[go: up one dir, main page]

JPH07280912A - GPS receiver - Google Patents

GPS receiver

Info

Publication number
JPH07280912A
JPH07280912A JP6070779A JP7077994A JPH07280912A JP H07280912 A JPH07280912 A JP H07280912A JP 6070779 A JP6070779 A JP 6070779A JP 7077994 A JP7077994 A JP 7077994A JP H07280912 A JPH07280912 A JP H07280912A
Authority
JP
Japan
Prior art keywords
transmission time
satellite
time information
data
count value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6070779A
Other languages
Japanese (ja)
Inventor
Masahiro Sasaki
雅広 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6070779A priority Critical patent/JPH07280912A/en
Publication of JPH07280912A publication Critical patent/JPH07280912A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

(57)【要約】 【目的】 GPS受信機の測位計算を開始するまでの時
間を短縮する。 【構成】 送信時刻推定手段8は、ビットエッジをカウ
ントした送信時刻情報の一部である20msec単位のカウン
ト値を、すでに受信済みのチャンネル3-jのカウント値
data_j2を用いて、チャンネル3-iのカウント値data_i
2をdata_j2,data_j2+1,data_j2−1,data_j2
+2,………と変化させた伝搬時間から距離を各々計算
する。伝搬時間からの距離と、衛星の推定位置と受信機
の概略位置から求めた概略伝搬距離とを比較することに
より送信時刻情報を推定する。
(57) [Abstract] [Purpose] To shorten the time until the positioning calculation of the GPS receiver is started. [Structure] The transmission time estimating means 8 calculates a count value in 20 msec units, which is a part of the transmission time information obtained by counting bit edges, from the count value of the already received channel 3-j.
Count value data_i of channel 3-i using data_j2
2 for data_j2, data_j2 + 1, data_j2-1, data_j2
The distances are calculated from the propagation times changed as +2, .... The transmission time information is estimated by comparing the distance from the propagation time with the approximate propagation distance obtained from the estimated position of the satellite and the approximate position of the receiver.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地球を周回する衛星か
らの電波により、自分の位置と移動速度を求めるGPS
(Global Positioning System)受信機等に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GPS that obtains its position and moving speed by radio waves from satellites orbiting the earth.
(Global Positioning System) Relating to receivers and the like.

【0002】[0002]

【従来の技術】GPSは、複数の衛星からの電波を同時
に受信して、衛星からの航法メッセージ(軌道情報や送
信時刻情報等)を取得することにより、受信機の位置を
算出するシステムである。仮にGPS衛星と地球上のG
PS受信機との間で、時刻が正確に合った時計を持って
いたとすると、衛星が電波を送信した時刻と受信機が受
信した時刻との差に光速を掛けることによって、衛星と
受信機との距離を求めることができる。
2. Description of the Related Art GPS is a system for calculating the position of a receiver by simultaneously receiving radio waves from a plurality of satellites and acquiring navigation messages (orbit information, transmission time information, etc.) from the satellites. . For example, GPS satellite and G on the earth
If you have a clock with the correct time for the PS receiver, multiply the speed of light by the difference between the time at which the satellite transmitted radio waves and the time at which the receiver received it. The distance of can be calculated.

【0003】そこで3つ以上の衛星について、航法メッ
セージの軌道情報から衛星の位置を算出し、それらの衛
星の位置を中心として前記のように求めた衛星と受信機
との距離を半径とする球を考え、地球を含めてその球の
交点を求めることによって受信機の位置を導き出すこと
ができる。原理的には3つの衛星でよいが、実際には衛
星と受信機の間には時計の誤差があるので、その時計誤
差を未知数として、4つ以上の衛星からの電波を受信で
きた場合には、(数1)の4元連立2次方程式を解くこと
により、受信機の位置を算出する。
Therefore, for three or more satellites, the positions of the satellites are calculated from the orbit information of the navigation message, and a sphere whose radius is the distance between the satellite and the receiver obtained as described above centering on the positions of those satellites. Then, the position of the receiver can be derived by finding the intersection of the sphere including the earth. In principle, three satellites are enough, but in reality there is a clock error between the satellite and the receiver. Therefore, if the clock error is an unknown number and radio waves from four or more satellites can be received, Calculates the position of the receiver by solving the quaternary simultaneous quadratic equation of (Equation 1).

【0004】[0004]

【数1】 [Equation 1]

【0005】ここで、(Xi,Yi,Zi):衛星位置 r′i=ri+dt:伝搬時間 ri:真の伝搬時間 (i=1〜4) dt:時刻のずれ (X0,Y0,Z0):受信機位置 C:光速 図3は従来のGPS受信機の構成を示しており、1は衛
星からの電波を受信するアンテナ、2はRF(Radio Fre
quency)部、3-1〜3-mは並列に動作するm個の検波部
(以下、チャンネルという)、4は信号復調処理部、5は
航法メッセージ抽出部、6はカウンタ部、7は測位計算
部である。
Here, (X i , Y i , Z i ): satellite position r ′ i = r i + dt: propagation time r i : true propagation time (i = 1 to 4) dt: time difference (X 0 , Y 0 , Z 0 ): receiver position C: speed of light FIG. 3 shows the configuration of a conventional GPS receiver, where 1 is an antenna for receiving radio waves from a satellite and 2 is RF (Radio Frequency).
quency) section, 3-1 to 3-m are m detection sections operating in parallel
(Hereinafter referred to as a channel), 4 is a signal demodulation processing unit, 5 is a navigation message extraction unit, 6 is a counter unit, and 7 is a positioning calculation unit.

【0006】電波はスペクトラム拡散されて衛星から送
信されるため、広い周波数帯域に拡散されるため、その
結果、単位周波数当たりのエネルギー密度は非常に小さ
くなり、S/N比は極度に低く、信号は雑音の1/1000程
度しかない。そこで信号復調処理部4では、拡散したス
ぺクトラムを元の狭いスぺクトラムに戻す処理(逆拡散
処理)を行い、必要なS/N比を確保する。また受信し
た電波は、衛星の移動と受信機の移動とのドップラー効
果による周波数シフトがある。この周波数シフト量をド
ップラーシフト周波数と呼び、ドップラーシフト周波数
の除去も信号復調処理部4で合わせて行っている。
Since radio waves are spread spectrum and transmitted from a satellite, they are spread over a wide frequency band, and as a result, the energy density per unit frequency becomes very small, the S / N ratio is extremely low, and the signal Is only 1/1000 of noise. Therefore, the signal demodulation processing unit 4 performs a process of returning the spread spectrum to the original narrow spectrum (despreading process) to secure a necessary S / N ratio. Further, the received radio wave has a frequency shift due to the Doppler effect between the movement of the satellite and the movement of the receiver. This frequency shift amount is called a Doppler shift frequency, and the signal demodulation processing unit 4 also removes the Doppler shift frequency.

【0007】測位計算するためには、ある時刻に同じタ
イミング(以下、測位タイミングという)で1からmまで
のチャンネル3のデータを取得する必要があるが、信号
ビットに同期した処理を行っている信号復調処理部4で
は、その直前のビットエッジから前記測位タイミングま
での時間を、逆拡散処理したPRN(Pseudo RandomNois
e)符号を基に、20msec以下を1nsec単位で求めることが
できる(data_i3)。
In order to calculate the positioning, it is necessary to acquire the data of channel 3 from 1 to m at the same timing (hereinafter referred to as positioning timing) at a certain time, but the processing is synchronized with the signal bit. In the signal demodulation processing unit 4, the time from the immediately preceding bit edge to the positioning timing is subjected to despreading processing by PRN (Pseudo Random Nois).
e) 20 msec or less can be obtained in 1 nsec units based on the code (data_i3).

【0008】一方、航法メッセージ抽出部5では衛星の
航法メッセージを復調し、衛星の軌道情報,電離層補正
情報等を得る。図2は航法メッセージの構成を示し、航
法メッセージのサブフレームには6秒単位の送信時刻情
報が格納されており、サブフレームの先頭の時刻を示し
ている。したがって、サブフレームの先頭(以下、プリ
アンブルパターンという)を検出することによって、概
ねの時間として6秒単位の送信時刻情報(data_i1)を求
めることができる。また、航法メッセージは50bpsで送
信されるので、カウンタ部6ではプリアンブルパターン
から航法メッセージのビットエッジをカウントすること
で、送信時刻情報の一部である20msec単位のカウント値
(data_i2)を求める。
On the other hand, the navigation message extracting section 5 demodulates the navigation message of the satellite to obtain orbit information of the satellite, ionospheric correction information and the like. FIG. 2 shows the structure of the navigation message. Transmission time information in units of 6 seconds is stored in the subframe of the navigation message, and shows the time at the beginning of the subframe. Therefore, by detecting the beginning of the subframe (hereinafter referred to as the preamble pattern), it is possible to obtain the transmission time information (data_i1) in units of 6 seconds as an approximate time. In addition, since the navigation message is transmitted at 50 bps, the counter unit 6 counts the bit edge of the navigation message from the preamble pattern to obtain a count value in 20 msec unit, which is a part of the transmission time information.
Calculate (data_i2).

【0009】以上のdata_i1,data_i2,data_i3を使
って、1nsec単位の時間まで精度よく求めた衛星の送信
時刻情報を得ることができる。測位計算部7では、3つ
以上の衛星から求めた各衛星の航法メッセージ(軌道情
報,送信時刻情報等)から(数1)を求め、受信機の位置
を計算する。
By using the above data_i1, data_i2, and data_i3, it is possible to obtain the satellite transmission time information accurately obtained up to the time of 1 nsec unit. The positioning calculator 7 obtains (Equation 1) from the navigation message (orbit information, transmission time information, etc.) of each satellite obtained from three or more satellites, and calculates the position of the receiver.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
衛星からの航法メッセージによる位置測定方法では、衛
星からの電波を受信して、その衛星のプリアンブルパタ
ーンを検出するまではビットエッジのカウント値(data_
i2)を求めることができず、衛星からの電波を受信して
も最大6秒間は測位計算できないという問題があった。
However, in the conventional position measuring method using the navigation message from the satellite, the count value (data__) of the bit edge is received until the radio wave from the satellite is received and the preamble pattern of the satellite is detected.
i2) cannot be obtained, and there is a problem that positioning calculation cannot be performed for a maximum of 6 seconds even if a radio wave from a satellite is received.

【0011】本発明は、このような従来技術の問題を解
決するものであり、測位計算の立ち上がり時間を短縮す
ることができる優れたGPS受信機を提供することを目
的とする。
The present invention solves the problems of the prior art as described above, and an object of the present invention is to provide an excellent GPS receiver capable of shortening the rising time of positioning calculation.

【0012】[0012]

【課題を解決するための手段】この目的を達成するため
に、本発明は複数のチャンネルを有し衛星からの電波を
受信するGPS受信機であって、すでに受信した航法メ
ッセージから送信時刻情報を取得済みのチャンネルがあ
る場合は、他のチャンネルにおいて前記送信時刻情報を
基に他の衛星の送信時刻情報を推定する送信時刻推定手
段を備えたことを特徴とする。
In order to achieve this object, the present invention is a GPS receiver having a plurality of channels for receiving radio waves from a satellite, and transmitting time information from an already received navigation message. When there is a channel that has already been acquired, a transmission time estimating means for estimating transmission time information of another satellite based on the transmission time information in another channel is provided.

【0013】送信時刻推定手段が、衛星から受信中の電
波の中で仰角の最も高い衛星の電波を受信したチャンネ
ルの送信時刻情報を用いて、他の衛星の送信時刻情報を
推定する。
The transmission time estimation means estimates the transmission time information of another satellite by using the transmission time information of the channel that received the radio wave of the satellite with the highest elevation angle among the radio waves being received from the satellite.

【0014】また、送信時刻推定手段が、衛星からの送
信時刻情報の一部であるサブフレームの先頭から、ビッ
トエッジをカウントした20msec単位のカウント値を推定
する場合に、前記送信時刻情報をすでに受信済みのチャ
ンネルのカウント値を用いて伝搬距離を求め、最も妥当
な前記カウント値を決定し、正確な送信時刻情報を推定
するように構成したものである。
Further, when the transmission time estimation means estimates the count value in 20 msec unit counting the bit edges from the beginning of the subframe which is a part of the transmission time information from the satellite, the transmission time information is already calculated. The transmission distance is obtained using the count value of the received channel, the most appropriate count value is determined, and accurate transmission time information is estimated.

【0015】[0015]

【作用】前記の構成によれば、ある衛星の送信時刻情報
を得るときに、すでに受信している衛星の送信時刻情報
から推定するため、また受信中の電波の中から仰角の最
も高い衛星からの電波を受信したチャンネルの送信時刻
情報を用いることで、ある衛星からのプリアンブルパタ
ーンを待つことなく、正確な送信時刻情報を得ることが
できる。
According to the above construction, when the transmission time information of a certain satellite is obtained, it is estimated from the transmission time information of the satellite that has already been received, and from the satellite with the highest elevation angle among the radio waves being received. By using the transmission time information of the channel that received the radio wave, the accurate transmission time information can be obtained without waiting for the preamble pattern from a certain satellite.

【0016】[0016]

【実施例】以下、図面を参照して本発明の一実施例を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0017】ここで、従来例の図3において述べた同一
作用効果のものについては、同一符号を付しその詳細な
説明は省略する。図1は本発明の一実施例におけるGP
S受信機の構成を示したもので、8は送信時刻推定手段
である。本実施例は従来のGPS受信機に送信時刻推定
手段8を付加した構成で、その他の機能については従来
例と同様となるので、本実施例のGPS受信機における
送信時刻推定手段8について説明する。
Here, the same effects as those described in FIG. 3 of the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted. FIG. 1 shows a GP according to an embodiment of the present invention.
The configuration of the S receiver is shown, and 8 is a transmission time estimating means. The present embodiment has a configuration in which the transmission time estimating means 8 is added to the conventional GPS receiver, and the other functions are the same as the conventional example. Therefore, the transmission time estimating means 8 in the GPS receiver of the present embodiment will be described. .

【0018】まず、前記の実施例の説明のため、あるチ
ャンネル3-jがすでに衛星jからの電波を受信済みであ
り、送信時刻情報も得られているものとし、チャンネル
3-iに関しては、衛星iからの電波の受信はできている
が、まだプリアンブルパターンが検出できず、正確な送
信時刻情報、具体的にはカウント値(data_i2)が得られ
ていないとする。ここで、現在地球を周回する衛星に関
する限り、任意の衛星iと受信機の距離と、他の衛星j
と受信機の距離との差は、5500kmを超えることはなく、
伝搬時間にして19msec以下となる。よって、衛星iの20
msec単位であるカウント値(data_i2)は、他の衛星jの
カウント値(data_j2)と近い値となる。
First, for the explanation of the above-mentioned embodiment, it is assumed that a certain channel 3-j has already received the radio wave from the satellite j and the transmission time information has been obtained, and regarding the channel 3-i, It is assumed that the radio wave from the satellite i has been received, but the preamble pattern has not been detected yet, and accurate transmission time information, specifically, the count value (data_i2) has not been obtained. Here, as far as satellites orbiting the earth at present are concerned, the distance between any satellite i and the receiver and other satellites j
And the distance between the receiver and the distance does not exceed 5500km,
The propagation time is less than 19msec. Therefore, satellite i 20
The count value (data_i2), which is a unit of msec, is close to the count value (data_j2) of another satellite j.

【0019】そこで,以下のようにdata_i2をdata_j2
から推定できる。まず6秒単位の送信時刻情報は共通で
あるとしてdata_i1=data_j1とする。次にdata_j2を
基に、data_i2′をdata_j2,data_j2+1,data_j2
−1,data_j2+2,………と変化させ、各々のdata_i
2′とdata_i1およびdata_i3からチャンネル3-iの送
信時刻情報を求め、その伝搬時間に光速を掛けて、衛星
iと受信機の距離を求めることができる。
Therefore, data_i2 is converted to data_j2 as follows.
Can be estimated from First, assuming that the transmission time information in units of 6 seconds is common, data_i1 = data_j1. Next, based on data_j2, data_i2 'is changed to data_j2, data_j2 + 1, data_j2
-1, data_j2 + 2, ...
It is possible to obtain the transmission time information of the channel 3-i from 2 ', data_i1 and data_i3, and multiply the propagation time by the speed of light to obtain the distance between the satellite i and the receiver.

【0020】一方、衛星は固有の軌道をたどっており、
受信機は航法メッセージの軌道情報から現在時刻の衛星
の位置を概算することができる。さらに、その衛星の推
定位置と受信機の概略位置から概略伝搬距離を推定す
る。真の衛星と受信機の距離に対し、前記概略伝搬距離
の誤差は数百m以下であるが、もしdata_i2′が真のカ
ウント値data_i2でないならば、伝搬時間に20msec以上
の差が生まれ、概略伝搬距離と比較して6000km以上の差
が現れることになる。ゆえに、真のカウント値をdata_j
2,data_j2+1,data_j2−1,data_j2+2,……
…と変化させた中から選ぶことができる。
On the other hand, the satellite follows a unique orbit,
The receiver can estimate the position of the satellite at the current time from the orbit information of the navigation message. Further, the rough propagation distance is estimated from the estimated position of the satellite and the rough position of the receiver. The error of the approximate propagation distance with respect to the distance between the true satellite and the receiver is several hundreds m or less, but if data_i2 ′ is not the true count value data_i2, a difference of 20 msec or more is generated in the propagation time, and A difference of more than 6000 km will appear compared to the propagation distance. Therefore, the true count value is data_j
2, data_j2 + 1, data_j2-1, data_j2 + 2, ...
You can choose from a variety of changes.

【0021】次に、受信機側から見て仰角が高い衛星ほ
ど受信機との距離は短くなり、電離層や大気による伝搬
遅延も少なく、さらに反射によって送信時刻情報がずれ
るという現象が発生しにくい。したがって、複数の衛星
からの電波を受信中の場合、その中の仰角が最も高い衛
星からの電波を受信しているチャンネル3の送信時刻情
報を用いる。ここで、仮に受信済みのチャンネル3をチ
ャンネル3-jとすると、前記の実施例と同様にカウント
値data_i2をdata_j2,data_j2+1,data_j2−1,
data_j2+2,………と変化させたときの伝搬時間から
距離を各々計算し、衛星の推定位置と受信機の概略位置
から求めた概略伝搬距離とを比較することによりdata_i
2を推定する。このように、反射等の影響を受けにくい
仰角の高い衛星を用いて送信時刻情報を推定した結果、
より正確な送信時刻情報を得ることができる。
Next, as the satellite has a higher elevation angle as viewed from the receiver side, the distance to the receiver becomes shorter, the propagation delay due to the ionosphere and the atmosphere is smaller, and the phenomenon that the transmission time information is displaced due to reflection is less likely to occur. Therefore, when the radio waves from a plurality of satellites are being received, the transmission time information of the channel 3 receiving the radio waves from the satellite with the highest elevation angle among them is used. If the received channel 3 is assumed to be channel 3-j, the count value data_i2 is set to data_j2, data_j2 + 1, data_j2-1, as in the above embodiment.
data_j2 + 2, ... ...... The distance is calculated from the propagation time when it is changed, and the estimated position of the satellite is compared with the approximate propagation distance found from the approximate position of the receiver.
Estimate 2. In this way, as a result of estimating the transmission time information using a satellite with a high elevation angle that is not easily affected by reflection,
More accurate transmission time information can be obtained.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
複数のチャンネルを有し衛星からの電波を受信するGP
S受信機であって、すでに受信した航法メッセージから
送信時刻情報を取得済みのチャンネルがあり、また受信
中の電波の中で仰角の最も高い衛星の電波を受信したチ
ャンネルの送信時刻情報を用いて、他の衛星の送信時刻
情報を推定する。サブフレームの先頭からビットエッジ
をカウントした送信時刻情報の一部である20msec単位の
カウント値を推定する場合に、すでに送信時刻情報を受
信済みのチャンネルのカウント値を用いて伝搬距離を求
め、最も妥当なカウント値を決定し、正確な送信時刻情
報を推定する。これにより、該当する衛星からのプリア
ンブルパターンを受信するまで待つことなく、送信時刻
情報を取得することができ、測位計算を開始するまでの
時間を短縮することができるという効果を奏する。
As described above, according to the present invention,
GP that has multiple channels and receives radio waves from satellites
Using the transmission time information of the S receiver that has already acquired the transmission time information from the received navigation message and the channel that received the radio wave of the satellite with the highest elevation angle among the received radio waves , Estimate transmission time information of other satellites. When estimating the count value in 20 msec units that is part of the transmission time information that counts the bit edges from the beginning of the subframe, calculate the propagation distance using the count value of the channel that has already received the transmission time information, and Determine a reasonable count value and estimate accurate time of transmission information. As a result, it is possible to obtain the transmission time information without waiting until the preamble pattern from the corresponding satellite is received, and it is possible to shorten the time until the positioning calculation is started.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるGPS受信機の構成
を示す図である。
FIG. 1 is a diagram showing a configuration of a GPS receiver according to an embodiment of the present invention.

【図2】衛星から送信される航法メッセージの構成を示
す図である。
FIG. 2 is a diagram showing a structure of a navigation message transmitted from a satellite.

【図3】従来のGPS受信機の構成を示す図である。FIG. 3 is a diagram showing a configuration of a conventional GPS receiver.

【符号の説明】[Explanation of symbols]

1…アンテナ、 2…RF部、 3-1〜m…検波部(チ
ャンネル)、 4…信号復調処理部、 5…航法メッセ
ージ抽出部、 6…カウンタ部、 7…測位計算部、
8…送信時刻推定手段。
DESCRIPTION OF SYMBOLS 1 ... Antenna, 2 ... RF section, 3-1 to m ... Detection section (channel), 4 ... Signal demodulation processing section, 5 ... Navigation message extraction section, 6 ... Counter section, 7 ... Positioning calculation section,
8 ... Transmission time estimation means.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数のチャンネルを有し衛星からの電波
を受信するGPS受信機であって、すでに受信した航法
メッセージから送信時刻情報を取得済みのチャンネルが
ある場合は、他のチャンネルにおいて前記送信時刻情報
を基に他の衛星の送信時刻情報を推定する送信時刻推定
手段を備えたことを特徴とするGPS受信機。
1. A GPS receiver having a plurality of channels for receiving radio waves from a satellite, and when there is a channel for which transmission time information has already been acquired from a navigation message already received, the transmission is performed on another channel. A GPS receiver comprising transmission time estimation means for estimating transmission time information of another satellite based on time information.
【請求項2】 送信時刻推定手段が、衛星から受信中の
電波の中で仰角の最も高い衛星からの電波を受信したチ
ャンネルの送信時刻情報を用いて、他の衛星の送信時刻
情報を推定することを特徴とする請求項1記載のGPS
受信機。
2. The transmission time estimation means estimates transmission time information of another satellite using the transmission time information of the channel that received the radio wave from the satellite with the highest elevation angle among the radio waves being received from the satellite. The GPS according to claim 1, characterized in that
Receiving machine.
【請求項3】 送信時刻推定手段が、衛星からの送信時
刻情報の一部であるサブフレームの先頭からビットエッ
ジをカウントした20msec単位のカウント値を推定する場
合に、前記送信時刻情報をすでに受信済みのチャンネル
のカウント値を用いて伝搬距離を求め、最も妥当な前記
カウント値を決定し、正確な送信時刻情報を推定するこ
とを特徴とする請求項1記載のGPS受信機。
3. The transmission time information has already been received when the transmission time estimation means estimates a count value in 20 msec units counting bit edges from the beginning of a subframe which is a part of the transmission time information from the satellite. 2. The GPS receiver according to claim 1, wherein a propagation distance is obtained by using a count value of a completed channel, the most appropriate count value is determined, and accurate transmission time information is estimated.
JP6070779A 1994-04-08 1994-04-08 GPS receiver Pending JPH07280912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6070779A JPH07280912A (en) 1994-04-08 1994-04-08 GPS receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6070779A JPH07280912A (en) 1994-04-08 1994-04-08 GPS receiver

Publications (1)

Publication Number Publication Date
JPH07280912A true JPH07280912A (en) 1995-10-27

Family

ID=13441357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6070779A Pending JPH07280912A (en) 1994-04-08 1994-04-08 GPS receiver

Country Status (1)

Country Link
JP (1) JPH07280912A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000206222A (en) * 1999-01-08 2000-07-28 Japan Radio Co Ltd Remote Unit Position Detection Method in Survey Search System
JP2001042023A (en) * 1999-08-04 2001-02-16 Japan Radio Co Ltd Intermittent positioning method and positioning device
JP2002511592A (en) * 1998-04-16 2002-04-16 スナップトラック・インコーポレーテッド Method and apparatus for determining time in a satellite positioning system
JP2011237333A (en) * 2010-05-12 2011-11-24 Mitsubishi Electric Corp Satellite positioning receiver
JP2013228345A (en) * 2012-04-27 2013-11-07 Japan Radio Co Ltd Satellite signal receiver
JP2014048287A (en) * 2012-08-31 2014-03-17 O2 Micro Inc Method and device for synchronizing navigation data
JP2014048289A (en) * 2012-08-31 2014-03-17 O2 Micro Inc Method and device for synchronizing navigation data
JP2014048286A (en) * 2012-08-31 2014-03-17 O2 Micro Inc Method and device for synchronizing navigation data
JP2014048288A (en) * 2012-08-31 2014-03-17 O2 Micro Inc Method and device for synchronizing navigation data
JP2014238405A (en) * 1999-03-22 2014-12-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and apparatus for satellite positioning system time measurement

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257415A (en) * 1998-04-16 2011-12-22 Snaptrack Inc Method and apparatus for determining time in satellite positioning system
JP2002511592A (en) * 1998-04-16 2002-04-16 スナップトラック・インコーポレーテッド Method and apparatus for determining time in a satellite positioning system
JP2009008685A (en) * 1998-04-16 2009-01-15 Snaptrack Inc Method and apparatus for determining time in satellite positioning system
JP2009053193A (en) * 1998-04-16 2009-03-12 Snaptrack Inc Method and apparatus for determining time in satellite-positioning system
JP2000206222A (en) * 1999-01-08 2000-07-28 Japan Radio Co Ltd Remote Unit Position Detection Method in Survey Search System
JP2014238405A (en) * 1999-03-22 2014-12-18 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and apparatus for satellite positioning system time measurement
JP2001042023A (en) * 1999-08-04 2001-02-16 Japan Radio Co Ltd Intermittent positioning method and positioning device
JP2011237333A (en) * 2010-05-12 2011-11-24 Mitsubishi Electric Corp Satellite positioning receiver
JP2013228345A (en) * 2012-04-27 2013-11-07 Japan Radio Co Ltd Satellite signal receiver
JP2014048287A (en) * 2012-08-31 2014-03-17 O2 Micro Inc Method and device for synchronizing navigation data
JP2014048289A (en) * 2012-08-31 2014-03-17 O2 Micro Inc Method and device for synchronizing navigation data
JP2014048286A (en) * 2012-08-31 2014-03-17 O2 Micro Inc Method and device for synchronizing navigation data
JP2014048288A (en) * 2012-08-31 2014-03-17 O2 Micro Inc Method and device for synchronizing navigation data

Similar Documents

Publication Publication Date Title
KR100787846B1 (en) Method and apparatus for estimating speed of terminal in wireless communication system
CN100401093C (en) Method and apparatus for determining error estimates for hybrid positioning systems
US7646338B2 (en) Method of optimization of processing of location data in the presence of a plurality of satellite positioning constellations
EP1252532B1 (en) Method and apparatus for determining an algebraic solution to gps terrestrial hybrid location system equations
US6922546B1 (en) GPS signal acquisition based on frequency-domain and time-domain processing
EP1148344A1 (en) Positioning of a wireless terminal with satellite positioning signals or base station signals
US7064709B1 (en) System and method for GPS navigation before signal bit synchronization
KR100877969B1 (en) Determination of the position of the receiver and / or the system time of the positioning system
US9229111B2 (en) Method for estimating the direction of arrival of navigation signals at a receiver after reflection by walls in a satellite positioning system
JP2003057327A (en) Navigation satellite signal receiver
EP1115008B1 (en) A method for determining reference time error and an electronic device
JPH07280912A (en) GPS receiver
KR100899545B1 (en) Time Transmission Method Using Total Navigation Satellite Observation Method
JP2002196060A (en) Carrier smoothing differential positioning device
US6618006B1 (en) Method for defining the error of reference time and an electronic device
EP3544248B1 (en) Adaptive detection function based on statistical propagation channel estimation for gnss receivers
US6882306B2 (en) Method for determining a position of an electronic device using a satellite positioning system
JPH0836042A (en) GPS receiver and speed determining means used therefor
Vani et al. Evaluation of GPS data for navigational solution and error reduction using kalman filter
EP4307013A1 (en) Static gnss positioning
US20250123405A1 (en) Setting signal detection thresholds
CN117890939B (en) GNSS (Global navigation satellite System) differential code deviation estimation method and system
JPH08201504A (en) GPS receiver
JP2002006027A (en) Method for obtaining reciprocating delay time (rtd) for ratio terminal of wireless network global positioning integrating (wgp) system
JPH0836043A (en) GPS receiver