[go: up one dir, main page]

JPH07273276A - Connection structure of power element and snubber element and its mounting structure - Google Patents

Connection structure of power element and snubber element and its mounting structure

Info

Publication number
JPH07273276A
JPH07273276A JP6057837A JP5783794A JPH07273276A JP H07273276 A JPH07273276 A JP H07273276A JP 6057837 A JP6057837 A JP 6057837A JP 5783794 A JP5783794 A JP 5783794A JP H07273276 A JPH07273276 A JP H07273276A
Authority
JP
Japan
Prior art keywords
snubber
power element
power
substrate
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6057837A
Other languages
Japanese (ja)
Inventor
Hidetomo Nojiri
秀智 野尻
Tsuyoshi Hamabe
剛志 浜部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6057837A priority Critical patent/JPH07273276A/en
Publication of JPH07273276A publication Critical patent/JPH07273276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

(57)【要約】 【目的】 パワー素子とスナバ素子の接続構造におい
て、スナバ素子のサージ電圧吸収効果を向上すること
と、パワー素子とスナバ素子の実装構造において、放熱
性を向上することを目的とする。 【構成】 2つの金属基板32,22に夫々設けられた
スナバ素子とパワー素子間をパッド35,28を介して
最短距離で電気的に接続することにより、配線が持つ寄
生インダクタンスを低減して、外部への電波雑音等の発
生を低減するようにし、又、両金属基板22,32同士
の一体化結合物を、放熱器に形成された溝内に挿入実装
するようにして、パワー素子で発生した熱のみならず、
スナバ素子で発生した熱も効果的に放熱させるようにす
ると共に、電波雑音の大きなシールド効果を得るように
した。
(57) [Abstract] [Purpose] To improve the surge voltage absorption effect of the snubber element in the connection structure of the power element and the snubber element, and to improve the heat dissipation in the mounting structure of the power element and the snubber element. And [Structure] By electrically connecting the snubber element and the power element, which are respectively provided on the two metal substrates 32 and 22, via the pads 35 and 28 at the shortest distance, the parasitic inductance of the wiring is reduced, Generates power elements by reducing the generation of radio noise to the outside and by inserting and mounting the integrated combination of both metal substrates 22 and 32 into the groove formed in the radiator. Not only the heat
In addition to effectively dissipating the heat generated by the snubber element, a large shield effect of radio noise is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力制御用の半導体素
子であるパワー素子とスナバ素子の接続構造及びその実
装構造に関し、特に、接続配線長の短縮化技術及び放熱
性向上技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure between a power element, which is a semiconductor element for power control, and a snubber element and its mounting structure, and more particularly to a technique for shortening the connection wiring length and a technique for improving heat dissipation.

【0002】[0002]

【従来の技術】従来のこの種パワー素子とスナバ素子の
接続構造及びその実装構造としては、例えば、図9に示
すようなものがある。即ち、図は市販のパワーモジュー
ルAの内部構造を示しており、金属プレート1Aと該金
属プレート1A上面に装着される箱状のプラスチックパ
ッケージ1Bとからモジュール本体1が形成される。金
属プレート1A上面にはセラミック基板2が設置され、
該セラミック基板2上面にはパワー素子としての半導体
チップ3が実装される。又、セラミック基板2上面には
電極パッド4が装着され、該電極パッド4とプラスチッ
クパッケージ1Bに装着された引出し電極5とはワイヤ
6を介して接続される。
2. Description of the Related Art As a conventional connection structure between a power device of this kind and a snubber device and its mounting structure, there is, for example, one as shown in FIG. That is, the figure shows the internal structure of a commercially available power module A, and the module main body 1 is formed from a metal plate 1A and a box-shaped plastic package 1B mounted on the upper surface of the metal plate 1A. The ceramic substrate 2 is installed on the upper surface of the metal plate 1A,
A semiconductor chip 3 as a power element is mounted on the upper surface of the ceramic substrate 2. An electrode pad 4 is mounted on the upper surface of the ceramic substrate 2, and the electrode pad 4 and the extraction electrode 5 mounted on the plastic package 1B are connected via a wire 6.

【0003】図10はかかるパワーモジュールAのパワ
ー素子にスナバモジュールB側のスナバ素子を接続して
構成したスイッチング回路を示しており、パワーモジュ
ールAはスナバモジュールB双方の引出し電極5,7は
リード線8を介して接続される。パワーモジュールAの
引出し電極5には、夫々電源線9、出力線10及びアー
ス線11が接続される。
FIG. 10 shows a switching circuit constructed by connecting a snubber element on the snubber module B side to the power element of the power module A. In the power module A, the extraction electrodes 5 and 7 of both snubber modules B are leads. Connected via line 8. A power supply line 9, an output line 10, and a ground line 11 are connected to the extraction electrode 5 of the power module A, respectively.

【0004】このようにして接続されたパワーモジュー
ルA及びスナバモジュールBは共に放熱器12に固定取
付され、実装される。
The power module A and the snubber module B thus connected are both fixedly mounted on the radiator 12 and mounted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のパワー素子とスナバ素子の接続構造におい
て、パワーモジュールAのパワー素子とスナバモジュー
ルBのスナバ素子とは、内部のワイヤ6及び外部のリー
ド線8を介して接続されており、これにより、次のよう
な問題がある。
However, in such a conventional connecting structure of the power element and the snubber element, the power element of the power module A and the snubber element of the snubber module B are the inner wire 6 and the outer lead. They are connected via the line 8, which causes the following problems.

【0006】即ち、パワー素子とスナバ素子とは、別々
のモジュールA,Bに設けられているため、これらを接
続する上記ワイヤ6及びリード線8からなる配線長が長
くなる。特に、大容量のスイッチング回路を構成した場
合には、パワーモジュールA並びにスナバモジュールB
双方の形状が大きくなる結果、上記ワイヤ6及びリード
線8からなる配線長がより長くなる。
That is, since the power element and the snubber element are provided in the separate modules A and B, the wiring length consisting of the wire 6 and the lead wire 8 for connecting them becomes long. Especially when a large capacity switching circuit is configured, the power module A and the snubber module B are
As a result of making both shapes larger, the wiring length of the wire 6 and the lead wire 8 becomes longer.

【0007】このように配線長が長くなると、配線が持
つ寄生インダクタンスがパワー素子の負荷となり、これ
が発生するサージ電圧は、スイッチング回路のスイッチ
ング電流が増す程増大する。スナバ素子自体は元々この
サージ電圧を吸収する目的で使用されるが、上記のよう
に、パワー素子とスナバ素子とを、寄生インダクタンス
を有する長い配線長をもって接続したのでは、スナバ素
子の効果が十分に得られない。
When the wiring length is increased in this way, the parasitic inductance of the wiring becomes a load on the power element, and the surge voltage generated by this increases as the switching current of the switching circuit increases. The snubber element itself is originally used for the purpose of absorbing this surge voltage, but if the power element and the snubber element are connected with a long wiring length having parasitic inductance as described above, the effect of the snubber element will not be sufficient. Can't get to.

【0008】又、従来のパワー素子とスナバ素子の放熱
器への実装構造にあっては、両素子を夫々設けたモジュ
ールA,Bを放熱器12上面に露出して実装した構成で
あるため、各モジュールA,Bと放熱器12との接触面
積が少なく、放熱性に劣るという問題がある。そこで、
本発明は以上のような従来の問題点に鑑み、パワー素子
とスナバ素子の接続構造において、両者を接続する配線
長を短縮することにより、スナバ素子のサージ電圧吸収
効果を向上すると共に、回路の小型化を図ることを目的
とする。
Further, in the conventional mounting structure of the power element and the snubber element on the radiator, since the modules A and B provided with both elements are exposed and mounted on the upper surface of the radiator 12, There is a problem in that the contact area between each of the modules A and B and the radiator 12 is small, resulting in poor heat dissipation. Therefore,
In view of the above conventional problems, the present invention improves the surge voltage absorption effect of the snubber element by shortening the wiring length connecting the power element and the snubber element in the connection structure of the power element and the snubber element. The purpose is to reduce the size.

【0009】又、パワー素子とスナバ素子の実装構造に
おいて、放熱性を向上することを目的とする。
Another object of the present invention is to improve heat dissipation in the mounting structure of the power element and the snubber element.

【0010】[0010]

【課題を解決するための手段】このため、請求項1記載
の発明は、パワー素子を実装した基板と、スナバ素子を
実装した基板とを設け、両基板同士を素子実装面を突き
合わせて一体化結合し、両基板夫々の素子同士を電気的
に接続したパワー素子とスナバ素子の接続構造とする。
Therefore, according to the first aspect of the present invention, a substrate on which a power element is mounted and a substrate on which a snubber element is mounted are provided, and both substrates are integrated by abutting their element mounting surfaces. The power element and the snubber element are connected to each other to electrically connect the elements of both substrates to each other to form a connection structure of the snubber element.

【0011】請求項2記載の発明は、前記パワー素子を
実装した基板上には配線パターンが形成されており、該
配線パターンには、外部引出し用のビームリードの一端
部が接合され、該ビームリードの他端部は、基板の一端
部から張り出された構成とする。請求項3記載の発明
は、前記パワー素子を実装した基板とスナバ素子を実装
した基板の相互の結合面には、接続用電極となるパッド
が夫々装着された構成とする。
According to a second aspect of the present invention, a wiring pattern is formed on the substrate on which the power element is mounted, and one end portion of a beam lead for external extraction is joined to the wiring pattern. The other end of the lead is projected from one end of the substrate. According to a third aspect of the present invention, a pad serving as a connecting electrode is mounted on each coupling surface of the board on which the power element is mounted and the board on which the snubber element is mounted.

【0012】請求項4記載の発明は、前記パワー素子を
実装した基板とスナバ素子を実装した基板の相互の結合
面には、前記パッドに過大な圧力や衝撃が加わらないよ
うにするためのスペーサが装着された構成とする。請求
項5記載の発明は、請求項1における両基板同士の一体
化結合物を、放熱器に形成された溝内に挿入実装するよ
うにした。
According to a fourth aspect of the present invention, a spacer for preventing excessive pressure or impact from being applied to the pads on the mutual coupling surfaces of the substrate on which the power element is mounted and the substrate on which the snubber element is mounted. Is installed. According to a fifth aspect of the present invention, the integrally combined product of both the substrates according to the first aspect is inserted and mounted in a groove formed in the radiator.

【0013】請求項6記載の発明は、前記放熱器上面か
ら前記ビームリードが突出された構成とする。請求項7
記載の発明は、前記放熱器上面の溝形成位置には端子板
が取り付けられ、該端子板にはスリットが形成されてお
り、該スリットに前記放熱器上面から突出された前記ビ
ームリードが通され、該ビームリード先端部は端子板に
固定取付されてなる構成とする。
According to a sixth aspect of the present invention, the beam lead is projected from the upper surface of the radiator. Claim 7
In the invention described above, a terminal plate is attached to a groove forming position on the upper surface of the radiator, a slit is formed in the terminal plate, and the beam lead protruding from the upper surface of the radiator is passed through the slit. The tip portion of the beam lead is fixedly attached to the terminal plate.

【0014】請求項8記載の発明は、前記スリットを、
高周波サージを吸収する磁性体により取り囲む構成とす
る。
According to an eighth aspect of the invention, the slit is
It is surrounded by a magnetic material that absorbs high frequency surges.

【0015】[0015]

【作用】請求項1記載の発明において、2つの基板に夫
々設けられたスナバ素子とパワー素子間が最短距離で電
気的に接続されるため、配線長が極端に短くなり、配線
が持つ寄生インダクタンスを低減することができる。こ
れにより、スイッチングによって発生するサージ電圧は
効果的に一方の基板側のスナバ素子からなるスナバ回路
で吸収され、外部への電波雑音等の発生を低減すること
ができる。
In the invention described in claim 1, since the snubber element and the power element respectively provided on the two substrates are electrically connected to each other at the shortest distance, the wiring length becomes extremely short, and the parasitic inductance of the wiring Can be reduced. As a result, the surge voltage generated by switching is effectively absorbed by the snubber circuit formed of the snubber element on the one substrate side, and the generation of radio noise to the outside can be reduced.

【0016】又、パワー素子とスナバ素子とからなる回
路の小型化が図れる。請求項2記載の発明において、両
基板同士の一体化結合物の外部引出し用のビームリード
が容易に形成される。請求項3記載の発明において、両
基板夫々の素子同士を接続用電極となるパッドにより容
易に電気的接続できる。
Further, it is possible to reduce the size of the circuit including the power element and the snubber element. According to the second aspect of the present invention, the beam lead for externally drawing out the integrated combined product of both substrates is easily formed. In the invention according to claim 3, the elements on both substrates can be easily electrically connected to each other by the pads serving as the connecting electrodes.

【0017】請求項4記載の発明において、パッドに過
大な圧力や衝撃が加わるのを防止できる。請求項5記載
の発明において、両基板同士の一体化結合物を、放熱器
に形成された溝内に挿入実装するようにしたから、両基
板の全体が放熱器に接触し、パワー素子で発生した熱の
みならず、スナバ素子で発生した熱も効果的に放熱させ
ることができる。又、放熱器に挿入実装された状態で
は、各基板の回路が放熱器で略取り囲まれた状態となる
ため、電波雑音の大きなシールド効果が得られる。
In the invention according to claim 4, it is possible to prevent excessive pressure or impact from being applied to the pad. In the invention of claim 5, since the integrated combination of both boards is inserted and mounted in the groove formed in the radiator, the whole of both boards comes into contact with the radiator, and the power element is generated. Not only the generated heat but also the heat generated in the snubber element can be effectively dissipated. Further, in the state of being inserted and mounted in the radiator, the circuit of each substrate is substantially surrounded by the radiator, so that a large shield effect of radio noise can be obtained.

【0018】請求項6〜8記載の発明において、端子板
に設けられた磁性体の中をビームリードが貫通している
ため、電波雑音が磁性体に吸収され、外部への電波雑音
の放射が極力抑えられる。
In the inventions according to claims 6 to 8, since the beam lead penetrates through the magnetic body provided on the terminal plate, the radio noise is absorbed by the magnetic body, and the radio noise is radiated to the outside. It can be suppressed as much as possible.

【0019】[0019]

【実施例】以下、添付された図面を参照して本発明を詳
述する。先ず、請求項1記載の発明のパワー素子とスナ
バ素子の接続構造は、パワー素子を実装した基板と、ス
ナバ素子を実装した基板とを設け、両基板同士を各素子
同士が接続されるように素子実装面を突き合わせて一体
化結合した構造である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings. First, in the connection structure of the power element and the snubber element according to the first aspect of the invention, a board on which the power element is mounted and a board on which the snubber element is mounted are provided, and both boards are connected to each other. This is a structure in which the element mounting surfaces are butted and integrally coupled.

【0020】かかる請求項1記載の発明のパワー素子と
スナバ素子の接続構造の第1の実施例を図1(A)に基
づいて説明する。前記パワー素子を実装した基板側にお
いて、アルミニウムや銅等からなる金属板20上面にセ
ラミック基板21を積層して構成した金属基板22が設
けられており、この金属基板20上面にはパワー素子の
チップ23とフライホイールダイオードのチップ24と
が接着されている。前記セラミック基板21上には配線
パターン25が形成されており、この配線パターン25
の所定位置にワイヤ26がボンディングされている。
又、配線パターン25には、外部引出し用のビームリー
ド27の一端部が熱圧着等の方法によりボンディングさ
れ、該ビームリード27の他端部は、金属基板22の一
端部から張り出されている。
A first embodiment of the connection structure between the power element and the snubber element according to the first aspect of the present invention will be described with reference to FIG. On the side of the substrate on which the power element is mounted, a metal substrate 22 formed by laminating a ceramic substrate 21 on the upper surface of a metal plate 20 made of aluminum, copper, or the like is provided. 23 and the flywheel diode chip 24 are bonded together. A wiring pattern 25 is formed on the ceramic substrate 21, and the wiring pattern 25 is formed.
The wire 26 is bonded to a predetermined position of.
Further, one end of a beam lead 27 for external drawing is bonded to the wiring pattern 25 by a method such as thermocompression bonding, and the other end of the beam lead 27 is projected from one end of the metal substrate 22. .

【0021】更に、セラミック基板21両端部の配線パ
ターン25上面位置には、後述するスナバ素子を実装し
た金属基板側との接続用電極となるパッド28が夫々装
着されている。又、セラミック基板21の4つのコーナ
部上面位置には、夫々前記パッド28に過大な圧力や衝
撃が加わらないようにするためのスペーサ29が装着さ
れている。
Further, pads 28 serving as connecting electrodes to the metal substrate side on which a snubber element, which will be described later, is mounted are mounted on the upper surfaces of the wiring patterns 25 at both ends of the ceramic substrate 21. Further, spacers 29 are attached to the upper surfaces of the four corners of the ceramic substrate 21 so as not to apply excessive pressure or impact to the pads 28, respectively.

【0022】次に、前記スナバ素子を実装した基板側に
おいて、セラミック基板30上面にアルミニウムや銅等
からなる金属板31を積層して構成した金属基板32が
設けられており、この金属基板32上面には、スナバ素
子として、半導体素子で構成したコンデンサ33とスク
リーン印刷により形成した抵抗34とが設けられてお
り、コンデンサ33(C)と抵抗34(R)のスナバ素
子からなるスナバ回路が構成されている。又、金属基板
32両端部の上面位置には、前記パワー素子を実装した
金属基板22側との接続用電極となり、前記パッド28
と熱圧着等により接続されるパッド35が夫々装着され
ている。
Next, on the substrate side on which the snubber element is mounted, there is provided a metal substrate 32 formed by laminating a metal plate 31 made of aluminum, copper or the like on the upper surface of the ceramic substrate 30, and the upper surface of the metal substrate 32. Is provided with a capacitor 33 formed of a semiconductor element and a resistor 34 formed by screen printing as a snubber element, and a snubber circuit including a snubber element of a capacitor 33 (C) and a resistor 34 (R) is formed. ing. Further, at the upper surface positions of both ends of the metal substrate 32, there are provided electrodes for connection with the side of the metal substrate 22 on which the power element is mounted, and the pads 28 are formed.
Pads 35 that are connected to each other by thermocompression bonding or the like are mounted.

【0023】前記パッド28,35夫々の相手側との熱
圧着面、並びにビームリード27と配線パターン25夫
々の相手側との熱圧着面は、NiやTi等のバッファ金
属を介して表面がAuにより形成されている。かかる構
成のパワー素子を実装した金属基板22と、スナバ素子
を実装した金属基板32とは、パッド28,35が装着
された側の面を相対向させて重ね合わせて、圧着するこ
とにより、図1(B)に示すように一体化結合される。
この場合、パワー素子を実装した金属基板22とスナバ
素子を実装した金属基板32夫々のパッド28,35同
士が接続されて、両基板22,32夫々の素子同士が電
気的に接続される。
The thermocompression-bonding surfaces of the pads 28 and 35 with the mating side and the thermocompression-bonding surfaces of the beam lead 27 and the wiring pattern 25 with the mating side have Au surfaces via a buffer metal such as Ni or Ti. It is formed by. The metal substrate 22 on which the power element of such a configuration is mounted and the metal substrate 32 on which the snubber element is mounted are overlapped with the surfaces on the sides on which the pads 28 and 35 are mounted facing each other, and pressure-bonded. As shown in FIG. 1 (B), they are integrally connected.
In this case, the pads 28 and 35 of the metal board 22 on which the power element is mounted and the pads 28 and 35 of the metal board 32 on which the snubber element is mounted are connected to each other, and the elements of both boards 22 and 32 are electrically connected to each other.

【0024】次に、請求項5記載の発明のパワー素子と
スナバ素子の接続構造は、前記両金属基板22,32同
士の一体化結合物を、放熱器に形成された溝内に挿入実
装する構成である。即ち、前記のようにして構成された
一体化結合物は、図2に示すように、放熱器26の上部
に形成されて該放熱器36上面に開放された溝37内に
挿入実装される。この場合、金属基板22と金属基板3
2の隙間にシリコン樹脂材等を充填して、パワー素子及
びスナバ素子の信頼性を向上するようにしても良い。
Next, in the connection structure of the power element and the snubber element according to the fifth aspect of the present invention, the integrated combination of the metal substrates 22 and 32 is inserted and mounted in the groove formed in the radiator. It is a composition. That is, as shown in FIG. 2, the integrally combined product constructed as described above is inserted and mounted in the groove 37 formed on the radiator 26 and opened on the upper surface of the radiator 36. In this case, the metal substrate 22 and the metal substrate 3
The gap between the two may be filled with a silicon resin material or the like to improve the reliability of the power element and the snubber element.

【0025】前記パワー素子側の金属基板22に設けら
れたビームリード27は、放熱器36上面から突出され
る。次に、放熱器36上面の溝37形成位置には、図3
に示すように、端子板38が取り付けられる。この端子
板38にはスリット39が形成されており、該スリット
39に前記放熱器36上面から突出されたビームリード
27が通され、該ビームリード27先端部は端子板38
上面側に折り曲げられて、ねじ端子40により該端子板
38に固定取付される。このねじ端子39は、外部配線
接続用の端子として用いられる。尚、スリット39を、
磁性体材料であるフェライト材41が取り囲んでおり、
パワー素子とスナバ素子とからなるスイッチング回路で
発生した高周波サージを吸収する働きが奏される。
The beam lead 27 provided on the metal substrate 22 on the power element side is projected from the upper surface of the radiator 36. Next, as shown in FIG.
The terminal plate 38 is attached as shown in FIG. A slit 39 is formed in the terminal plate 38, the beam lead 27 protruding from the upper surface of the radiator 36 is passed through the slit 39, and the tip end of the beam lead 27 is at the terminal plate 38.
It is bent to the upper surface side and fixedly attached to the terminal plate 38 by a screw terminal 40. The screw terminal 39 is used as a terminal for external wiring connection. In addition, the slit 39,
Surrounded by a ferrite material 41 which is a magnetic material,
The function of absorbing the high frequency surge generated in the switching circuit composed of the power element and the snubber element is exhibited.

【0026】ここで、上記金属基板32上に形成される
スナバ素子からなるスナバ回路の具体的な構造及びその
製作方法について説明する。スナバ回路としては、図4
に示すようなものがある。例えば、同図(A)に示すよ
うに、単一のコンデンサのみで構成するものについて
は、一般の個別高耐圧コンデンサを用いても良いが、こ
のときの問題点として、大電力を扱う用途では発熱を伴
うため放熱を考慮しなければならないことや、自己共振
の影響を避けるため、Qを下げる工夫をしなければなら
ないこと等から、形状が大きくなる。又、同図(B)に
示すように、Qダンプ用の抵抗を、外部に設けたり、他
の素子と一体モジュール化したりすることで対応してい
る。
Here, a specific structure of the snubber circuit formed of the snubber element formed on the metal substrate 32 and a manufacturing method thereof will be described. Figure 4 shows the snubber circuit.
There is something like. For example, as shown in FIG. 3A, a general individual high withstand voltage capacitor may be used in a case where only a single capacitor is used. Since the heat generation is accompanied by heat generation, heat dissipation must be taken into consideration, and in order to avoid the influence of self-resonance, some measures must be taken to lower Q, etc. Further, as shown in FIG. 3B, a Q dump resistor is provided externally or is integrated with other elements to form a module.

【0027】そこで、本実施例においては、Si半導体
基板上にスナバ素子を構成するコンデンサを形成するこ
とにより、上述した放熱の問題を解決して、小型化を図
るようにする。即ち、図5はスナバコンデンサを形成し
たSi半導体基板の断面を示している。N+ 型Si半導
体基板50の表裏にN++の高濃度不純物層51,52を
形成し、表面にSiO2 やSi3 4 等の誘電体絶縁物
層53を形成し、更に、Si基板50の表裏に、Cr層
54,56,Au層55,57を、表裏各面について番
号順に連続的に形成する。次いで、金属基板32上に予
め形成されたAlやAuの配線用電極パッド58上に熱
圧着法等によりSi基板50をボンディングする。次い
で、Au層55と電極パッド59間をAuリボン60で
熱圧着法等により接続する。尚、電極パッド58と59
は、金属基板32との間でアルミナセラミック層51等
により絶縁される。
Therefore, in this embodiment, a capacitor forming a snubber element is formed on a Si semiconductor substrate to solve the above-mentioned heat dissipation problem and to achieve miniaturization. That is, FIG. 5 shows a cross section of the Si semiconductor substrate on which the snubber capacitor is formed. N ++ high-concentration impurity layers 51 and 52 are formed on the front and back of the N + type Si semiconductor substrate 50, and a dielectric insulator layer 53 such as SiO 2 or Si 3 N 4 is formed on the surface thereof. Cr layers 54 and 56 and Au layers 55 and 57 are continuously formed on the front and back of No. 50 in the order of numbers on the front and back surfaces. Next, the Si substrate 50 is bonded to the wiring electrode pad 58 of Al or Au formed in advance on the metal substrate 32 by a thermocompression bonding method or the like. Next, the Au layer 55 and the electrode pad 59 are connected by an Au ribbon 60 by a thermocompression bonding method or the like. Incidentally, the electrode pads 58 and 59
Are insulated from the metal substrate 32 by the alumina ceramic layer 51 and the like.

【0028】かかる例においては、Cr層54とN++
51間がスナバコンデンサとして機能し、ここで発生し
た熱は熱伝導効果の高いSi基板50を通って金属基板
32中に速やかに伝わる。金属基板32は、前記放熱器
36に直結されており、高い放熱効果が得られるので、
コンデンサのサイズは必要な静電容量が得られるなら
ば、小さくすることが可能である。
In this example, the space between the Cr layer 54 and the N ++ layer 51 functions as a snubber capacitor, and the heat generated here is quickly transferred to the metal substrate 32 through the Si substrate 50 having a high heat conduction effect. . Since the metal substrate 32 is directly connected to the radiator 36 and a high heat radiation effect is obtained,
The size of the capacitor can be reduced if the required capacitance is obtained.

【0029】又、かかる例において、Si基板50の濃
度を低くし、抵抗率を高くすることにより、図6に示す
スナバ回路の等価回路中の直列抵抗成分Rsを大きくす
ることができる。これにより、コンデンサCのQを低下
させることができるため、コンデンサの自己発振の影響
を取り除くことができる。即ち、図4の(B)の構成の
スナバ回路において、抵抗を金属基板上に印刷抵抗とし
て個別に形成することも可能であるが、本例のように、
Si基板中の寄生抵抗を有効に利用しても良い。
Further, in this example, the series resistance component Rs in the equivalent circuit of the snubber circuit shown in FIG. 6 can be increased by lowering the concentration of the Si substrate 50 and increasing the resistivity. As a result, the Q of the capacitor C can be reduced, and the effect of self-oscillation of the capacitor can be eliminated. That is, in the snubber circuit having the configuration of FIG. 4B, it is possible to individually form the resistors as the printing resistors on the metal substrate, but as in this example,
The parasitic resistance in the Si substrate may be effectively used.

【0030】又、図4(C)に示すようなスナバ回路中
にダイオードを有する回路構成にすることもできる。図
7及び図8はその具体例を示している。図7は抵抗を外
付にしたものである。Si基板70にP型のものを用
い、表面にN+ 層、裏面にP+ 層を形成する。コンデン
サは、N+ 層72と、SiO2 層74を挟んだ金属電極
75との間に形成されており、P型のSi基板70とN
+ 層72間の接合面にダイオードが形成されている。P
+ 層は下記の金属電極76にオーミック接触をとるため
のものである。ダイオードの接合耐圧は使用するパワー
素子の最大電圧より高く設定するが、これはSi基板7
0の不純物濃度を適当に選ぶことにより行う。即ち、例
えば、500V耐圧のものを得るには、P型の不純物濃
度は5×1014/cm3 以下にすれば良い。
Further, a circuit configuration having a diode in the snubber circuit as shown in FIG. 4C can be adopted. 7 and 8 show specific examples thereof. FIG. 7 shows an external resistor. Used as a P-type Si substrate 70, N + layer on the surface, to form a P + layer on the back surface. The capacitor is formed between the N + layer 72 and the metal electrode 75 sandwiching the SiO 2 layer 74, and is connected to the P-type Si substrate 70 and the N-type Si substrate 70.
A diode is formed on the junction surface between the + layers 72. P
The + layer is for making ohmic contact with the metal electrode 76 described below. The junction withstand voltage of the diode is set higher than the maximum voltage of the power element used.
This is performed by appropriately selecting the impurity concentration of 0. That is, for example, in order to obtain a withstand voltage of 500 V, the P-type impurity concentration may be 5 × 10 14 / cm 3 or less.

【0031】図8は、コンデンサ,ダイオード及び抵抗
のスナバ回路を構成する素子を全てSi基板上に形成し
たものの例である。ダイオードの周囲にダイオードに並
列接続される抵抗を形成するもので、図7のものに加え
て、表面の不純物拡散層77を追加することが得られ
る。ダイオードの耐圧は前述したように、Si基板70
の不純物濃度で決まり、これによって周囲部分の抵抗の
抵抗率も決まる。例えば、ダイオード耐圧が500Vを
得るため、基板70の不純物濃度を5×1014/cm3
とした場合、基板70の抵抗率は約3Ωcmとなる。例
えば、スナバ抵抗の抵抗値を1Ωとする場合、Si基板
70の厚みを500μmとすると、P+ 層77の面積を
2500μm2 とすれば良い。尚、コンデンサの容量
は、SiO2層74の厚みと誘電率電極75の面積で決
まる。SiO2 層74は必要に応じて誘電率の高いSi
3 4 やTa2 5 等或いはそれらを積層したものを用
いても良い。上記コンデンサやダイオードは静電容量や
電流容量を増すために必要に応じて複数のチップに分割
し、各々を電極パッド58,59及びAuリボン60に
より結線することも可能である。このようなチップ分割
を行うことによってコンデンサ、ダイオードを製造する
際のプロセス歩留を向上することができる。
FIG. 8 shows an example in which all the elements forming the snubber circuit of the capacitor, the diode and the resistor are formed on the Si substrate. It forms a resistor connected in parallel with the diode around the diode, and it is possible to add an impurity diffusion layer 77 on the surface in addition to that of FIG. As described above, the breakdown voltage of the diode is the Si substrate 70.
It is determined by the impurity concentration of, and this also determines the resistivity of the resistance of the surrounding portion. For example, in order to obtain a diode breakdown voltage of 500 V, the impurity concentration of the substrate 70 should be 5 × 10 14 / cm 3.
In that case, the resistivity of the substrate 70 is about 3 Ωcm. For example, when the resistance value of the snubber resistor is 1Ω, and the thickness of the Si substrate 70 is 500 μm, the area of the P + layer 77 may be 2500 μm 2 . The capacity of the capacitor is determined by the thickness of the SiO 2 layer 74 and the area of the dielectric constant electrode 75. The SiO 2 layer 74 is made of Si having a high dielectric constant as necessary.
3 N 4 , Ta 2 O 5 or the like or a laminate of these may be used. It is also possible to divide the above-mentioned capacitors and diodes into a plurality of chips as necessary in order to increase the electrostatic capacity and the current capacity, and connect each of them by the electrode pads 58 and 59 and the Au ribbon 60. By performing such chip division, the process yield at the time of manufacturing a capacitor and a diode can be improved.

【0032】次に、図1〜図3の構成に基づく作用・効
果について説明する。2つの金属基板32,22に夫々
設けられたスナバ素子とパワー素子間がパッド35,2
8を介して最短距離で電気的に接続されるため、配線長
が極端に短くなり、配線が持つ寄生インダクタンスを低
減することができる。これにより、スイッチングによっ
て発生するサージ電圧は効果的に金属基板32側のスナ
バ素子からなるスナバ回路で吸収され、外部への電波雑
音等の発生を低減することができる。
Next, the operation and effect based on the configuration of FIGS. 1 to 3 will be described. Pads 35 and 2 are provided between the snubber element and the power element provided on the two metal substrates 32 and 22, respectively.
Since the wiring is electrically connected via the shortest distance via 8, the wiring length becomes extremely short, and the parasitic inductance of the wiring can be reduced. As a result, the surge voltage generated by switching is effectively absorbed by the snubber circuit including the snubber element on the metal substrate 32 side, and the generation of radio noise to the outside can be reduced.

【0033】特に、従来では、大容量のスイッチング回
路を構成した場合には、配線長が長くなって、寄生イン
ダクタンスが増大するが、上記の構成では、この心配が
ない。又、上記の構成によると、パワー素子とスナバ素
子とからなるスイッチング回路の小型化が図れる。
In particular, conventionally, when a large-capacity switching circuit is constructed, the wiring length becomes long and the parasitic inductance increases, but in the above construction, there is no such concern. Further, according to the above configuration, it is possible to miniaturize the switching circuit including the power element and the snubber element.

【0034】更に、上記の構成によると、両金属基板2
2,32同士の一体化結合物を、放熱器36に形成され
た溝37内に挿入実装するようにしたから、両金属基板
22,32の全体が放熱器36に接触し、パワー素子で
発生した熱のみならず、スナバ素子で発生した熱も効果
的に放熱させることができる。更に、放熱器36に挿入
実装された状態では、各金属基板22,32の回路が放
熱器36で略取り囲まれた状態となるため、電波雑音の
大きなシールド効果が得られる。更に、ビームリード2
7が形成された側は、放熱器36が取り囲んでいない
が、端子板38に設けられたフェライト材41の中をビ
ームリード27が貫通しているため、電波雑音がフェラ
イト材41に吸収され、外部への電波雑音の放射が極力
抑えられる。
Further, according to the above configuration, both metal substrates 2
Since the integrated combination of 2, 32 is inserted and mounted in the groove 37 formed in the radiator 36, the entire both metal substrates 22, 32 come into contact with the radiator 36, and the power element is generated. Not only the generated heat but also the heat generated in the snubber element can be effectively dissipated. Further, in the state of being inserted and mounted in the radiator 36, the circuits of the metal substrates 22 and 32 are substantially surrounded by the radiator 36, so that a large shield effect of radio noise can be obtained. Furthermore, the beam lead 2
Although the radiator 36 is not surrounded on the side where 7 is formed, since the beam lead 27 penetrates through the ferrite material 41 provided on the terminal plate 38, radio noise is absorbed by the ferrite material 41, Radiation of radio noise to the outside is suppressed as much as possible.

【0035】図11〜13は第2の実施例を示す図であ
る。これらの実施例は、3個のパワー素子を一つの放電
器36に実装し、各々のパワー素子を3相交流のU相,
V相,W相の制御に用いたものである。図では制御入力
端子は図示せず、直流電源入力端子C1 ,C2 ,C3
共通端子E1 ,E2 ,E3 と3相出口端子O1 ,O2
3 が示してある。
11 to 13 are views showing a second embodiment. In these examples, three power elements are mounted on one discharger 36, and each power element is a U-phase of three-phase AC,
This is used for controlling the V phase and the W phase. The control input terminals are not shown in the figure, and DC power supply input terminals C 1 , C 2 , C 3 and common terminals E 1 , E 2 , E 3 and three-phase outlet terminals O 1 , O 2 ,
O 3 is indicated.

【0036】図11に示すように、各パワー素子は放電
器36に作られた隣接す3つの溝内に実装され、放電器
36の外に突出したC1 ,C2 ,C3 とE1 ,E2 ,E
3 の周囲とO1 ,O2 ,O3 の周囲を図12のように各
々別の磁性体材料、例えばフェライト材41A,41B
で取り囲む。これにより、直流入力側と3相出力側に各
々生ずるコモンモードノイズを除去する効果が得られ
る。
As shown in FIG. 11, each power element is mounted in three adjacent grooves formed in the discharger 36, and C 1 , C 2 , C 3 and E 1 projecting out of the discharger 36. , E 2 , E
As shown in FIG. 12, the surroundings of 3 and the surroundings of O 1 , O 2 and O 3 are made of different magnetic materials, for example, ferrite materials 41A and 41B.
Surround with. As a result, an effect of removing common mode noise generated on the DC input side and the three-phase output side can be obtained.

【0037】図13は以上に加えて端子板38を設けた
もので、各パワー素子のC1 ,C2,C3 とE1
2 ,E3 はこの端子板38上で結線される。又、端子
板38上のCとE端子間にコンデンサを直接接続するこ
とによってノーマルモードノイズを除去したり、内部ス
ナバの機能を補助する目的で、CE端子間に外付のスナ
バ素子を接続しても良い。
FIG. 13 shows a terminal plate 38 provided in addition to the above. C 1 , C 2 , C 3 and E 1 of each power element,
E 2 and E 3 are connected on this terminal board 38. Further, an external snubber element is connected between the CE terminals for the purpose of eliminating normal mode noise by directly connecting a capacitor between the C and E terminals on the terminal board 38 and assisting the function of the internal snubber. May be.

【0038】かかる実施例でせ、前述の第1の実施例と
同じく放熱器がシールド効果を有しており、又、放熱器
内部に3つのパワー素子が実装されているため、パワー
素子の発生する熱は効率良く放熱される。本実施例で
は、フェライト材を通過する電流の総量が±0となるよ
うにしたため、磁気飽和しにくく、大電力用途に対して
好適である。
In this embodiment, the heat radiator has a shielding effect as in the first embodiment, and since three power elements are mounted inside the heat radiator, the power elements are generated. The heat generated is efficiently dissipated. In this embodiment, since the total amount of current passing through the ferrite material is set to ± 0, magnetic saturation hardly occurs, which is suitable for high power applications.

【0039】[0039]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、配線長が極端に短くなり、配線が持つ寄生
インダクタンスを低減することができ、スイッチングに
よって発生するサージ電圧は効果的に吸収され、外部へ
の電波雑音等の発生を低減することができると共に、パ
ワー素子とスナバ素子とからなる回路の小型化が図れ
る。
As described above, according to the invention described in claim 1, the wiring length becomes extremely short, the parasitic inductance of the wiring can be reduced, and the surge voltage generated by switching is effective. It is possible to reduce the generation of radio noise to the outside by being absorbed by the antenna and reduce the size of the circuit including the power element and the snubber element.

【0040】請求項2記載の発明によれば、両基板同士
の一体化結合物の外部引出し用のビームリードが容易に
形成される。請求項3記載の発明によれば、両基板夫々
の素子同士を接続用電極となるパッドにより容易に電気
的接続できる。請求項4記載の発明によれば、パッドに
過大な圧力や衝撃が加わるのを防止できる。
According to the second aspect of the present invention, the beam lead for externally drawing out the integrally combined product of both substrates can be easily formed. According to the third aspect of the present invention, the elements of both substrates can be easily electrically connected to each other by the pad serving as the connection electrode. According to the invention of claim 4, it is possible to prevent excessive pressure or impact from being applied to the pad.

【0041】請求項5記載の発明によれば、パワー素子
で発生した熱のみならず、スナバ素子で発生した熱も効
果的に放熱させることができ、電波雑音の大きなシール
ド効果が得られる。請求項6〜8記載の発明によれば、
電波雑音が磁性体に吸収され、外部への電波雑音の放射
が極力抑えられる。
According to the fifth aspect of the present invention, not only the heat generated by the power element but also the heat generated by the snubber element can be effectively radiated, and a large shield effect of radio noise can be obtained. According to the inventions of claims 6 to 8,
Radio noise is absorbed by the magnetic material, and the emission of radio noise to the outside is suppressed as much as possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項1記載の発明のパワー素子とスナバ素
子の接続構造の実施例を示す斜視図で、(A)は接続前
の状態を示し、(B)は接続状態を示す
FIG. 1 is a perspective view showing an embodiment of a connection structure of a power element and a snubber element according to the invention of claim 1, (A) shows a state before connection, and (B) shows a connection state.

【図2】 請求項2記載の発明のパワー素子とスナバ素
子の実装構造の実施例を示す斜視図
FIG. 2 is a perspective view showing an embodiment of a mounting structure of a power element and a snubber element of the invention according to claim 2;

【図3】 請求項2記載の発明のパワー素子とスナバ素
子の実装構造の実施例を示す斜視図
FIG. 3 is a perspective view showing an embodiment of a mounting structure of the power element and the snubber element of the invention according to claim 2;

【図4】 スナバ回路の例を示す回路図FIG. 4 is a circuit diagram showing an example of a snubber circuit.

【図5】 スナバコンデンサを形成したSi半導体基板
の断面図
FIG. 5 is a cross-sectional view of a Si semiconductor substrate on which a snubber capacitor is formed.

【図6】 スナバ回路の等価回路FIG. 6 Equivalent circuit of snubber circuit

【図7】 スナバ回路中にダイオードを有する回路の具
体例を示す断面図
FIG. 7 is a sectional view showing a specific example of a circuit having a diode in a snubber circuit.

【図8】 スナバ回路中にダイオードを有する回路の具
体例を示す断面図
FIG. 8 is a sectional view showing a specific example of a circuit having a diode in the snubber circuit.

【図9】 パワー素子とスナバ素子の接続構造及びその
実装構造の従来例を示す断面図
FIG. 9 is a cross-sectional view showing a conventional example of a connection structure between a power element and a snubber element and its mounting structure.

【図10】 スイッチング回路を示す斜視図FIG. 10 is a perspective view showing a switching circuit.

【図11】 他の実施例の斜視図FIG. 11 is a perspective view of another embodiment.

【図12】 他の実施例の斜視図FIG. 12 is a perspective view of another embodiment.

【図13】 他の実施例の斜視図FIG. 13 is a perspective view of another embodiment.

【符号の説明】[Explanation of symbols]

22 金属基板 23 パワー素子のチップ 25 配線パターン 27 ビームリード 28 パッド 29 スペーサ 32 金属基板 33 コンデンサ 34 抵抗 35 パッド 36 放熱器 37 溝 38 端子板 39 スリット 41 フェライト材 22 Metal Substrate 23 Chip of Power Element 25 Wiring Pattern 27 Beam Lead 28 Pad 29 Spacer 32 Metal Substrate 33 Capacitor 34 Resistor 35 Pad 36 Radiator 37 Groove 38 Terminal Board 39 Slit 41 Ferrite Material

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】パワー素子を実装した基板と、スナバ素子
を実装した基板とを設け、両基板同士を素子実装面を突
き合わせて一体化結合し、両基板夫々の素子同士を電気
的に接続したことを特徴とするパワー素子とスナバ素子
の接続構造。
1. A substrate on which a power element is mounted and a substrate on which a snubber element is mounted are provided, and the two substrates are electrically connected to each other by abutting their element mounting surfaces against each other and integrally connecting them. A connection structure between a power element and a snubber element, which is characterized in that
【請求項2】前記パワー素子を実装した基板上には配線
パターンが形成されており、該配線パターンには、外部
引出し用のビームリードの一端部が接合され、該ビーム
リードの他端部は、基板の一端部から張り出されてなる
請求項1記載のパワー素子とスナバ素子の接続構造。
2. A wiring pattern is formed on a substrate on which the power element is mounted, and one end portion of a beam lead for external extraction is joined to the wiring pattern, and the other end portion of the beam lead is connected to the other end portion. The connection structure of the power element and the snubber element according to claim 1, wherein the connection structure is formed by projecting from one end of the substrate.
【請求項3】前記パワー素子を実装した基板とスナバ素
子を実装した基板の相互の結合面には、接続用電極とな
るパッドが夫々装着されてなる請求項1又は2記載のパ
ワー素子とスナバ素子の接続構造。
3. The power element and the snubber according to claim 1, wherein pads for connection electrodes are mounted on the mutual coupling surfaces of the board on which the power element is mounted and the board on which the snubber element is mounted. Element connection structure.
【請求項4】前記パワー素子を実装した基板とスナバ素
子を実装した基板の相互の結合面には、前記パッドに過
大な圧力や衝撃が加わらないようにするためのスペーサ
が装着されてなる請求項4記載のパワー素子とスナバ素
子の接続構造。
4. A spacer for preventing an excessive pressure or impact from being applied to the pad is mounted on a mutual coupling surface of the board on which the power element is mounted and the board on which the snubber element is mounted. Item 4. A connection structure between the power element and the snubber element according to Item 4.
【請求項5】請求項1における両基板同士の一体化結合
物を、放熱器に形成された溝内に挿入実装するようにし
たことを特徴とするパワー素子とスナバ素子の実装構
造。
5. A mounting structure for a power element and a snubber element, characterized in that an integrated combination of both substrates according to claim 1 is inserted and mounted in a groove formed in a radiator.
【請求項6】前記放熱器上面から前記ビームリードが突
出されてなる請求項5記載のパワー素子とスナバ素子の
実装構造。
6. The mounting structure for a power element and a snubber element according to claim 5, wherein the beam lead is projected from an upper surface of the radiator.
【請求項7】前記放熱器上面の溝形成位置には端子板が
取り付けられ、該端子板にはスリットが形成されてお
り、該スリットに前記放熱器上面から突出された前記ビ
ームリードが通され、該ビームリード先端部は端子板に
固定取付されてなる請求項5又は6記載のパワー素子と
スナバ素子の実装構造。
7. A terminal plate is attached to a groove forming position on the upper surface of the radiator, and a slit is formed in the terminal plate, and the beam lead protruding from the upper surface of the radiator is passed through the slit. 7. The mounting structure for a power element and a snubber element according to claim 5, wherein the tip of the beam lead is fixedly attached to a terminal plate.
【請求項8】前記スリットは、高周波サージを吸収する
磁性体により取り囲まれてなる請求項7記載のパワー素
子とスナバ素子の実装構造。
8. The mounting structure for a power element and a snubber element according to claim 7, wherein the slit is surrounded by a magnetic material that absorbs a high frequency surge.
JP6057837A 1994-03-28 1994-03-28 Connection structure of power element and snubber element and its mounting structure Pending JPH07273276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6057837A JPH07273276A (en) 1994-03-28 1994-03-28 Connection structure of power element and snubber element and its mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057837A JPH07273276A (en) 1994-03-28 1994-03-28 Connection structure of power element and snubber element and its mounting structure

Publications (1)

Publication Number Publication Date
JPH07273276A true JPH07273276A (en) 1995-10-20

Family

ID=13067079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057837A Pending JPH07273276A (en) 1994-03-28 1994-03-28 Connection structure of power element and snubber element and its mounting structure

Country Status (1)

Country Link
JP (1) JPH07273276A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072240A (en) * 1998-10-16 2000-06-06 Denso Corporation Semiconductor chip package
JP2001231211A (en) * 2000-02-16 2001-08-24 Brother Ind Ltd Circuit board
US6538308B1 (en) 1998-07-14 2003-03-25 Denso Corporation Semiconductor apparatus with heat radiation structure for removing heat from semiconductor element
US6693350B2 (en) 1999-11-24 2004-02-17 Denso Corporation Semiconductor device having radiation structure and method for manufacturing semiconductor device having radiation structure
US6703707B1 (en) 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
JP2004096135A (en) * 2003-12-24 2004-03-25 Toyota Central Res & Dev Lab Inc Power module
JP2005197435A (en) * 2004-01-07 2005-07-21 Mitsubishi Electric Corp Power semiconductor device
US6946730B2 (en) 2001-04-25 2005-09-20 Denso Corporation Semiconductor device having heat conducting plate
JP2006351986A (en) * 2005-06-20 2006-12-28 Fuji Electric Device Technology Co Ltd Power semiconductor module
JP2007110000A (en) * 2005-10-17 2007-04-26 Fuji Electric Device Technology Co Ltd Power semiconductor module
JP2008029052A (en) * 2006-07-18 2008-02-07 Mitsubishi Electric Corp Power semiconductor device
JP2008072149A (en) * 2007-12-03 2008-03-27 Kansai Electric Power Co Inc:The Semiconductor device
JP2010199206A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Semiconductor device
JP2010205997A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Semiconductor device
JP2010205834A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Semiconductor device
JP2010206107A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Semiconductor device
JP2010205831A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Semiconductor device
JP2012129309A (en) * 2010-12-14 2012-07-05 Denso Corp Switching module
US8421163B2 (en) 2010-08-04 2013-04-16 Mitsubishi Electric Corporation Power module
US8823053B2 (en) 2012-09-20 2014-09-02 Kabushiki Kaisha Toshiba Semiconductor device including a plurality of first flat plates containing a material that absorbs an electromagnetic wave at a high frequency
JP2014241434A (en) * 2014-08-06 2014-12-25 日産自動車株式会社 Semiconductor device
JP2015023086A (en) * 2013-07-17 2015-02-02 住友電気工業株式会社 Semiconductor module
WO2017047345A1 (en) * 2015-09-18 2017-03-23 株式会社デンソー Semiconductor module
FR3086496A1 (en) * 2018-09-25 2020-03-27 Valeo Systemes Thermiques CONTROL COMPUTER OF A MOTOR-FAN GROUP OF A MOTOR VEHICLE

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009284B2 (en) 1998-07-14 2006-03-07 Denso Corporation Semiconductor apparatus with heat radiation structure for removing heat from semiconductor element
US6538308B1 (en) 1998-07-14 2003-03-25 Denso Corporation Semiconductor apparatus with heat radiation structure for removing heat from semiconductor element
US6072240A (en) * 1998-10-16 2000-06-06 Denso Corporation Semiconductor chip package
US6448645B1 (en) 1998-10-16 2002-09-10 Denso Corporation Semiconductor device
US6891265B2 (en) 1999-11-24 2005-05-10 Denso Corporation Semiconductor device having radiation structure
US6960825B2 (en) 1999-11-24 2005-11-01 Denso Corporation Semiconductor device having radiation structure
US6998707B2 (en) 1999-11-24 2006-02-14 Denso Corporation Semiconductor device having radiation structure
US6798062B2 (en) 1999-11-24 2004-09-28 Denso Corporation Semiconductor device having radiation structure
US6693350B2 (en) 1999-11-24 2004-02-17 Denso Corporation Semiconductor device having radiation structure and method for manufacturing semiconductor device having radiation structure
US6992383B2 (en) 1999-11-24 2006-01-31 Denso Corporation Semiconductor device having radiation structure
US6967404B2 (en) 1999-11-24 2005-11-22 Denso Corporation Semiconductor device having radiation structure
US6703707B1 (en) 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
JP2001231211A (en) * 2000-02-16 2001-08-24 Brother Ind Ltd Circuit board
US6963133B2 (en) 2001-04-25 2005-11-08 Denso Corporation Semiconductor device and method for manufacturing semiconductor device
US6946730B2 (en) 2001-04-25 2005-09-20 Denso Corporation Semiconductor device having heat conducting plate
JP2004096135A (en) * 2003-12-24 2004-03-25 Toyota Central Res & Dev Lab Inc Power module
JP2005197435A (en) * 2004-01-07 2005-07-21 Mitsubishi Electric Corp Power semiconductor device
JP2006351986A (en) * 2005-06-20 2006-12-28 Fuji Electric Device Technology Co Ltd Power semiconductor module
JP2007110000A (en) * 2005-10-17 2007-04-26 Fuji Electric Device Technology Co Ltd Power semiconductor module
JP2008029052A (en) * 2006-07-18 2008-02-07 Mitsubishi Electric Corp Power semiconductor device
JP2008072149A (en) * 2007-12-03 2008-03-27 Kansai Electric Power Co Inc:The Semiconductor device
JP2010199206A (en) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd Semiconductor device
JP2010205834A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Semiconductor device
JP2010205831A (en) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd Semiconductor device
JP2010205997A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Semiconductor device
JP2010206107A (en) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd Semiconductor device
US8421163B2 (en) 2010-08-04 2013-04-16 Mitsubishi Electric Corporation Power module
JP2012129309A (en) * 2010-12-14 2012-07-05 Denso Corp Switching module
US8823053B2 (en) 2012-09-20 2014-09-02 Kabushiki Kaisha Toshiba Semiconductor device including a plurality of first flat plates containing a material that absorbs an electromagnetic wave at a high frequency
JP2015023086A (en) * 2013-07-17 2015-02-02 住友電気工業株式会社 Semiconductor module
JP2014241434A (en) * 2014-08-06 2014-12-25 日産自動車株式会社 Semiconductor device
WO2017047345A1 (en) * 2015-09-18 2017-03-23 株式会社デンソー Semiconductor module
JP2017059778A (en) * 2015-09-18 2017-03-23 株式会社デンソー Semiconductor module
US10283488B2 (en) 2015-09-18 2019-05-07 Denso Corporation Semiconductor module
FR3086496A1 (en) * 2018-09-25 2020-03-27 Valeo Systemes Thermiques CONTROL COMPUTER OF A MOTOR-FAN GROUP OF A MOTOR VEHICLE

Similar Documents

Publication Publication Date Title
JPH07273276A (en) Connection structure of power element and snubber element and its mounting structure
JP2725954B2 (en) Semiconductor device and manufacturing method thereof
JP2721093B2 (en) Semiconductor device
JP5169353B2 (en) Power module
JP2921722B2 (en) Chip type surge absorber
JP6685414B2 (en) Power semiconductor module and power semiconductor device
JP6096614B2 (en) Power semiconductor module and power converter using the same
JP2790640B2 (en) Structure of hybrid integrated circuit components
JPH05167006A (en) Semiconductor device and manufacturing method thereof; composite substrate used for semiconductor device and manufacturing method thereof
JP2000331835A (en) Laminated electronic part and circuit module
JP6464787B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3022178B2 (en) Power device chip mounting structure
JP2021158232A (en) Semiconductor module
JP5054755B2 (en) Semiconductor device
WO2020170650A1 (en) Semiconductor module, power semiconductor module, and power electronic equipment using either of same
EP0431586B1 (en) High-power semiconductor device
US20190258302A1 (en) Power supply module
JP3133544B2 (en) Hybrid integrated circuit
JP2004048084A (en) Semiconductor power module
JP2010251559A (en) Electronic circuit device
JP3096536B2 (en) Hybrid integrated circuit
US20240243097A1 (en) Power module package structure
US20250079272A1 (en) Semiconductor device and manufacturing method
US20230014848A1 (en) Semiconductor device
JP4175980B2 (en) High frequency power semiconductor devices