JPH07277760A - Transparent bulk silica material containing organic group and its production - Google Patents
Transparent bulk silica material containing organic group and its productionInfo
- Publication number
- JPH07277760A JPH07277760A JP8749794A JP8749794A JPH07277760A JP H07277760 A JPH07277760 A JP H07277760A JP 8749794 A JP8749794 A JP 8749794A JP 8749794 A JP8749794 A JP 8749794A JP H07277760 A JPH07277760 A JP H07277760A
- Authority
- JP
- Japan
- Prior art keywords
- organotrialkoxysilane
- water
- organic group
- molar ratio
- distilled water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 125000000962 organic group Chemical group 0.000 title claims abstract description 19
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000463 material Substances 0.000 title abstract description 7
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- -1 polysiloxane Polymers 0.000 claims abstract description 5
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 150000001721 carbon Chemical group 0.000 claims abstract description 4
- 230000001476 alcoholic effect Effects 0.000 claims abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 61
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- 239000013590 bulk material Substances 0.000 claims description 5
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 1
- 230000003197 catalytic effect Effects 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 abstract description 17
- 230000007062 hydrolysis Effects 0.000 abstract description 16
- 238000006068 polycondensation reaction Methods 0.000 abstract description 16
- 239000000126 substance Substances 0.000 abstract description 8
- 230000003287 optical effect Effects 0.000 abstract description 4
- 239000012153 distilled water Substances 0.000 description 39
- 239000000499 gel Substances 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 16
- 239000013078 crystal Substances 0.000 description 14
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 14
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical group O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 13
- 229910017604 nitric acid Inorganic materials 0.000 description 13
- 238000002454 metastable transfer emission spectrometry Methods 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 238000000634 powder X-ray diffraction Methods 0.000 description 9
- 238000001556 precipitation Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000001879 gelation Methods 0.000 description 6
- 238000005191 phase separation Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 5
- 238000003980 solgel method Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000003377 acid catalyst Substances 0.000 description 4
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 2
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 2
- 235000002492 Rungia klossii Nutrition 0.000 description 1
- 244000117054 Rungia klossii Species 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- RJMRIDVWCWSWFR-UHFFFAOYSA-N methyl(tripropoxy)silane Chemical compound CCCO[Si](C)(OCCC)OCCC RJMRIDVWCWSWFR-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/12—Other methods of shaping glass by liquid-phase reaction processes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】産業上の利用分野 本発明は有機基を含有した透明シリカバルク体及びその
製造方法に関し、とりわけ、光機能を有する有機物のホ
スト材料として有望な有機基含有透明シリカバルク体及
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic group-containing transparent silica bulk body and a method for producing the same, and more particularly, an organic group-containing transparent silica bulk body which is promising as a host material for an organic substance having an optical function and a method for producing the same. Regarding
【0002】従来の技術及び課題 ゾル−ゲル法によるガラス、セラミック等の合成におい
ては、通常、多くのアルコールなどの溶媒を用いるた
め、乾燥の際の体積の減少が大きく、特にバルク体作製
時にはクラックが入るという課題を有している。この課
題を解決する方法が種々提案されているが、得られるゲ
ル体は本質的に多孔質であり、根本的な解決には至って
いない。2. Description of the Related Art In the synthesis of glass, ceramics and the like by the sol-gel method, a large amount of solvent such as alcohol is usually used, so that the volume is greatly reduced during drying, and cracks are generated especially when a bulk body is manufactured. Has the problem of entering. Various methods for solving this problem have been proposed, but the obtained gel body is essentially porous, and a fundamental solution has not been reached yet.
【0003】また、従来から光機能を有する有機物質を
ドープしたシリカゲル体等の合成がゾル−ゲル法によっ
て行われている「Tani et al,J.App
l.Phys.58(1985)3559;Avnir
et al,J.Phy.Chem.88(198
4)5956.等」がマトリックスの骨格構造が三次元
的に発達しているものが多く、分子量の大きい有機物質
をも高濃度でドープするには骨格中の隙間の大きさは十
分とは言えなかった。Further, "Tani et al, J. App," which has been conventionally used to synthesize a silica gel body doped with an organic substance having an optical function, by a sol-gel method.
l. Phys. 58 (1985) 3559; Avnir.
et al, J .; Phy. Chem. 88 (198
4) 5956. In many cases, the skeleton structure of the matrix is three-dimensionally developed, and the size of the gap in the skeleton was not sufficient to dope high-molecular-weight organic substances at high concentrations.
【0004】一方、ゾル−ゲル法においては、急速な加
水分解反応や溶解度等に起因したゲル化前の沈殿生成や
分相現象が起こりうることが知られている。分相現象
は、メチル基含有シリカコーティング膜の作製の研究に
おいても報告されている。沈殿生成や分相はゲル体の均
一性に大きく影響し、光学材料の特性を損ねるので、マ
トリックスの作製時これらの現象をいかに抑えるかが課
題となっていた。On the other hand, in the sol-gel method, it is known that a rapid hydrolysis reaction, a precipitation and the like before gelation or a phase separation phenomenon due to solubility can occur. The phase separation phenomenon has also been reported in a study on the production of a silica coating film containing a methyl group. Precipitation and phase separation greatly affect the homogeneity of the gel body and impair the properties of the optical material. Therefore, how to suppress these phenomena during the preparation of the matrix has been an issue.
【0005】従って、本発明はオルガノトリアルコキシ
シランを原料とし、ゾル−ゲル法により、ゲルの乾燥時
の体積減少を極めて小さく、すなわちクラックの発生が
なく、分子量の大きい有機物質をも高濃度でドープする
のに十分な骨格中の隙間の大きさを持ち、かつゲル化前
の沈殿生成や分相のない均一な有機基含有透明シリカバ
ルク体を作製することを目的とする。Therefore, the present invention uses organotrialkoxysilane as a raw material, and by the sol-gel method, the volume reduction of the gel during drying is extremely small, that is, cracks are not generated and an organic substance having a large molecular weight is also highly concentrated. It is an object of the present invention to prepare a transparent bulk silica material having a uniform organic group, which has a sufficient size of a skeleton in the skeleton to be doped, and is free from precipitation before gelation and phase separation.
【0006】本発明の概要 本発明は、式:RSiO3/2 で示されるネットワーク構
成単位が三次元網目構造を形成するように反復結合して
いるポリシロキサンよりなる有機基含有透明シリカバル
ク体に関する。式中、Rは炭素原子によりケイ素原子へ
結合している有機基、典型的にはメチル、エチル、n−
プロピル、イソプロピル、フェニル、ビニル等の炭化水
素基である。SUMMARY OF THE INVENTION The present invention relates to an organic-group-containing transparent silica bulk body composed of polysiloxane in which network constituent units represented by the formula: RSiO 3/2 are repeatedly bonded so as to form a three-dimensional network structure. . In the formula, R is an organic group bonded to a silicon atom by a carbon atom, typically methyl, ethyl, n-
Hydrocarbon groups such as propyl, isopropyl, phenyl and vinyl.
【0007】この有機基含有透明シリカバルク体は、
式:RSi(OR’)3 (R’はメチル、エチルなどの
低級アルキル基)のオルガノトリアルコキシシランを出
発原料とし、ゾル−ゲル法によって製造することができ
る。The organic group-containing transparent silica bulk material is
The organotrialkoxysilane of the formula: RSi (OR ′) 3 (R ′ is a lower alkyl group such as methyl or ethyl) can be used as a starting material and can be produced by the sol-gel method.
【0008】本発明によれば、前記オルガノトリアルコ
キシシランの加水分解および脱水、脱アルコール縮合に
よるシロキサン結合形成の重縮合反応にアルコール系溶
媒を使用しない。そして、第1の方法では、前記オルガ
ノトリアルコキシシランに対し、理論量ないし過剰(モ
ル比で1.5≦H2 O/Si≦3.0)の水を一時に添
加して反応せしめた後、開放系において反応物を熟成し
てゲル化させる。第2の方法では初回は理論量未満(モ
ル比で1.0≦H2 O/Si<1.5)の水と反応さ
せ、最終回までに初回から積算して理論量ないし過剰
(モル比で1.5≦H2 O/Si≦2.0)となるよう
な追加量の水と反応させ、この間に水の積算量が1.5
≦H2 O/Siとなる以前に任意の段階で、副生したア
ルコールを合計で少なくとも50%除去した後、開放系
において反応物を熟成してゲル化させる。According to the present invention, an alcohol solvent is not used in the polycondensation reaction for forming a siloxane bond by hydrolysis, dehydration and dealcoholization of the organotrialkoxysilane. Then, in the first method, after a theoretical amount or excess (1.5 ≦ H 2 O / Si ≦ 3.0 in a molar ratio) of water is added to the organotrialkoxysilane at one time and reacted. The reaction product is aged and gelled in an open system. In the second method, the initial reaction is performed with water that is less than the theoretical amount (1.0 ≦ H 2 O / Si <1.5 in molar ratio), and the theoretical amount or excess (molar ratio) is added from the first time until the final time. At a rate of 1.5 ≦ H 2 O / Si ≦ 2.0), and the cumulative amount of water is 1.5
At any stage prior to <H 2 O / Si, at least 50% total by-product alcohol is removed, after which the reaction is aged and gelled in an open system.
【0009】好ましい実施態様 良く知られているように、オルガノジアルコキシシラン
を加水分解すると対応する2官能のシラノールが生成
し、脱水縮合反応により鎖状または環状のポリシロキサ
ンが生成する。オルガノトリアルコキシシランでは、3
官能のシラノールが生成するので、その脱水縮合反応に
より生成したポリシロキサンは、ネットワーク構成単位
がRSiO3/2 (Rは前記に同じ。)である三次元網目
構造を取る。 Preferred Embodiment As is well known, when an organodialkoxysilane is hydrolyzed, a corresponding bifunctional silanol is produced, and a chain condensation or a cyclic polysiloxane is produced by a dehydration condensation reaction. 3 for organotrialkoxysilane
Since the functional silanol is produced, the polysiloxane produced by the dehydration condensation reaction has a three-dimensional network structure in which the network constitutional unit is RSiO 3/2 (R is the same as above).
【0010】このように、ネットワークの構成単位をR
SiO3/2 とすることによりマトリックスのネットワー
クの骨格中の隙間の大きさが十分大きくなり、分子量の
大きい有機物質の高濃度ドープが可能となる。含有され
る有機基Rは、典型的にはメチル基、エチル基、n−プ
ロピル基、イソプロピル基、フェニル基、ビニル基のよ
うな炭化水素基であり、もちろん2種以上の有機基が含
まれていても良い。炭素数がより大きな有機基を導入し
ようとしてもゲル化時間が長くなりすぎる。骨格中の隙
間の大きさを大きくするには、メチル基が最も好ましい
が、ドープする有機物質の種類、量に応じて適宜選択す
ればよい。In this way, the network unit is R
By using SiO 3/2 , the size of the gap in the skeleton of the network of the matrix becomes sufficiently large, and high-concentration doping of an organic substance having a large molecular weight becomes possible. The contained organic group R is typically a hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a phenyl group and a vinyl group, and, of course, contains two or more kinds of organic groups. It may be. Even if an organic group having a higher carbon number is introduced, the gelation time becomes too long. In order to increase the size of the gap in the skeleton, the methyl group is most preferable, but it may be appropriately selected depending on the type and amount of the organic substance to be doped.
【0011】前記有機基含有透明シリカバルク体の製造
方法において、有機基Rとしてメチル基が含まれない場
合には、出発原料にアルコール系溶媒を添加せず、RS
i(OR’)3 (R,R’は前記に同じ。)に1.5≦
H2 O/Si≦3.0(モル比)となるように水を添加
し、加水分解・重縮合反応を行う。この際、アルコール
が多量に含まれていると、(RSiO3/2 )n の結晶が
析出してしまう。水の添加量がH2 O/Si<1.5
(モル比)では、未反応のアルコキシ基が残り、マトリ
ックスの強度が劣化する。逆にH2 O/Si>3.0
(モル比)では分相が起こり、光学的に均質なシリカバ
ルク体が得られない。反応後の熟成は反応により生成し
たアルコールが揮発するように開放系で行う。上記の方
法で反応を進行させることにより結晶化及び/又は沈殿
生成を抑制でき、所望のシリカバルク体を得ることがで
きる。In the method for producing a transparent silica bulk body containing an organic group, when a methyl group is not contained as the organic group R, an alcohol solvent is not added to the starting material and RS is used.
i (OR ′) 3 (R and R ′ are the same as above) 1.5 ≦
Water is added so that H 2 O / Si ≦ 3.0 (molar ratio), and a hydrolysis / polycondensation reaction is performed. At this time, if the alcohol is contained in a large amount, crystals of (RSiO 3/2 ) n will be precipitated. The amount of water added is H 2 O / Si <1.5
At (molar ratio), unreacted alkoxy groups remain and the strength of the matrix deteriorates. Conversely, H 2 O / Si> 3.0
At (molar ratio), phase separation occurs and an optically homogeneous silica bulk body cannot be obtained. The aging after the reaction is performed in an open system so that the alcohol generated by the reaction is volatilized. Crystallization and / or precipitation can be suppressed by advancing the reaction by the above method, and a desired silica bulk material can be obtained.
【0012】また、前記有機基含有透明シリカバルク体
の製造方法において有機基Rとしてメチルが含まれる場
合には出発原料にアルコール系溶媒を添加せず、更に理
論量未満の水との部分加水分解・重縮合反応で生成する
アルコールの少なくとも50%を系外へ除去することが
必要である。ここで、生成したアルコールの系外への除
去はアルコールの沸点以下の温度で行う。2回目以降の
水の添加の際に均一溶液を得るためには、少量のアルコ
ールが残っていることが好ましいが、多量に含まれてい
ると反応の進行に従って(RSiO3/2 )n の結晶が析
出する。この方法においては、水の添加は2段階以上に
分けて行う。第1段階の水の添加量は1.0≦H2 O/
Si<1.5(モル比)とする。H2 O/Si<1.0
では生成したアルコールを系外へ除去する際、未反応の
モノマーも揮散してしまう。逆にH2 O/Si≧1.5
では結晶化が起こる。最終的に、水の添加量は第1段階
からの積算で1.5≦H2 O/Si≦2.0(モル比)
となるように行う。全体の水の量が、H2 O/Si<
1.5(モル比)では未反応のアルコキシ基が残り、マ
トリックスの強度が劣化する。逆にH2 O/Si>2.
0では分相が起こり、光学的に均質なシリカバルク体が
得られない。段階的な水の添加に際しては、水の積算量
が1.5≦H2 O/Siとなる以前に、それまで副生し
たアルコールを合計で少なくとも50%、任意段階で除
去することが必要である。反応後の熟成は反応により生
成したアルコールが揮発するように開放系で行う。上記
の方法で反応を進行させることより、結晶化および/又
は沈殿生成を抑制でき、所望のシリカバルク体を得るこ
とができる。When methyl is contained as the organic group R in the method for producing a transparent silica bulk material containing an organic group, an alcohol solvent is not added to the starting material, and partial hydrolysis with water less than the theoretical amount is carried out. -It is necessary to remove at least 50% of the alcohol produced by the polycondensation reaction from the system. Here, the generated alcohol is removed from the system at a temperature not higher than the boiling point of the alcohol. It is preferable that a small amount of alcohol remains in order to obtain a uniform solution in the second and subsequent additions of water, but if a large amount of alcohol is contained, (RSiO 3/2 ) n crystals are formed as the reaction progresses. Is deposited. In this method, water is added in two or more stages. The amount of water added in the first stage is 1.0 ≦ H 2 O /
Si <1.5 (molar ratio). H 2 O / Si <1.0
Then, when the generated alcohol is removed from the system, unreacted monomers are also volatilized. Conversely, H 2 O / Si ≧ 1.5
Then crystallization occurs. Finally, the added amount of water is 1.5 ≦ H 2 O / Si ≦ 2.0 (molar ratio) in terms of integration from the first step.
To do so. The total amount of water is H 2 O / Si <
At 1.5 (molar ratio), unreacted alkoxy groups remain, and the strength of the matrix deteriorates. Conversely, H 2 O / Si> 2.
At 0, phase separation occurs and an optically homogeneous silica bulk body cannot be obtained. In the stepwise addition of water, it is necessary to remove at least 50% of the by-produced alcohol in total at any stage before the cumulative amount of water becomes 1.5 ≦ H 2 O / Si. is there. The aging after the reaction is performed in an open system so that the alcohol generated by the reaction is volatilized. By proceeding the reaction by the above method, crystallization and / or precipitation formation can be suppressed, and a desired silica bulk material can be obtained.
【0013】出発原料溶液は前記オルガノトリアルコキ
シシラン、水、触媒を含んでおり、触媒としては硝酸、
塩酸等の無機酸触媒、酢酸等の有機酸触媒、アンモニア
等の塩基触媒が常法に従って使用される。The starting material solution contains the organotrialkoxysilane, water and a catalyst, and the catalyst is nitric acid,
An inorganic acid catalyst such as hydrochloric acid, an organic acid catalyst such as acetic acid, and a base catalyst such as ammonia are used according to a conventional method.
【0014】尚、加水分解・重縮合反応は室温で行って
も良いが、反応促進のため40〜80℃で行うことが好
ましい。The hydrolysis / polycondensation reaction may be carried out at room temperature, but it is preferably carried out at 40 to 80 ° C. to accelerate the reaction.
【0015】式RSi(OR’)3 のオルガノトリアル
コキシシランの具体例としてはメチルトリメトキシシラ
ン、メチルトリエトキシシラン、メチルトリプロポキシ
シラン、エチルトリメトキシシラン、エチルトリエトキ
シシラン、フェニルトリエトキシシラン、ビニルトリエ
トキシシラン等を用いることができる。Rの炭素数が増
加するにつれ、結晶が生成し難くなるが、ネットワーク
の構造にとってはメチル基が最も好ましい。従ってドー
プする有機物質の種類、量に応じて適宜選択される。Specific examples of the organotrialkoxysilane of the formula RSi (OR ') 3 include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltriethoxysilane, Vinyltriethoxysilane or the like can be used. As the carbon number of R increases, it becomes more difficult to form crystals, but the methyl group is most preferable for the structure of the network. Therefore, it is appropriately selected according to the type and amount of the organic substance to be doped.
【0016】実施例1 メチルトリエトキシシラン(信越化学工業、LS−18
90、以下MTES)に、蒸留水とMTESのモル比が
1.25:1になるように蒸留水を添加した。蒸留水の
10wt%の水は触媒として0.1Nの硝酸を用いた。
最初は2相の状態であるが、内温40〜50℃で攪拌を
続けると、加水分解・重縮合反応が進むにつれて均一に
なり、10分間以内に透明になった。密閉の状態で同温
度に2日間静置した後、反応によって生成したアルコー
ルを理論値の80%減圧下蒸発させ、更にMTES1モ
ルあたり0.5モルの蒸留水を追加した。密閉の状態で
2時間内温40〜50℃で攪拌反応させた後、開放にし
て40℃の乾燥器中に放置した。得られたゲル体は透明
であり、粉末X線回折でも、結晶の検出はできなかっ
た。Example 1 Methyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-18)
90, hereinafter MTES), distilled water was added so that the molar ratio of distilled water and MTES was 1.25: 1. As 10 wt% of distilled water, 0.1N nitric acid was used as a catalyst.
Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 10 minutes. After standing at the same temperature for 2 days in a sealed state, the alcohol produced by the reaction was evaporated under reduced pressure of 80% of the theoretical value, and 0.5 mol of distilled water was further added to 1 mol of MTES. After stirring and reacting for 2 hours at an internal temperature of 40 to 50 ° C in a sealed state, the mixture was opened and left in a drier at 40 ° C. The obtained gel body was transparent, and crystals could not be detected by powder X-ray diffraction.
【0017】実施例2 MTESに、蒸留水とMTESのモル比が1.33:1
になるように蒸留水を添加した。蒸留水の10wt%の
水は触媒として0.1Nの硝酸を用いた。最初は2相の
状態であるが、内温40〜50℃で攪拌を続けると、加
水分解・重縮合反応が進むにつれて均一になり、10分
間以内に透明になった。密閉の状態で同温度で2日間静
置した後、反応によって生成したアルコールを理論値の
80%減圧下蒸発させ、更にMTES1モルあたり0.
17モルの蒸留水を追加した。密閉の状態で内温40〜
50℃で2時間反応させた後、開放にして40℃の乾燥
器中に放置した。得られたゲル体は透明であり、粉末X
線回折でも、結晶の検出はできなかった。Example 2 MTES has a molar ratio of distilled water to MTES of 1.33: 1.
Distilled water was added so that As 10 wt% of distilled water, 0.1N nitric acid was used as a catalyst. Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 10 minutes. After standing still at the same temperature for 2 days in a sealed state, the alcohol produced by the reaction was evaporated under a reduced pressure of 80% of the theoretical value, and further 0.
Added 17 moles of distilled water. Inner temperature 40 ~ in a sealed state
After reacting at 50 ° C for 2 hours, the mixture was opened and left in a dryer at 40 ° C. The obtained gel body is transparent and powder X
Crystals could not be detected even by line diffraction.
【0018】実施例3 MTESに、蒸留水とMTESのモル比が1.33:1
になるように蒸留水を添加した。蒸留水の10wt%の
水は触媒として0.1Nの硝酸を用いた。最初は2相の
状態であるが、内温40〜50℃で攪拌を続けると、加
水分解・重縮合反応が進むにつれ均一になり、10分間
以内に透明になった。得られた溶液を密閉の状態で同温
度で2日間静置した後、反応によって生成したアルコー
ルを理論値の80%減圧下蒸発させ、更にMTES1モ
ルあたり0.67モルの蒸留水を追加した。続いて、密
閉の状態で内温40〜50℃で2時間反応させた。この
間にゲル化した。更に、開放にして40℃の乾燥器内に
放置した。得られたゲル体は透明であり、粉末X線回折
でも、結晶の検出はできなかった。Example 3 MTES has a molar ratio of distilled water to MTES of 1.33: 1.
Distilled water was added so that As 10 wt% of distilled water, 0.1N nitric acid was used as a catalyst. Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 10 minutes. The obtained solution was allowed to stand still at the same temperature for 2 days in a sealed state, the alcohol produced by the reaction was evaporated under reduced pressure of 80% of the theoretical value, and 0.67 mol of distilled water per mol of MTES was further added. Then, it was made to react for 2 hours at an internal temperature of 40 to 50 ° C. in a sealed state. During this time, gelation occurred. Further, it was opened and left in a dryer at 40 ° C. The obtained gel body was transparent, and crystals could not be detected by powder X-ray diffraction.
【0019】比較例1 MTESに、蒸留水とMTESのモル比が1.5:1に
なるように蒸留水を添加した。蒸留水の10wt%の水
は触媒として0.1Nの硝酸を用いた。最初は2相の状
態であるが、内温40〜50℃で攪拌を続けると、加水
分解・重縮合反応が進むにつれて均一になり、10分間
以内に透明になった。密閉の状態で室温で6ケ月間静置
したところ、ゲルの底部に粒径が数μmの沈殿が生成し
た。粉末X線回折で調べたところ、C8 H24O12Si8
結晶であることがわかった。ゲル層は白濁しており、結
晶の析出が確認された。Comparative Example 1 Distilled water was added to MTES so that the molar ratio of distilled water and MTES was 1.5: 1. As 10 wt% of distilled water, 0.1N nitric acid was used as a catalyst. Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 10 minutes. When left in a sealed state at room temperature for 6 months, a precipitate having a particle size of several μm was formed at the bottom of the gel. When examined by powder X-ray diffraction, it was found to be C 8 H 24 O 12 Si 8
It was found to be crystalline. The gel layer was cloudy, and the precipitation of crystals was confirmed.
【0020】比較例2 MTESに、蒸留水とMTESのモル比が1.25:1
になるように蒸留水を添加した。蒸留水の10wt%の
水は触媒として0.1Nの硝酸を用いた。最初は2相の
状態であるが、内温40〜50℃で攪拌を続けると、加
水分解・重縮合反応が進むにつれて均一になり、10分
間以内に透明になった。得られた溶液を密閉の状態で同
温度で2日間静置した後、反応によって生成したアルコ
ールを理論値の80%減圧下蒸発させ、更にMTES1
モルあたり1.0モルの蒸留水を追加した。続いて、密
閉の状態で内温40〜50℃で2時間反応させた。この
間に、ゲル化した。更に、開放にして40℃の乾燥器中
に放置したところ、最終的に白濁したゲルを得た。粉末
X線回折法で調べたところ、結晶の検出はできなかっ
た。Comparative Example 2 MTES has a molar ratio of distilled water and MTES of 1.25: 1.
Distilled water was added so that As 10 wt% of distilled water, 0.1N nitric acid was used as a catalyst. Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 10 minutes. The obtained solution was allowed to stand in the sealed state at the same temperature for 2 days, and then the alcohol produced by the reaction was evaporated under reduced pressure of 80% of the theoretical value, and MTES1 was added.
Added 1.0 mole distilled water per mole. Then, it was made to react for 2 hours at an internal temperature of 40 to 50 ° C. in a sealed state. During this time, gelation occurred. Further, when opened and left in a dryer at 40 ° C., a cloudy gel was finally obtained. When examined by powder X-ray diffractometry, no crystals could be detected.
【0021】実施例4 メチルトリメトキシシラン(信越化学工業、LS−53
0、以下MTMS)に、蒸留水とMTMSのモル比が
1:1になるように蒸留水を添加した。蒸留水の10w
t%は触媒として0.1Nの硝酸を用いた。最初は2相
の状態であるが、内温40〜50℃で攪拌を続けると、
加水分解・重縮合反応が進むにつれて均一になり、1分
間以内に透明になった。密閉の状態で同温度で2日間静
置した後、反応によって生成したアルコールを理論量の
80%減圧下蒸発させ、更にMTMS1モルあたり0.
25モルの蒸留水を追加した。密閉の状態でさらに30
分間同温度で反応させた後、再び反応によって生成した
アルコールを理論量の80%減圧下蒸発させ、更にMT
MS1モルあたり0.5モルの蒸留水を追加した。密閉
の状態で2時間内温40〜50℃で反応させた後、開放
にして40℃の乾燥器内に放置した。得られたゲル体は
透明であり、粉末X線回折でも、結晶の検出はできなか
った。Example 4 Methyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-53)
0, hereinafter MTMS), distilled water was added so that the molar ratio of distilled water and MTMS was 1: 1. 10w of distilled water
For t%, 0.1N nitric acid was used as a catalyst. Initially, it is in a two-phase state, but if stirring is continued at an internal temperature of 40 to 50 ° C,
It became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 1 minute. After left standing in the sealed state at the same temperature for 2 days, the alcohol produced by the reaction was evaporated under reduced pressure of 80% of the theoretical amount, and further, it was adjusted to 0.
Added 25 moles of distilled water. 30 more in a sealed state
After reacting for 1 minute at the same temperature, the alcohol produced by the reaction is evaporated again under reduced pressure of 80% of the theoretical amount, and MT
0.5 mol of distilled water was added per mol of MS. After the reaction was carried out for 2 hours at an internal temperature of 40 to 50 ° C. in a sealed state, the mixture was opened and left in a dryer at 40 ° C. The obtained gel body was transparent, and crystals could not be detected by powder X-ray diffraction.
【0022】実施例5 エチルトリエトキシシラン(信越化学工業、LS−24
10、以下ETES)に、蒸留水とETESのモル比が
1.75:1になるように蒸留水を添加した。蒸留水の
10wt%の水は触媒として0.1Nの硝酸を用いた。
最初は2相の状態であるが、内温40〜50℃で攪拌を
続けると、加水分解・重縮合反応が進むにつれて均一に
なり、30分間以内に透明になった。密閉の状態で同温
度で2日間静置した後、開放にして40℃の乾燥器中に
放置した。得られたゲル体は透明であり、粉末X線回折
でも、結晶の検出はできなかった。Example 5 Ethyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-24)
Distilled water was added to 10, ETES hereinafter) so that the molar ratio of distilled water to ETES was 1.75: 1. As 10 wt% of distilled water, 0.1N nitric acid was used as a catalyst.
Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 30 minutes. After left standing in the sealed state at the same temperature for 2 days, it was opened and left in a drier at 40 ° C. The obtained gel body was transparent, and crystals could not be detected by powder X-ray diffraction.
【0023】実施例6 エチルトリエトキシシラン(信越化学工業、LS−24
10、以下ETES)に、蒸留水とETESのモル比が
2.5:1になるように蒸留水を添加した。蒸留水の1
0wt%の水は触媒として0.1Nの硝酸を用いた。最
初は2相の状態であるが、内温40〜50℃で攪拌を続
けると、加水分解・重縮合反応が進むにつれて均一にな
り、30分間以内に透明になった。密閉の状態で同温度
で2日間静置した後、開放にして40℃の乾燥器内に放
置した。得られたゲル体は透明であり、粉末X線回折で
も、結晶の検出はできなかった。Example 6 Ethyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-24)
10, hereinafter referred to as ETES), distilled water was added so that the molar ratio of distilled water and ETES was 2.5: 1. 1 of distilled water
For 0 wt% water, 0.1 N nitric acid was used as a catalyst. Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 30 minutes. After left standing in the sealed state at the same temperature for 2 days, it was opened and left in a dryer at 40 ° C. The obtained gel body was transparent, and crystals could not be detected by powder X-ray diffraction.
【0024】実施例7 ビニルトリエトキシシラン(信越化学工業、LS−23
00、以下VTES)に、蒸留水とVTESのモル比が
1.5:1になるように蒸留水を添加した。蒸留水の1
0wt%の水は触媒として0.1Nの硝酸を用いた。最
初は2相の状態であるが、内温40〜50℃で攪拌を続
けると、加水分解・重縮合反応が進むにつれて均一にな
り、30分間以内に透明になった。密閉の状態で同温度
で2日間静置した後、開放にして40℃の乾燥器内に放
置した。得られたゲル体は透明であり、粉末X線回折で
も、結晶の検出はできなかった。Example 7 Vinyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-23)
00, hereinafter VTES), distilled water was added so that the molar ratio of distilled water to VTES was 1.5: 1. 1 of distilled water
For 0 wt% water, 0.1 N nitric acid was used as a catalyst. Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 30 minutes. After left standing in the sealed state at the same temperature for 2 days, it was opened and left in a dryer at 40 ° C. The obtained gel body was transparent, and crystals could not be detected by powder X-ray diffraction.
【0025】実施例8 フェニルトリエトキシシラン(信越化学工業、LS−4
480、以下PTES)に、蒸留水とPTESのモル比
が1.5:1になるように蒸留水を添加した。蒸留水の
10wt%の水は触媒として0.1Nの硝酸を用いた。
最初は2相の状態であるが、内温40〜50℃で攪拌を
続けると、加水分解・重縮合反応が進むにつれて均一に
なり、30分間以内に透明になった。密閉の状態で同温
度で2日間静置した後、開放にして40℃の乾燥器内に
放置した。得られたゲル体は透明であり、粉末X線回折
でも、結晶の検出はできなかった。Example 8 Phenyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-4)
480, hereinafter referred to as PTES), distilled water was added so that the molar ratio of distilled water and PTES was 1.5: 1. As 10 wt% of distilled water, 0.1N nitric acid was used as a catalyst.
Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 30 minutes. After left standing in the sealed state at the same temperature for 2 days, it was opened and left in a dryer at 40 ° C. The obtained gel body was transparent, and crystals could not be detected by powder X-ray diffraction.
【0026】比較例3 PTESに、蒸留水とPTESのモル比が1.5:1に
なるように蒸留水を添加した。蒸留水の10wt%の水
は触媒として0.1Nの硝酸を用いた。最初は2相の状
態であるが、内温40〜50℃で攪拌を続けると、加水
分解・重縮合反応が進むにつれて均一になり、30分間
以内に透明になった。密閉の状態で室温で6ケ月間静置
したところ、溶液がゲル化せず、結晶の沈殿が認められ
た。Comparative Example 3 Distilled water was added to PTES so that the molar ratio of distilled water and PTES was 1.5: 1. As 10 wt% of distilled water, 0.1N nitric acid was used as a catalyst. Initially, it was in a two-phase state, but when stirring was continued at an internal temperature of 40 to 50 ° C., it became uniform as the hydrolysis / polycondensation reaction proceeded, and became transparent within 30 minutes. When left in a sealed state at room temperature for 6 months, the solution did not gel and precipitation of crystals was observed.
【0027】実施例9 実施例1で得た透明ゲル体について下記の測定を行っ
た。熱安定性についてはDTA−TGで調べたところ、
400℃付近で、放熱を伴う重量減少が見られた。40
0℃までは、熱的に安定であった。乾燥ゲルの屈折率は
アッベ屈折率を測定したところ、1.412であった。Example 9 The transparent gel body obtained in Example 1 was subjected to the following measurements. The thermal stability was examined by DTA-TG,
At around 400 ° C., a weight loss accompanied by heat dissipation was observed. 40
It was thermally stable up to 0 ° C. When the Abbe refractive index was measured, the refractive index of the dried gel was 1.412.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年12月13日[Submission date] December 13, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項9[Name of item to be corrected] Claim 9
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0013[Correction target item name] 0013
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0013】出発原料溶液は前記オルガノトリアルコキ
シシラン、水、触媒を含んでおり、触媒としては硝酸、
塩酸等の無機酸触媒、酢酸等の有機酸触媒が常法に従っ
て使用される。The starting material solution contains the organotrialkoxysilane, water and a catalyst, and the catalyst is nitric acid,
An inorganic acid catalyst such as hydrochloric acid and an organic acid catalyst such as acetic acid are used according to a conventional method.
Claims (9)
ケイ素原子へ結合した有機基)で表わされるネットワー
ク構成単位が三次元網目構造を形成するように反復結合
しているポリシロキサンよりなる有機基含有透明シリカ
バルク体。1. A network constitutional unit represented by the formula: RSiO 3/2 (R is an organic group bonded to a silicon atom by a carbon atom) comprises a polysiloxane which is repeatedly bonded so as to form a three-dimensional network structure. Organic group-containing transparent silica bulk material.
ルク体。2. The silica bulk body according to claim 1, wherein R is a hydrocarbon group.
ピル、イソプロピル、ビニル、フェニルの内の少なくと
も1種である請求項2のシリカバルク体。3. The silica bulk body according to claim 2, wherein the hydrocarbon group is at least one selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, vinyl and phenyl.
よってケイ素原子へ結合した有機基、R’は低級アルキ
ル基)のオルガノトリアルコキシシランをアルコール系
溶媒の不存在下水と反応させた後、開放系において反応
物を熟成してゲル化させることを特徴とする請求項1の
シリカバルク体を製造する方法。4. An organotrialkoxysilane of the formula: RSi (OR ') 3 (R is an organic group bonded to a silicon atom by a carbon atom, R'is a lower alkyl group) is reacted with water in the absence of an alcohol solvent. The method for producing a silica bulk body according to claim 1, wherein the reaction product is aged and gelled in an open system.
トリアルコキシシランへ、1.5≦H2 O/Si≦3.
0(モル比)の水を添加して反応させた後、開放系にお
いて反応物を熟成してゲル化させることを特徴とする請
求項4の方法。5. To the organotrialkoxysilane containing no alcohol solvent, 1.5 ≦ H 2 O / Si ≦ 3.
The method according to claim 4, wherein 0 (molar ratio) of water is added and reacted, and then the reaction product is aged and gelled in an open system.
トリアルコキシシランへ、初回は1.0≦H2 O/Si
<1.5(モル比)、最終回までに初回から積算して
1.5≦H2 O/Si≦2.0(モル比)となるように
少なくとも2回に分割して水を添加して反応させ、この
間に水の積算量が1.5≦H2 O/Siとなる以前に任
意の段階で、副生したアルコールを合計で少なくとも5
0%系外へ除去した後、開放系において反応物を熟成し
てゲル化させることを特徴とする請求項4の方法。6. The organotrialkoxysilane containing no alcoholic solvent is 1.0 ≦ H 2 O / Si for the first time.
<1.5 (molar ratio), water was added at least twice so that the total was 1.5 ≦ H 2 O / Si ≦ 2.0 (molar ratio) from the first time by the last time. At least 5 times in total at any stage before the cumulative amount of water becomes 1.5 ≦ H 2 O / Si.
The method according to claim 4, wherein the reaction product is aged and gelled in an open system after the removal to the outside of 0% system.
エチル、n−プロピル、イソプロピル、ビニル、フェニ
ルの内の少なくとも1種である請求項5の方法。7. The method according to claim 5, wherein R of the organotrialkoxysilane is at least one of ethyl, n-propyl, isopropyl, vinyl and phenyl.
メチル、エチル、n−プロピル、イソプロピル、ビニ
ル、フェニルの内の少なくとも1種である請求項6の方
法。8. The method according to claim 6, wherein R of the organotrialkoxysilane is at least one of methyl, ethyl, n-propyl, isopropyl, vinyl and phenyl.
の反応は、触媒量の酸または塩基の存在下で行われる請
求項4ないし8のいずれかの方法。9. The method according to claim 4, wherein the reaction between the organotrialkoxysilane and water is carried out in the presence of a catalytic amount of an acid or a base.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8749794A JPH07277760A (en) | 1994-04-01 | 1994-04-01 | Transparent bulk silica material containing organic group and its production |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8749794A JPH07277760A (en) | 1994-04-01 | 1994-04-01 | Transparent bulk silica material containing organic group and its production |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07277760A true JPH07277760A (en) | 1995-10-24 |
Family
ID=13916614
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8749794A Pending JPH07277760A (en) | 1994-04-01 | 1994-04-01 | Transparent bulk silica material containing organic group and its production |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07277760A (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0772060A3 (en) * | 1995-11-06 | 1998-04-08 | DOW CORNING ASIA, Ltd. | Polysiloxane resin containing optically-functional constituents and transparent optically-functional element obtained therefrom |
| WO2005000943A1 (en) * | 2003-06-26 | 2005-01-06 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
| WO2005082975A1 (en) * | 2004-02-27 | 2005-09-09 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
| CN100338117C (en) * | 2003-06-26 | 2007-09-19 | 中央硝子株式会社 | Organic-inorganic hybrid vitreous material and method for producing same |
-
1994
- 1994-04-01 JP JP8749794A patent/JPH07277760A/en active Pending
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0772060A3 (en) * | 1995-11-06 | 1998-04-08 | DOW CORNING ASIA, Ltd. | Polysiloxane resin containing optically-functional constituents and transparent optically-functional element obtained therefrom |
| WO2005000943A1 (en) * | 2003-06-26 | 2005-01-06 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
| CN100338117C (en) * | 2003-06-26 | 2007-09-19 | 中央硝子株式会社 | Organic-inorganic hybrid vitreous material and method for producing same |
| US7451619B2 (en) | 2003-06-26 | 2008-11-18 | Central Glass Company, Limited | Organic-inorganic hybrid glassy materials and their production processes |
| WO2005082975A1 (en) * | 2004-02-27 | 2005-09-09 | Central Glass Company, Limited | Organic-inorganic hybrid vitreous material and method for producing same |
| KR100756398B1 (en) * | 2004-02-27 | 2007-09-10 | 샌트랄 글래스 컴퍼니 리미티드 | Organic-inorganic hybrid vitreous material and method for producing same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5548050A (en) | Method for the preparation of organic solvent-soluble polytitanosiloxanes | |
| JP3488965B2 (en) | Method for producing independent membrane by sol-gel method | |
| JP5945267B2 (en) | Method for producing hybrid material obtained by rapid condensation of organosilicon sol | |
| JP3652151B2 (en) | Method for producing curable polymethylsilsesquioxane | |
| JP6146856B2 (en) | Polysilsesquioxane liquid, polysilsesquioxane glass and method for producing the same | |
| JPH07277760A (en) | Transparent bulk silica material containing organic group and its production | |
| JP2621760B2 (en) | Composition for coating | |
| JP2005097030A (en) | Organic inorganic hybrid glass-like material and its manufacturing method | |
| JP4793524B2 (en) | Tetraalkoxysilane condensate and method for producing the same | |
| KR100282990B1 (en) | Manufacturing method of silicone resin | |
| JP4079897B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
| JP2005047779A (en) | Organic-inorganic hybrid vitreous material, and method of manufacturing the same | |
| JPH0450112A (en) | Silica organosol and production thereof | |
| JP4516737B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
| JPWO2019171543A1 (en) | Manufacturing method of airgel, airgel, airgel block and polysiloxane compound | |
| JP6411008B2 (en) | Fluorinated group-modified polysilsesquioxane liquid, fluorinated group-modified polysilsesquioxane glass, and methods for producing them | |
| JPH08165114A (en) | Production of transparent silica gel bulk substance containing methyl group | |
| JPH01185328A (en) | Matrix | |
| JP4079896B2 (en) | Organic-inorganic hybrid glassy material and method for producing the same | |
| JP2005239945A (en) | Organic-inorganic hybrid vitreous material and method for producing the same | |
| JP3520601B2 (en) | Aerogel manufacturing method | |
| JPH0645452B2 (en) | Method for producing silica gel | |
| JPH0977509A (en) | Formation of independent gel film by sol-gel method | |
| JPH0688780B2 (en) | Aluminum oxide precursor gel and method for producing the same | |
| CN118580495A (en) | Phenyl dimethyl end-capped or triphenyl end-capped methylphenyl silicone oil and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050308 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050705 |