustion engine, the exhaust gas flows into the metal carrier through the exhaust passage. Due to the distribution of the flow rate of the exhaust gas in the exhaust passage, the central portion of the radial cross section is heated by the heat of the exhaust gas on the exhaust gas inflow side of the honeycomb body where the flow rate of the exhaust gas is the largest. After the temperature of the wall surface of the honeycomb body is raised to a predetermined temperature, it becomes the activation temperature of the catalyst substance carried on the wall surface of the honeycomb body, and purification of the exhaust gas is started. The reaction heat accompanying the purification of the exhaust gas further heats the inside of the honeycomb body to raise the temperature.
【0016】機関運転中は随時排気ガスがハニカム体内
へ供給され触媒物質により浄化作用が行われるため、ハ
ニカム体の排気ガス流入側から各部へ熱が伝導される。
しかしながらハニカム体の排気ガス流入側に断熱層が形
成されているため、断熱層からハニカム体の排気ガス流
入側の外周部へは熱が伝導されにくい。While the engine is operating, exhaust gas is supplied into the honeycomb body at any time, and the catalytic substance purifies the exhaust gas. Therefore, heat is conducted from the exhaust gas inflow side of the honeycomb body to each part.
However, since the heat insulating layer is formed on the exhaust gas inflow side of the honeycomb body, heat is difficult to be conducted from the heat insulating layer to the outer peripheral portion of the honeycomb body on the exhaust gas inflow side.
【0017】本発明の請求項2記載の排気ガス浄化触媒
用メタル担体の製造方法の作用を説明する。波板の所定
部位に切欠を設け、次いで平板と重ねてロール状に巻い
てハニカム体を形成する。これは波板を成形する際に切
欠を設けて成形すればよいため、簡単に得られる。また
ハニカム体形成後は切欠の部分が空隙となるが、この空
隙がハニカム体の排気ガス流入側で中心軸から所定距離
離間した所定部位に形成されるように切欠の位置を調節
する。こうして適切な位置に空隙部からなる断熱層を設
けたメタル担体を容易に製造することが可能となる。The operation of the method for producing a metal carrier for an exhaust gas purification catalyst according to claim 2 of the present invention will be described. A notch is provided at a predetermined portion of the corrugated plate, and then the corrugated plate is overlapped with the flat plate and wound into a roll to form a honeycomb body. This can be easily obtained by forming a notch when molding the corrugated plate. After the honeycomb body is formed, the notch portion becomes a void. The position of the notch is adjusted so that the void is formed at a predetermined portion on the exhaust gas inflow side of the honeycomb body, which is separated from the central axis by a predetermined distance. In this way, it becomes possible to easily manufacture a metal carrier provided with a heat insulating layer composed of voids at appropriate positions.
【0018】本発明の請求項3記載の排気ガス浄化触媒
用メタル担体の作用を説明する。内燃機関始動直後から
排気ガスが排気通路を通じてメタル担体内へ流入する。
この排気ガスの熱によりメタル担体内のハニカム体は加
熱され、所定温度まで上昇した後ハニカム体壁面に担持
された触媒物質の活性化温度となって、排気ガスの浄化
が始められる。この排気ガスの浄化作用に伴う反応熱で
メタル担体内は更に温度が上昇する。この時ハニカム体
の排気ガス流入側で半径方向断面の中心部から各部へ熱
が伝導される。ハニカム体の排気ガス流入側の外周部の
排気ガスの流速は遅いため、ハニカム体の排気ガス流入
側の外周部向きに伝わった熱はハニカム体の排気ガス流
出側へ伝導されにくい。しかしながら、ハニカム体の排
気ガス流入側の外周に設けられた放熱手段により熱が奪
われるため、ハニカム体の排気ガス流入側の外周部は一
定の温度以上とはならない。The operation of the metal carrier for exhaust gas purifying catalyst according to claim 3 of the present invention will be described. Immediately after starting the internal combustion engine, the exhaust gas flows into the metal carrier through the exhaust passage.
The honeycomb body in the metal carrier is heated by the heat of this exhaust gas, and after the temperature rises to a predetermined temperature, it becomes the activation temperature of the catalyst substance carried on the wall surface of the honeycomb body, and purification of the exhaust gas is started. The temperature of the inside of the metal carrier further rises due to the reaction heat accompanying the exhaust gas purifying action. At this time, heat is conducted from the central part of the radial cross section to each part on the exhaust gas inflow side of the honeycomb body. Since the flow velocity of the exhaust gas at the outer peripheral portion of the honeycomb body on the exhaust gas inflow side is low, the heat transferred to the outer peripheral portion of the honeycomb body on the exhaust gas inflow side is difficult to be conducted to the exhaust gas outflow side of the honeycomb body. However, since heat is taken by the heat radiation means provided on the outer periphery of the honeycomb body on the exhaust gas inflow side, the outer peripheral portion of the honeycomb body on the exhaust gas inflow side does not reach a certain temperature or higher.
【0019】[0019]
【実施例】以下に本発明の第1実施例を示す。図1はメ
タル担体2の全体構成を示す正面図である。1は図示し
ない内燃機関に接続される排気通路である内径が2r’
の排気管、2は排気管1にxにて溶接して接続されるメ
タル担体、3はメタル担体2の内部に配置されるハニカ
ム体、3aは排気ガスが流入する端面を示す。また4は
ハニカム体3を内設する外筒、5はハニカム体3の排気
ガス流入側で、且つ中心軸からの距離rが排気管1の半
径r’と略同一となるように設けられた断熱層である空
隙部を示している。図2は図1のC−C断面図であり、
空隙部5はロール状に巻かれて形成されたハニカム体3
にその中心軸から距離r離間した位置に環状に形成され
てなる。尚、排気管1の外周の延長線上で仕切られ、ハ
ニカム体3の中心軸に近い半径方向断面中心部である中
心部を3b、空隙部5の周囲を外周部3cとする。EXAMPLE A first example of the present invention will be described below. FIG. 1 is a front view showing the overall structure of the metal carrier 2. Reference numeral 1 is an exhaust passage connected to an internal combustion engine (not shown) and has an inner diameter of 2r '.
2 is a metal carrier connected to the exhaust pipe 1 by welding at x, 3 is a honeycomb body disposed inside the metal carrier 2, and 3a is an end face into which exhaust gas flows. Further, 4 is an outer cylinder in which the honeycomb body 3 is installed, 5 is provided on the exhaust gas inflow side of the honeycomb body 3, and the distance r from the central axis is substantially the same as the radius r ′ of the exhaust pipe 1. A void portion which is a heat insulating layer is shown. FIG. 2 is a sectional view taken along line CC of FIG.
The voids 5 are formed by rolling the honeycomb body 3 in a roll shape.
It is formed in an annular shape at a position separated from the central axis by a distance r. It should be noted that the central portion, which is partitioned along the extension of the outer periphery of the exhaust pipe 1 and is the central portion in the radial direction near the central axis of the honeycomb body 3, is 3b, and the periphery of the void 5 is the outer peripheral portion 3c.
【0020】以下に第1実施例の作用を図1及び図2を
用いて示す。図1において図示しない内燃機関の始動後
排気管1から排気ガスがメタル担体2内に図1左側から
流入する。排気ガスが流入する際メタル担体2の端面3
aから流入されるが、排気ガス流入側で半径方向断面中
心部3bに流入しやすくまた流速も速いため、排気ガス
によりこの中心部3bの壁面の温度は外周部3cの壁面
の温度に比べて高くなる。排気ガスは排気管1から連続
的に流入されるため、内燃機関始動後漸次温度が上昇し
所定の温度になるとハニカム体3の中心部3bの壁面に
担持された触媒物質の活性化温度となってCO等の排気
ガスの浄化作用が始まる。The operation of the first embodiment will be described below with reference to FIGS. 1 and 2. Exhaust gas flows into the metal carrier 2 from the left side of FIG. When the exhaust gas flows in, the end surface 3 of the metal carrier 2
Although it is introduced from a, the temperature of the wall surface of the central portion 3b is higher than that of the outer peripheral portion 3c due to the exhaust gas because it easily flows into the central portion 3b of the radial cross section on the exhaust gas inflow side and the flow velocity is high. Get higher Since the exhaust gas continuously flows in from the exhaust pipe 1, when the internal combustion engine starts, the temperature gradually rises and reaches a predetermined temperature, and the activation temperature of the catalyst substance carried on the wall surface of the central portion 3b of the honeycomb body 3 is reached. The action of purifying exhaust gas such as CO begins.
【0021】COの酸化等の排気ガスの浄化作用が始ま
ると、この排気ガスの浄化作用の反応熱により更にハニ
カム体3の壁面の温度は上昇し排気ガスの温度よりも高
くなる。機関運転中は随時排気ガスがハニカム体3内に
供給され触媒物質による排気ガスの浄化作用も行われる
ため、ハニカム体3の各部へ熱が伝導される。しかしな
がらハニカム体3の中心部3bの周囲には断熱層である
空隙部5が形成されているため、外周部3cへは熱が伝
導されにくい。When the exhaust gas purifying action such as CO oxidation starts, the reaction heat of the exhaust gas purifying action further raises the temperature of the wall surface of the honeycomb body 3 and becomes higher than the exhaust gas temperature. Exhaust gas is supplied into the honeycomb body 3 at any time during engine operation, and the exhaust gas is purified by the catalytic substance, so that heat is conducted to each part of the honeycomb body 3. However, since the void portion 5 which is a heat insulating layer is formed around the central portion 3b of the honeycomb body 3, it is difficult to conduct heat to the outer peripheral portion 3c.
【0022】図3は軸方向長さ120mm、直径が80
mmの円筒型のハニカム体を内径が約50mmの排気管
に接続して用いた時の排気ガス流入後約50秒後のハニ
カム体内部の温度分布を示すものである。5は空隙部が
設けられている部位を示している。比較例として空隙部
5を設けないこと以外は同じ構成のハニカム体を用いた
ものの温度分布を図11に示す。図3と図11を比較す
るとハニカム体の排気ガス流入側の外周部Bの過度の温
度上昇が防がれている。これにより従来の過度の温度上
昇に伴うハニカム体の内壁3dの熱劣化を防ぐことが可
能となる。FIG. 3 shows an axial length of 120 mm and a diameter of 80.
Fig. 3 shows the temperature distribution inside the honeycomb body about 50 seconds after the inflow of exhaust gas when a cylindrical honeycomb body of mm was connected to an exhaust pipe having an inner diameter of about 50 mm. Reference numeral 5 indicates a portion where a void is provided. As a comparative example, FIG. 11 shows a temperature distribution of a honeycomb body having the same configuration except that the void portion 5 is not provided. Comparing FIG. 3 with FIG. 11, it is possible to prevent an excessive temperature rise in the outer peripheral portion B of the honeycomb body on the exhaust gas inflow side. As a result, it becomes possible to prevent thermal deterioration of the inner wall 3d of the honeycomb body due to the conventional excessive temperature rise.
【0023】また図11からわかるとおり過度の温度上
昇が起きているのは、排気ガス流入口から流出側向きに
約20mmまでで、且つ排気管の半径25mmよりも外
側の部位である。このため排気ガス流入口から流出側へ
向かって20mm、中心軸から25mmの位置に環状の
空隙部5を形成するのが好ましい。本実施例のハニカム
体3は平板と波板をロール状に巻いて形成されたもので
あるが、本発明はこれに限定されるものではなく平板と
波板を重ねて積層して形成されたハニカム体を用いても
同等の効果を得ることが可能である。また本実施例の環
状の空隙部5は略円状であるがこれに限定されるもので
はなく、三角形、四角形や五角形等の多角形や星型等の
形状でも同等の効果を有するものである。この他にも前
述の空隙部5を設けることで内燃機関始動後早期に触媒
の活性化温度までハニカム体の壁面を昇温させることが
可能であることが、排気ガス流入後14秒後のハニカム
体内の温度分布を示す図4と従来のハニカム体を用いた
同じ条件下の図10からわかる。Further, as can be seen from FIG. 11, an excessive temperature rise occurs from the exhaust gas inflow port toward the outflow side up to about 20 mm and outside the radius of 25 mm of the exhaust pipe. Therefore, it is preferable to form the annular void portion 5 at a position 20 mm from the exhaust gas inflow side toward the outflow side and 25 mm from the central axis. The honeycomb body 3 of the present embodiment is formed by winding a flat plate and a corrugated plate in a roll shape, but the present invention is not limited to this, and is formed by stacking and laminating the flat plate and the corrugated plate. Even if a honeycomb body is used, the same effect can be obtained. Further, the annular void portion 5 of the present embodiment has a substantially circular shape, but is not limited to this, and a polygonal shape such as a triangle, a quadrangle or a pentagon, or a star shape has the same effect. . In addition to this, it is possible to raise the wall surface of the honeycomb body to the activation temperature of the catalyst early after the internal combustion engine is started by providing the above-mentioned void portion 5, that is, in the honeycomb 14 seconds after the inflow of exhaust gas. It can be seen from FIG. 4 showing the temperature distribution in the body and FIG. 10 under the same conditions using the conventional honeycomb body.
【0024】また断熱層が空隙部であることから、排気
ガスの温度により加熱されてハニカム体の壁面が熱膨張
を起こしてもこの空隙部で変形を吸収し、緩和する効果
がある。更に前述の空隙部の位置のハニカム体の内壁に
アルミナを溶射して塗布したり、セラミックファイバー
の層を設けるなどしても従来のメタル担体よりも熱の伝
導を減少させることが可能である。Further, since the heat insulating layer is the void, even if the wall surface of the honeycomb body is heated by the temperature of the exhaust gas to cause thermal expansion, the void has an effect of absorbing and relaxing the deformation. Further, the thermal conduction can be reduced as compared with the conventional metal carrier by spraying and coating alumina on the inner wall of the honeycomb body at the above-mentioned void portion or by providing a layer of ceramic fiber.
【0025】また第1実施例の他の形状として、図5に
示されるメタル担体9がある。このメタル担体9は、ハ
ニカム体3が外筒4と排気ガス流出側でシール材10を
介して接合されている。またハニカム体3の少なくとも
排気ガス流入側の壁面Tは、平板と波板が蝋付けされて
おり、ハニカム体3の排気ガス流入側で、ハニカム体3
の中心軸から所定距離離間された位置に環状の切欠5を
設けている。この図5のような形状についても図1の形
状のメタル担体2と同様の効果を得ることが可能であ
る。Another form of the first embodiment is a metal carrier 9 shown in FIG. In this metal carrier 9, the honeycomb body 3 is joined to the outer cylinder 4 on the exhaust gas outflow side via a seal material 10. A flat plate and a corrugated plate are brazed on at least the wall surface T of the honeycomb body 3 on the exhaust gas inflow side, and the honeycomb body 3 is formed on the exhaust gas inflow side of the honeycomb body 3.
An annular notch 5 is provided at a position separated from the central axis of the above by a predetermined distance. With the shape as shown in FIG. 5, it is possible to obtain the same effect as the metal carrier 2 having the shape shown in FIG.
【0026】以下に本発明の第2実施例を示す。図6は
ハニカム体形成前の平板6と波板7を示している。この
平板6は図3の縦方向に4.25m、横方向に120m
mという寸法の長方形である。また波板7は図3の縦方
向に4.25m、横方向に120mmという寸法の略長
方形形状で図3縦方向に160mm、横方向に25mm
の長方形形状の切欠が設けられている。The second embodiment of the present invention will be described below. FIG. 6 shows the flat plate 6 and the corrugated plate 7 before forming the honeycomb body. This flat plate 6 is 4.25 m in the vertical direction and 120 m in the horizontal direction in FIG.
It is a rectangle with a size of m. The corrugated plate 7 has a substantially rectangular shape with dimensions of 4.25 m in the vertical direction and 120 mm in the horizontal direction in FIG. 3, 160 mm in the vertical direction and 25 mm in the horizontal direction.
The rectangular notch is provided.
【0027】この平板6と波板7を重ねて次いで図3の
縦方向にロール状に巻いていく。この時平板6と波板7
の間には所定部位に蝋材が塗布されておりこの蝋材によ
り平板6と波板7は互いに接触する部位で蝋付けされ
る。これにより図2に示されるような所定の位置に空隙
部からなる断熱層を有するハニカム体が形成される。次
いでこのハニカム体を外筒に同軸的に配置されるように
挿入してメタル担体を形成する。こうして図1および図
2に示されるような断熱層を備えるメタル担体を容易に
製造することが可能となる。The flat plate 6 and the corrugated plate 7 are stacked and then wound in a roll shape in the vertical direction of FIG. At this time, the flat plate 6 and the corrugated plate 7
A brazing material is applied to a predetermined portion between the flat plate 6 and the corrugated plate 7 by this brazing material at a portion in contact with each other. As a result, a honeycomb body having a heat insulating layer composed of voids at predetermined positions is formed as shown in FIG. Next, this honeycomb body is inserted so as to be coaxially arranged in the outer cylinder to form a metal carrier. In this way, it becomes possible to easily manufacture the metal carrier provided with the heat insulating layer as shown in FIGS. 1 and 2.
【0028】以下に本発明の第3実施例を示す。図7は
第3実施例の全体構成を示すものであり、8はハニカム
体3の排気ガス流入側の外周の所定位置に設けられた放
熱手段としての冷却水通路である。この冷却水通路は図
示しない冷却水供給手段に接続されており、この冷却水
供給手段にて冷却水を冷却水通路8内へ供給することが
可能である。The third embodiment of the present invention will be described below. FIG. 7 shows the overall construction of the third embodiment, and 8 is a cooling water passage as a heat radiating means provided at a predetermined position on the outer periphery of the honeycomb body 3 on the exhaust gas inflow side. The cooling water passage is connected to a cooling water supply means (not shown), and the cooling water supply means can supply the cooling water into the cooling water passage 8.
【0029】次に第3実施例の作用を以下に示す。図示
しない内燃機関始動後、機関側から流入する排気ガスの
熱によりハニカム体3は熱せられる。所定温度にまで熱
せられるとハニカム体3の壁面3dに担持された触媒物
質が反応し、CO等の排気ガスの浄化が始められる。排
気ガスの浄化作用による反応熱により、更にハニカム体
3は熱せられる。この時ハニカム体3の排気ガス流入側
で半径方向断面の中心部3bは排気ガスの流量が比較的
多く流速も速いため、流出側へ排気ガスとともに流され
て所定温度以上には上昇しない。Next, the operation of the third embodiment will be described below. After starting the internal combustion engine (not shown), the honeycomb body 3 is heated by the heat of the exhaust gas flowing from the engine side. When heated to a predetermined temperature, the catalyst substance carried on the wall surface 3d of the honeycomb body 3 reacts, and purification of exhaust gas such as CO starts. The honeycomb body 3 is further heated by the reaction heat due to the exhaust gas purifying action. At this time, the central portion 3b of the radial cross section on the exhaust gas inflow side of the honeycomb body 3 has a relatively large flow rate of the exhaust gas and a high flow velocity, so that it is flown together with the exhaust gas to the outflow side and does not rise above a predetermined temperature.
【0030】しかしながらハニカム体3の排気ガス流入
側で外周部3cの排気ガスの流量は比較的少ないため、
外周部3cの熱は流出側へ流されず温度が上昇する。こ
の時図示しない冷却水供給手段にて冷却水通路7内に冷
却水を供給しこの冷却水が熱を奪って外周部3cが加熱
しすぎないため、外周部3cの温度は一定温度以上とな
らない。こうしてハニカム体3の外周部3cの熱による
破損を防ぐことができ、好適に排気ガスの浄化をするこ
とが可能となる。本実施例はこれに限定されるものでは
なく、この他にも前述の冷却水通路7の位置に放熱手段
である冷却フィンを設けてハニカム体3の外周部3cの
熱を放熱しても同等の効果を得ることができる。However, since the flow rate of the exhaust gas in the outer peripheral portion 3c on the exhaust gas inflow side of the honeycomb body 3 is relatively small,
The heat of the outer peripheral portion 3c does not flow to the outflow side and the temperature rises. At this time, the cooling water is supplied into the cooling water passage 7 by the cooling water supply means (not shown), and the cooling water does not take heat to heat the outer peripheral portion 3c too much. Therefore, the temperature of the outer peripheral portion 3c does not exceed a certain temperature. . In this way, it is possible to prevent the outer peripheral portion 3c of the honeycomb body 3 from being damaged by heat, and it is possible to appropriately purify the exhaust gas. The present embodiment is not limited to this, and in addition to this, even if a cooling fin as a heat radiating means is provided at the position of the cooling water passage 7 and the heat of the outer peripheral portion 3c of the honeycomb body 3 is radiated, the same effect can be obtained. The effect of can be obtained.
【0031】[0031]
【発明の効果】以上詳述したように本発明の請求項1記
載の排気ガス浄化用触媒のメタル担体によれば、メタル
担体内部に設けられるハニカム体の排気ガス流入側でハ
ニカム体の中心軸から所定距離離間した部位に環状の断
熱層を設ける。この断熱層によりハニカム体の排気ガス
流入側で半径方向断面中心部から外周部に伝導される熱
量を従来よりも減少させることで、ハニカム体排気ガス
流入側の外周部の過度の温度上昇を防ぐ。これによりハ
ニカム体の排気ガス流入側の外周部の熱によるハニカム
体壁面の金属疲労劣化や、熱応力による板の破損を防ぐ
ことができる。As described in detail above, according to the metal carrier of the exhaust gas purifying catalyst of claim 1 of the present invention, the central axis of the honeycomb body is provided on the exhaust gas inflow side of the honeycomb body provided inside the metal carrier. A ring-shaped heat insulating layer is provided at a position separated by a predetermined distance from. This heat insulating layer reduces the amount of heat conducted from the central portion of the radial cross section to the outer peripheral portion on the exhaust gas inflow side of the honeycomb body as compared with the conventional case, thereby preventing an excessive temperature rise of the outer peripheral portion on the honeycomb body exhaust gas inflow side. . As a result, it is possible to prevent metal fatigue deterioration of the honeycomb wall surface due to heat of the outer peripheral portion of the honeycomb body on the exhaust gas inflow side and damage of the plate due to thermal stress.
【0032】本発明の請求項2記載の排気ガス浄化用触
媒のメタル担体の製造方法によれば、波板の所定部位に
切欠を設けて平板と重ねてロール状に巻いてハニカム体
を形成する。次いで形成されたハニカム体を外筒に内設
させてメタル担体とする。この方法により、ハニカム体
の排気ガス流入側でメタル担体の中心軸から所定距離離
間された所定部位に空間層を設けたメタル担体の製造を
容易に行うことができる。According to the method for producing a metal carrier for an exhaust gas purifying catalyst according to claim 2 of the present invention, a honeycomb body is formed by forming a notch at a predetermined portion of a corrugated sheet and stacking the corrugated sheet on a flat plate and winding the cut sheet in a roll shape. . Next, the formed honeycomb body is provided inside the outer cylinder to form a metal carrier. By this method, it is possible to easily manufacture the metal carrier in which the space layer is provided in the predetermined portion which is separated from the central axis of the metal carrier by the predetermined distance on the exhaust gas inflow side of the honeycomb body.
【0033】本発明の請求項3記載の排気ガス浄化用触
媒のメタル担体によれば、メタル担体内部に設けられる
ハニカム体の排気ガス流入側の外周に放熱手段を設け
る。この放熱手段によりハニカム体の排気ガス流入側で
半径方向中心部から伝導されたハニカム体外周部の熱を
奪って熱を外筒を介して放出することにより、熱による
劣化や熱応力による歪みを防ぐことができる。According to the metal carrier of the exhaust gas purifying catalyst of the third aspect of the present invention, the heat dissipation means is provided on the outer periphery of the exhaust gas inflow side of the honeycomb body provided inside the metal carrier. By this heat radiating means, the heat of the outer peripheral portion of the honeycomb body conducted from the radial center portion on the exhaust gas inflow side of the honeycomb body is taken and the heat is released through the outer cylinder. Can be prevented.
【図1】本発明の第1実施例に係り、メタル担体の全体
構成を示す正面図である。FIG. 1 is a front view showing the overall structure of a metal carrier according to a first embodiment of the present invention.
【図2】図1のC−C断面図である。FIG. 2 is a sectional view taken along line CC of FIG.
【図3】本発明の第1実施例のハニカム体を使用した、
排気ガス流入後約50秒後のハニカム体内部の温度分布
を示す図である。FIG. 3 uses the honeycomb body of the first embodiment of the present invention,
It is a figure which shows the temperature distribution inside a honeycomb body about 50 second after an exhaust gas inflow.
【図4】本発明の第1実施例のハニカム体を使用した、
排気ガス流入後約14秒後のハニカム体内部の温度分布
を示す図である。[Fig. 4] Fig. 4 is a diagram showing the use of the honeycomb body of the first embodiment of the present invention.
It is a figure which shows the temperature distribution inside a honeycomb body about 14 seconds after inflowing exhaust gas.
【図5】本発明の第1実施例のハニカム体の他の形状を
示す正面図である。FIG. 5 is a front view showing another shape of the honeycomb body of the first embodiment of the present invention.
【図6】本発明の第2実施例に係り、ハニカム体を形成
する前の平板と波板を示す図である。FIG. 6 is a diagram illustrating a flat plate and a corrugated plate before forming a honeycomb body according to the second embodiment of the present invention.
【図7】本発明の第3実施例に係り、メタル担体の全体
構成を示す正面図である。FIG. 7 is a front view showing the overall structure of the metal carrier according to the third embodiment of the present invention.
【図8】従来のメタル担体の全体構成を示す正面図であ
る。FIG. 8 is a front view showing the overall configuration of a conventional metal carrier.
【図9】図6のD−D断面図である。9 is a sectional view taken along line DD of FIG.
【図10】従来技術のハニカム体を使用した、排気ガス
流入後約14秒後のハニカム体内部の温度分布を示す図
である。FIG. 10 is a diagram showing a temperature distribution inside the honeycomb body about 14 seconds after the inflow of exhaust gas, using the honeycomb body of the conventional technique.
【図11】従来技術のハニカム体を使用した、排気ガス
流入後約50秒後のハニカム体内部の温度分布を示す図
である。FIG. 11 is a diagram showing a temperature distribution inside the honeycomb body about 50 seconds after the inflow of exhaust gas, using the honeycomb body of the conventional technique.
【図12】従来技術のハニカム体を使用した、ハニカム
体の排気ガス流入口付近の温度の時間変化を示す図であ
る。[Fig. 12] Fig. 12 is a view showing a time change of a temperature in the vicinity of an exhaust gas inlet of the honeycomb body using the honeycomb body of the conventional technique.
【図13】従来のメタル担体の他の形状の全体構成を示
す正面図である。FIG. 13 is a front view showing an overall configuration of another shape of a conventional metal carrier.
【図14】ハニカム体の壁面を軸方向から見たときの拡
大図である。FIG. 14 is an enlarged view of the wall surface of the honeycomb body as viewed from the axial direction.
1 排気管 2 メタル担体 3 ハニカム体 3a 排気ガス流入側端面 3b 排気ガス流入側半径方向中心部 3c 排気ガス流入側半径方向外周部 3d ハニカム体壁面 4 外筒 5 空隙部 6 平板 7 波板 8 冷却水通路 DESCRIPTION OF SYMBOLS 1 Exhaust pipe 2 Metal carrier 3 Honeycomb body 3a Exhaust gas inflow side end face 3b Exhaust gas inflow side radial center 3c Exhaust gas inflow side radial outer periphery 3d Honeycomb body wall 4 Outer cylinder 5 Gap 6 Flat plate 7 Corrugated plate 8 Cooling Water passage
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/86 ZAB F23J 15/00 Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B01D 53/86 ZAB F23J 15/00
Claims (3)
と波板とが積層されて形成されたハニカム体と、該ハニ
カム体を内設可能な外筒とを備える排気ガス浄化触媒用
メタル担体であって、前記ハニカム体の排気ガス流入側
に断熱層を備えることを特徴とする前記排気ガス浄化触
媒用メタル担体。1. A metal for an exhaust gas purifying catalyst, which is provided in the exhaust passage of an internal combustion engine and includes a honeycomb body formed by laminating a flat plate and a corrugated plate, and an outer cylinder in which the honeycomb body can be provided. The metal carrier for an exhaust gas purification catalyst, which is a carrier and is provided with a heat insulating layer on the exhaust gas inflow side of the honeycomb body.
波板と平板とを重ねてロール状に巻いてハニカム体を形
成する工程と、該ハニカム体を同軸的に外筒に内設させ
る工程とを有することを特徴とする排気ガス浄化触媒用
メタル担体の製造方法。2. A step of forming a notch in a predetermined portion of a corrugated plate, a step of stacking the corrugated plate and a flat plate and rolling them into a roll to form a honeycomb body, and the honeycomb body being coaxially placed in an outer cylinder. A method of manufacturing a metal carrier for an exhaust gas purification catalyst, comprising the step of:
と波板とが積層されて形成されたハニカム体と、該ハニ
カム体を内設可能な外筒とを備える排気ガス浄化触媒用
メタル担体であって、前記ハニカム体の排気ガス流入側
の外周に放熱手段を備えることを特徴とする前記排気ガ
ス浄化触媒用メタル担体。3. A metal for an exhaust gas purifying catalyst, which is provided in the middle of an exhaust passage of an internal combustion engine and includes a honeycomb body formed by laminating a flat plate and a corrugated plate, and an outer cylinder in which the honeycomb body can be provided. The exhaust gas purifying catalyst metal carrier, wherein the exhaust gas purifying catalyst is provided with a heat radiating means on the outer periphery of the honeycomb body on the exhaust gas inflow side.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6046065A JPH07251079A (en) | 1994-03-16 | 1994-03-16 | Exhaust gas purification catalyst metal carrier and manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6046065A JPH07251079A (en) | 1994-03-16 | 1994-03-16 | Exhaust gas purification catalyst metal carrier and manufacturing method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07251079A true JPH07251079A (en) | 1995-10-03 |
Family
ID=12736611
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6046065A Pending JPH07251079A (en) | 1994-03-16 | 1994-03-16 | Exhaust gas purification catalyst metal carrier and manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07251079A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012500927A (en) * | 2008-08-27 | 2012-01-12 | ヴィダ ホールディングス コーポレーション リミテッド | Catalytic converter device |
| US9260999B2 (en) | 2012-07-19 | 2016-02-16 | Vida Fresh Air Corp. | Apparatus and method for engine backpressure reduction |
| US9964012B2 (en) | 2014-01-17 | 2018-05-08 | Vida Fresh Air Corp. | Method for sizing and positioning catalytic converter insulation |
-
1994
- 1994-03-16 JP JP6046065A patent/JPH07251079A/en active Pending
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2012500927A (en) * | 2008-08-27 | 2012-01-12 | ヴィダ ホールディングス コーポレーション リミテッド | Catalytic converter device |
| US9108156B2 (en) | 2008-08-27 | 2015-08-18 | Vida Holdings Ltd. | Catalytic converter apparatus |
| US9926824B2 (en) | 2008-08-27 | 2018-03-27 | Vida Fresh Air Corp. | Catalytic converter apparatus |
| US9260999B2 (en) | 2012-07-19 | 2016-02-16 | Vida Fresh Air Corp. | Apparatus and method for engine backpressure reduction |
| EP2874731A4 (en) * | 2012-07-19 | 2016-02-24 | Vida Holdings Corp Ltd | Apparatus and method for engine backpressure reduction |
| US9964012B2 (en) | 2014-01-17 | 2018-05-08 | Vida Fresh Air Corp. | Method for sizing and positioning catalytic converter insulation |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPS63176613A (en) | Catalyst supporter | |
| JPH10337A (en) | Metal catalytic converter and method of manufacturing the same | |
| JPH07251079A (en) | Exhaust gas purification catalyst metal carrier and manufacturing method | |
| JPH10508529A (en) | Catalyst carrier body with internal insulation | |
| JP4549607B2 (en) | Catalyst support with sleeve and shortened cylindrical jacket | |
| JP2002321210A (en) | Molding die, hollow ceramic monolith carrier, method for producing the same, and catalytic converter system | |
| JP5669357B2 (en) | Method for producing metal catalyst support | |
| JPH08108076A (en) | Catalytic converter | |
| JP4275398B2 (en) | Metal catalyst carrier | |
| JP4618975B2 (en) | Outer tube with thermal insulation groove and catalytic converter | |
| JP3308075B2 (en) | Manufacturing method of heat-resistant structure | |
| JP3267502B2 (en) | Reducing agent vaporizer | |
| JPH09220480A (en) | Composite carrier for automobile exhaust gas purification | |
| EP1224974A1 (en) | Automobile exhaust gas cleaning catalyst metal carrier and production method therefor | |
| JP3288558B2 (en) | Metal carrier for exhaust gas purification catalyst with excellent warming performance and heat retention performance | |
| JPH05154389A (en) | Catalyst structure for purifying exhaust gas | |
| TWI243229B (en) | Improvement of honeycomb heat resistant structure and its manufacturing method | |
| JPH0791240A (en) | Metal catalytic converter | |
| JPH0724330A (en) | Metal honeycomb carrier utilizing thermal compression and production thereof | |
| JP2581107Y2 (en) | Exhaust gas catalyst device | |
| JP2581601Y2 (en) | Metallic carrier for automotive exhaust gas catalysts with excellent heat stress and heat fatigue properties | |
| JP2005081306A (en) | Catalyst carrier made of metal | |
| JP2001003738A (en) | Catalyst device | |
| JP3808993B2 (en) | Metal carrier by diffusion bonding | |
| JPH1099697A (en) | Metal carrier for catalytic device |