[go: up one dir, main page]

JPH0726867B2 - Multi-element photo detector - Google Patents

Multi-element photo detector

Info

Publication number
JPH0726867B2
JPH0726867B2 JP61171637A JP17163786A JPH0726867B2 JP H0726867 B2 JPH0726867 B2 JP H0726867B2 JP 61171637 A JP61171637 A JP 61171637A JP 17163786 A JP17163786 A JP 17163786A JP H0726867 B2 JPH0726867 B2 JP H0726867B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
substrate
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61171637A
Other languages
Japanese (ja)
Other versions
JPS6329216A (en
Inventor
孝之 早川
稔 ▲吉▼田
Original Assignee
株式会社日立メデイコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メデイコ filed Critical 株式会社日立メデイコ
Priority to JP61171637A priority Critical patent/JPH0726867B2/en
Publication of JPS6329216A publication Critical patent/JPS6329216A/en
Publication of JPH0726867B2 publication Critical patent/JPH0726867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、多素子光検出器に係り、特に受光面積が広
く、かつ多素子に分割された半導体光電変換素子アレー
でなる好適な検出器構造に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-element photodetector, and particularly to a suitable detector structure having a wide light receiving area and comprising a semiconductor photoelectric conversion element array divided into multi-elements. Regarding

〔発明の背景〕[Background of the Invention]

半導体光電変換素子は、感光部の半導体チツプがセラミ
ツク製または樹脂製のステムまたは基板上に設置され、
測定装置に固定されかつ電気的な接続を行なつて光検出
器として使用される。またその光電変換素子は、その光
入射面上に放射線を光変換するシンチレータを設置して
放射線の一次元または2次元(面)の放射線強度分布を
測定するための放射線検出器としても適用されている。
放射線検出器としての応用面は、X線CT装置用の多素子
X線検出器がある。このCT装置においては円周上に2000
素子以上の各素子で形成される検出器を配列したり、ま
たは円弧状に500素子を並べた検出器でX線強度分布を
精度よく計測し、そのデータを用いて計算機による画像
処理によつて、被検体の断面画像を作るものである。計
測データの精度は画像の優劣を決める主な要因であり、
検出器素子間の感度ばらつきの低減や信号雑音比(S/
N)の向上が要求される。従来のX線検出器は、第2図
に示すごとく、基板2の面上に半導体光電変換素子1が
エポキシ系接着剤6で固定され、出力信号はコネクター
5から取り出す構造である。なお、図において変換素子
1の上面に密着して設置されるシンチレータは、本願発
明に直接関係しないので図からは省略されている。半導
体光電変換素子1はフオトダイオードまたはフオトトラ
ンジスタであり、Ge,Si,InP,GaAs,CdTe,AlSb,CdSなどの
半導体が用いられる。本発明に関係する用途、例えばX
線検出器に使用する素子としては、SiのPIN構造が適し
ている。このX線検出器の場合、多素子構造とする必要
があるため第5図に示すごとく、基板2の面にシリコン
フオトダイオード1が固定されている。シリコンフオト
ダイオードは1素子の幅約1mm、長さ約30mmのものが複
数個平行に配列され、これらで1ブロツクの単位が形成
される。必要に応じこのブロツクを複数個配列して、よ
り多素子の検出器が形成される。第6図は他の検出器例
で、幅約1mm、長さ2〜3mmの光電変換素子が基板2の上
に複数個配列し、それぞれの素子から独立に信号を取り
出して一次元の強度分布を計測する。前記第5図に示す
構造の20素子のものでは、半導体光電変換素子の大きさ
は、幅20mm(幅1mm×20素子)×長さ30mmになる。ま
た、第6図の構造のものは変換素子が20〜30素子のもの
があり、大きさとしては長さ2〜3mm×幅30mm(幅1mm×
30素子)と、いずれも大きな面積となる。このような大
きな面積を占める半導体変換素子を基板上に固定する
と、1mm×1mm程度の半導体変換素子では発生しなかつた
問題が生ずる。すなわち、その第1は熱膨張係数の差に
より、半導体光電変換素子に応力がかかること、第2は
基板を取付孔3を用いて検出器構造物などに取付ける際
に、基板が変形し半導体光電変換素子に応力がかかると
いうことである。
In the semiconductor photoelectric conversion device, the semiconductor chip of the photosensitive portion is installed on a ceramic or resin stem or substrate,
It is used as a photodetector by being fixed to the measuring device and making an electrical connection. The photoelectric conversion element is also applied as a radiation detector for measuring a one-dimensional or two-dimensional (plane) radiation intensity distribution by installing a scintillator for converting radiation on the light incident surface. There is.
The application as a radiation detector is a multi-element X-ray detector for an X-ray CT apparatus. With this CT device, 2000 on the circumference
An array of detectors made up of each element or more, or a detector in which 500 elements are arranged in an arc shape is used to accurately measure the X-ray intensity distribution, and the data is used for image processing by a computer. , To make a cross-sectional image of the subject. The accuracy of measurement data is the main factor that determines the superiority of the image,
Reduction of sensitivity variation between detector elements and signal / noise ratio (S /
N) improvement is required. As shown in FIG. 2, the conventional X-ray detector has a structure in which a semiconductor photoelectric conversion element 1 is fixed on a surface of a substrate 2 with an epoxy adhesive 6 and an output signal is taken out from a connector 5. It should be noted that the scintillator installed in close contact with the upper surface of the conversion element 1 in the figure is omitted from the figure because it is not directly related to the present invention. The semiconductor photoelectric conversion element 1 is a photodiode or a phototransistor, and semiconductors such as Ge, Si, InP, GaAs, CdTe, AlSb, and CdS are used. Applications related to the invention, eg X
A PIN structure of Si is suitable for the element used in the line detector. In the case of this X-ray detector, since it is necessary to have a multi-element structure, the silicon photodiode 1 is fixed to the surface of the substrate 2 as shown in FIG. A plurality of silicon photodiodes each having a width of about 1 mm and a length of about 30 mm are arranged in parallel to form a block unit. If necessary, a plurality of these blocks may be arranged to form a detector having more elements. FIG. 6 shows another example of the detector, in which a plurality of photoelectric conversion elements each having a width of about 1 mm and a length of 2 to 3 mm are arranged on the substrate 2, and signals are independently extracted from each element to obtain a one-dimensional intensity distribution. To measure. In the case of 20 elements having the structure shown in FIG. 5, the size of the semiconductor photoelectric conversion element is width 20 mm (width 1 mm × 20 elements) × length 30 mm . The structure shown in FIG. 6 has 20 to 30 conversion elements, and the size is 2-3 mm in length × 30 mm in width (1 mm in width × 1 mm in width).
30 elements) and all have a large area. When a semiconductor conversion element occupying such a large area is fixed on a substrate, a problem that does not occur in a semiconductor conversion element of about 1 mm x 1 mm occurs. That is, the first is that the semiconductor photoelectric conversion element is stressed due to the difference in the coefficient of thermal expansion, and the second is that when the substrate is attached to the detector structure or the like using the attachment holes 3, the substrate is deformed and the semiconductor photoelectric conversion element is deformed. This means that stress is applied to the conversion element.

第1の例(第5図)を実際に算出してみると、シリコン
素子の熱膨張係数は2.3×10-6、ガラス線繊強化エポキ
シ樹脂の熱膨張係数は20×10-6であり、30mm長さの半導
体光電変換素子において10℃の温度変化があると6×10
-3のひずみが生じ、このために応力がかかる。
Actually calculating the first example (Fig. 5), the coefficient of thermal expansion of the silicon element is 2.3 × 10 -6 , the coefficient of thermal expansion of the glass fiber reinforced epoxy resin is 20 × 10 -6 , If there is a temperature change of 10 ° C in a semiconductor photoelectric conversion device with a length of 30 mm, 6 × 10
A strain of -3 occurs, which causes stress.

また第2の例(第6図)の場合は、実際に取付の作業を
行なつてひずみ量を測定すると、3×10-3のひずみが生
じ、応力がかかる。
In the case of the second example (FIG. 6), when the amount of strain is measured by actually performing the mounting work, a strain of 3 × 10 −3 is generated and stress is applied.

半導体光電変換素子に応力がかかると、ピエゾ抵抗効果
によつて抵抗値が変る、このために光電変換素子(シリ
コンフオトダイオードなど)においては、暗電流が変化
することになる。従つて精度の高い計測の場合には、常
に暗電流を補償する対策が必要となる。特に機械的なひ
ずみによる変化は、振動雑音となつて計測誤差を発生
し、著るしく精度を劣化させる原因となる。
When stress is applied to the semiconductor photoelectric conversion element, the resistance value changes due to the piezoresistance effect. Therefore, in the photoelectric conversion element (silicon photodiode, etc.), the dark current changes. Therefore, in the case of highly accurate measurement, it is necessary to always take measures to compensate the dark current. Especially, a change due to mechanical strain causes a measurement error in the form of vibration noise, which causes a significant deterioration in accuracy.

〔発明の目的〕[Object of the Invention]

本発明の目的は半導体光電変換素子に応力が加わわつた
時に生じるピエゾ効果による電気特性の変化を防ぐた
め、熱的または機械的な変動の要因が起つた状態におい
ても、半導体光電変換素子に応力が加わらない構造とす
る多素子光検出器を提供することにある。
The object of the present invention is to prevent the change in the electrical characteristics due to the piezo effect that occurs when stress is applied to the semiconductor photoelectric conversion element, so that stress is applied to the semiconductor photoelectric conversion element even in the state where a factor of thermal or mechanical fluctuation occurs. It is an object of the present invention to provide a multi-element photodetector having a structure in which is not added.

〔発明の概要〕 半導体光電変換素子は、光検出器の構成上電気信号の取
り出しおよび回路への接続のために、セラミツク製や樹
脂製の電気的な絶縁物の基板上に固定する構造となる。
特に多素子の場合はコネクターの取付も必要であり、機
械的に変形しにくい強度をもつ基板が用いられる。この
場合に半導体光電変換素子とそれを固定する基板とを密
着して固定せずに、その間に可撓性の材料を介して固定
する。それにより、素子への熱膨張の差および基板の変
形の影響を遮断し、安定に光検出器の出力を得る。
[Summary of the Invention] The semiconductor photoelectric conversion element has a structure in which it is fixed on a substrate made of a ceramic or resin electrical insulator in order to extract an electric signal and connect it to a circuit due to the configuration of the photodetector. .
Particularly in the case of multiple elements, it is necessary to attach a connector, and a substrate having a strength that does not easily deform mechanically is used. In this case, the semiconductor photoelectric conversion element and the substrate for fixing the semiconductor photoelectric conversion element are not fixed in close contact with each other but fixed with a flexible material interposed therebetween. As a result, the influence of the difference in thermal expansion on the element and the influence of the deformation of the substrate are blocked, and the output of the photodetector is stably obtained.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を第1図により説明する。複数
素子に分割されたシリコン光電変換素子板1がプリント
基板2の一面に固定され、各素子の出力はプリント基板
2の配線に接続されて、ソケツト5より信号を取り出す
一次元の光強度分布の測定を目的とした多素子光検出器
の実施例である。
An embodiment of the present invention will be described below with reference to FIG. The silicon photoelectric conversion element plate 1 divided into a plurality of elements is fixed to one surface of the printed board 2, and the output of each element is connected to the wiring of the printed board 2 to obtain a one-dimensional light intensity distribution for extracting a signal from the socket 5. It is an example of a multi-element photodetector for the purpose of measurement.

プリント基板2は、各種のセラミツク板またはガラス繊
維強化の樹脂、例えばエポキシ,ポリイミド,ベークラ
イトなどの材質が形成されている。光電変換素子1の各
々の素子の信号出力は、プリント基板2のパツド部にボ
ンデングにより結線して接続され、多層基板の配線パタ
ンを通してソケツト5に接続されている。基板の厚さ
は、強度を保つためにセラミツク板では1〜2mm、樹脂
板では3〜4mmが必要である。
The printed circuit board 2 is made of various ceramic plates or glass fiber reinforced resin, such as epoxy, polyimide, or bakelite. The signal output of each element of the photoelectric conversion element 1 is connected to the pad portion of the printed board 2 by bonding and is connected to the socket 5 through the wiring pattern of the multilayer board. The thickness of the substrate needs to be 1 to 2 mm for the ceramic plate and 3 to 4 mm for the resin plate in order to maintain the strength.

光電変換素子1はSiのPIN型構造のフオトダイオードを
用いる。受光面積が広くなる場合には、接合容量を低下
させるためにPIN型が適している。一素子の寸法は、幅
が1mm、長さ30mmであり、これら素子が16乃至20素子が
一枚のSiチツプ内で形成され、各々の素子は隣接素子か
らの影響が無いように、電気的および光学的に分離され
ている。隣接素子からの影響、すなわちクロストークの
量は、1%程度におさえられている。Siチツプの幅は20
素子では20mmであり、これらを基板上に正確に揃えて固
定する。なお、基板の幅はSiチツプの幅と同一、または
0.05mm程度Siチツプ幅より大きくする。これは複数枚の
基板を並べて、より大きな受光面の検出器を構成する場
合に、基板間のすき間を無くすため、およびSiチツプの
端部が接触して破損することを防止するためである。シ
リコンチツプ1はプリント基板2に接合部材4で固定さ
れる。この際、通常のエポキシ系接着剤を用いて強固に
接合してしまうと、プリント基板部に振動や応力が加わ
つた場合、その応力がシリコンチツプ検出部に伝達され
雑音信号となつてしまう。
The photoelectric conversion element 1 uses a Si PIN type photodiode. When the light receiving area becomes large, the PIN type is suitable for reducing the junction capacitance. The dimensions of one element are 1 mm in width and 30 mm in length, and these elements are formed by 16 to 20 elements in one Si chip, and each element is electrically connected so that it is not affected by adjacent elements. And optically separated. The influence from adjacent elements, that is, the amount of crosstalk is suppressed to about 1%. The width of the Si chip is 20
The size of the device is 20 mm, and these are precisely aligned and fixed on the substrate. The width of the substrate is the same as the width of the Si chip, or
About 0.05 mm larger than the Si chip width. This is because when a plurality of substrates are arranged to form a detector having a larger light receiving surface, a gap between the substrates is eliminated, and an end portion of the Si chip is prevented from being contacted and damaged. The silicon chip 1 is fixed to the printed circuit board 2 with a joining member 4. At this time, if the ordinary epoxy adhesive is used for strong bonding, when vibration or stress is applied to the printed board portion, the stress is transmitted to the silicon chip detection portion and becomes a noise signal.

本発明はこの問題を防ぐために、接合部材4は接着後の
状態において可撓性を有するものを使用し、変形応力や
振動が接合部材によつて吸収されるように成されてい
る。シリコンチツプとプリント基板を直接接着する構造
とする場合は、接着剤としてゴム系のものを用いる。代
表的なものとしては、プチルゴム,ニトリルゴム,天然
ゴムなどのゴムラテツクス接着が好ましい。また接着剤
の厚さとしては20〜50μmあればよく、これより薄いと
吸収効果は小さくなる。さらにシリコンチツプとプリン
ト基板の間に50μmの厚さのゴム系のシートを挿入し
て、ゴム系の接着剤によつて固定すればなお効果は大き
い。実施例の効果を確認するために、第3図,第4図に
示すごとく、プリント基板面とシリコンチツプ面にひず
み計10,11を貼布し、プリント基板2にその長手方向に
曲げ変形を与えてひずみ量を計つた。第3図は、プリン
ト基板2にシリコンチツプ1をエポキシ系接着剤6で直
接固定した場合で、プリント基板面のひずみ計10に、10
-4の圧縮方向ひずみを加えた場合、シリコンチツプ上の
ひずみ計11には同じ大きさの引張り方向のひずみが発生
し、シリコンチツプは完全に追従して変形している。
In order to prevent this problem, the present invention uses the joining member 4 having flexibility in a state after being bonded, and the deformation stress and vibration are absorbed by the joining member. When the silicon chip and the printed circuit board are directly bonded to each other, a rubber-based adhesive is used. As typical examples, rubber latex adhesive such as butyl rubber, nitrile rubber and natural rubber is preferable. Further, the thickness of the adhesive may be 20 to 50 μm, and if it is thinner than this, the absorbing effect becomes small. Furthermore, if a rubber-based sheet having a thickness of 50 μm is inserted between the silicon chip and the printed circuit board and fixed with a rubber-based adhesive, the effect is still greater. In order to confirm the effect of the embodiment, as shown in FIGS. 3 and 4, strain gauges 10 and 11 are pasted on the printed circuit board surface and the silicon chip surface, and the printed circuit board 2 is bent and deformed in its longitudinal direction. The strain was applied and the amount of strain was measured. FIG. 3 shows a case where the silicon chip 1 is directly fixed to the printed circuit board 2 with the epoxy adhesive 6, and the strain gauge 10 on the printed circuit board surface is
When a strain of -4 in the compressive direction is applied, strain of the same magnitude in the tensile direction is generated in the strain gauge 11 on the silicon chip, and the silicon chip is completely following and deformed.

第4図はプリント基板2とシリコンチツプ1との間に50
μm厚のゴムシート4を挿入して固定した場合で同様に
プリント基板2の長手方向に曲げ変形を加えると、シリ
コンチツプ上のひずみ計11はプリント基板2のひずみ計
10のひずみ量の約1/2であつた。すなわちゴム系シート
が変形を吸収し、シリコンチツプの変形を低減させてい
る。したがつてシリコンチツプへの振動の伝導も減少さ
せている。
Fig. 4 shows 50 between the printed circuit board 2 and the silicon chip 1.
When a bending deformation is applied in the longitudinal direction of the printed circuit board 2 in the same manner when the rubber sheet 4 having a thickness of μm is inserted and fixed, the strain gauge 11 on the silicon chip is the strain gauge of the printed circuit board 2.
It was about 1/2 of the strain amount of 10. That is, the rubber sheet absorbs the deformation and reduces the deformation of the silicon chip. Therefore, the conduction of vibration to the silicon chip is also reduced.

〔発明の効果〕〔The invention's effect〕

本発明によれば、シリコン素子と基板との熱膨張係数の
差によつて生ずるひずみのために、シリコン素子にかか
る応力を低減させることができる。すなわち、シリコン
素子とガラス繊維強化エポキシ樹脂基板の組合せの場合
において、ピエゾ抵抗効果によつて起る抵抗の変化量を
1/2以下とすることが可能である。特に基板を複数個整
列させて長い距離の一次元強度分布を計測する場合にお
いては、個々の基板の間の特性のばらつきが低減され、
感度を一定化する補正処理の操作や計算処理が簡単とな
り精度のよい計測が可能である。
According to the present invention, the stress applied to the silicon element can be reduced due to the strain caused by the difference in the thermal expansion coefficient between the silicon element and the substrate. That is, in the case of a combination of a silicon element and a glass fiber reinforced epoxy resin substrate, the amount of change in resistance caused by the piezoresistive effect is
It can be less than 1/2. Especially when aligning a plurality of substrates and measuring a one-dimensional intensity distribution over a long distance, variations in characteristics between individual substrates are reduced,
The operation of the correction process for making the sensitivity constant and the calculation process are simplified, and accurate measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の多素子光検出器の外観図、第
2図は従来の光検出器の側面図、第3図,第4図は本発
明の効果を説明するための光検出器の側面図、第5図,
第6図は多素子光検出器例の平面図である。 1…光電変換素子、2…プリント基板、3…取付孔、4
…接合部材、5…ソケツト、6…接着剤。
FIG. 1 is an external view of a multi-element photodetector of an embodiment of the present invention, FIG. 2 is a side view of a conventional photodetector, and FIGS. 3 and 4 are light for explaining the effect of the present invention. Side view of the detector, Fig. 5,
FIG. 6 is a plan view of an example of a multi-element photodetector. 1 ... Photoelectric conversion element, 2 ... Printed circuit board, 3 ... Mounting hole, 4
... Joining member, 5 ... Socket, 6 ... Adhesive.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体光電変換素子とこれを固定するため
のプリント基板よりなる多素子光検出器において、前記
半導体光電変換素子とプリント基板とを可撓性の接合部
材で固定したことを特徴とする多素子光検出器。
1. A multi-element photodetector comprising a semiconductor photoelectric conversion element and a printed circuit board for fixing the semiconductor photoelectric conversion element, wherein the semiconductor photoelectric conversion element and the printed circuit board are fixed by a flexible joining member. Multi-element photodetector.
JP61171637A 1986-07-23 1986-07-23 Multi-element photo detector Expired - Fee Related JPH0726867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171637A JPH0726867B2 (en) 1986-07-23 1986-07-23 Multi-element photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171637A JPH0726867B2 (en) 1986-07-23 1986-07-23 Multi-element photo detector

Publications (2)

Publication Number Publication Date
JPS6329216A JPS6329216A (en) 1988-02-06
JPH0726867B2 true JPH0726867B2 (en) 1995-03-29

Family

ID=15926888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171637A Expired - Fee Related JPH0726867B2 (en) 1986-07-23 1986-07-23 Multi-element photo detector

Country Status (1)

Country Link
JP (1) JPH0726867B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191761A (en) * 2006-01-19 2007-08-02 Idemitsu Kosan Co Ltd Laminated structure, electrode for electric circuit using the same, and manufacturing method thereof
RU2571434C1 (en) * 2014-10-03 2015-12-20 Российская Федерация, от имени которой выступает - Министерство промышленности и торговли Российской Федерации Photosensitive cell array

Also Published As

Publication number Publication date
JPS6329216A (en) 1988-02-06

Similar Documents

Publication Publication Date Title
US8438931B2 (en) Semiconductor strain sensor
KR101118797B1 (en) Infrared sensor and method of producing the same
US6479827B1 (en) Image sensing apparatus
US3968466A (en) Pressure transducer
US20070240519A1 (en) Mechanical quantity measuring apparatus
JP4617943B2 (en) Mechanical quantity measuring device
CN110352337B (en) Strain body and force sensor provided with same
US20090007686A1 (en) Apparatus for Measuring a Mechanical Quantity
CN104135933A (en) Compact sensor module
US20150276517A1 (en) Mechanical Quantity Measuring Device
JP2012002646A (en) Piezoresistance pressure sensor
US5744379A (en) Semiconductor device composed of plural semiconductor chips and coupling means which couple the semiconductor chips together
EP0308465A4 (en) Detector buffer board
CN119984615A (en) Multi-dimensional force sensor and processing method
JPH0726867B2 (en) Multi-element photo detector
US5684298A (en) Photonic-based sensing apparatus using displacement tracking of an optical beam in a semiconductor
US7989774B2 (en) Radiation detector
US20130199303A1 (en) Bonding Stress Testing Arrangement and Method of Determining Stress
JPH06105791B2 (en) Photoelectric conversion device
JPH03249530A (en) Distribution type tactile sensor
JP2574559B2 (en) Image sensor manufacturing method
JP4421589B2 (en) Photodetector
US6037642A (en) Radiation sensitive transducer wherein deformation due to temperature fluctuations is avoided
JPH03130693A (en) X-ray image sensor
JP6654116B2 (en) Linear image sensor and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees