JPH07293819A - Pressurized fluidized bed type boiler and its load controlling method - Google Patents
Pressurized fluidized bed type boiler and its load controlling methodInfo
- Publication number
- JPH07293819A JPH07293819A JP8444294A JP8444294A JPH07293819A JP H07293819 A JPH07293819 A JP H07293819A JP 8444294 A JP8444294 A JP 8444294A JP 8444294 A JP8444294 A JP 8444294A JP H07293819 A JPH07293819 A JP H07293819A
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- medium
- combustion furnace
- differential pressure
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000002485 combustion reaction Methods 0.000 claims abstract description 86
- 238000005273 aeration Methods 0.000 claims abstract description 20
- 238000001514 detection method Methods 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 abstract description 48
- 239000007789 gas Substances 0.000 description 29
- 230000007423 decrease Effects 0.000 description 5
- 239000003245 coal Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、加圧流動層ボイラ技術
に関し、特に、その流動層の層高制御技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized bed boiler technology, and more particularly to a bed height control technology for the fluidized bed.
【0002】[0002]
【従来の技術】加圧流動層ボイラにおいては、負荷の減
少に対しては、燃焼炉内の流動媒体を炉内から抜き出し
て別置きの媒体容器に貯蔵し、逆に、負荷の増加に対し
ては、上記の媒体容器から流動媒体を炉内に供給して、
炉内の伝熱管の埋没深さを変化させ、もって、伝熱面積
を増減して蒸気の発生量を変化させている。2. Description of the Related Art In a pressurized fluidized bed boiler, in order to reduce the load, the fluidized medium in the combustion furnace is extracted from the furnace and stored in a separate medium container. In the above, by supplying the fluidized medium from the above medium container into the furnace,
By changing the burial depth of the heat transfer tube in the furnace, the heat transfer area is increased or decreased to change the amount of steam generated.
【0003】このような技術に関して、例えば、特開平
1−217108号公報には、次のような技術が開示さ
れている。すなわち、流動媒体を炉内から媒体容器に抜
き出すために、流動層燃焼部の下端部を流動層燃焼炉の
底部に開口し、他の端部を燃焼炉空塔部に貫通し、媒体
容器上部のダスト分離機に開孔した媒体の吸引導管を設
けて、流動層燃焼炉と媒体容器を連結し、さらに、媒体
容器を流動層燃焼炉より圧力の低い加圧容器外部空間と
バルブを有する導管を介して接続している。このような
技術において、媒体容器と外部空間を結ぶ導管のバルブ
を調整して開くことによって媒体容器内の圧力が燃焼炉
内より低くなり、吸引導管を通って燃焼炉内のガスとと
もに流動媒体が媒体容器内へ抜き出される。Regarding such a technique, for example, Japanese Patent Laid-Open No. 1-217108 discloses the following technique. That is, in order to extract the fluidized medium from the furnace into the medium container, the lower end of the fluidized bed combustion section is opened to the bottom of the fluidized bed combustion furnace, the other end is penetrated into the combustion furnace empty tower section, and the upper part of the medium container is opened. This dust separator is provided with a suction pipe for the opened medium to connect the fluidized bed combustion furnace and the medium container, and further, the medium container has a pressure lower than that of the fluidized bed combustion furnace. Connected through. In such a technique, by adjusting and opening the valve of the conduit connecting the medium container and the external space, the pressure in the medium container becomes lower than that in the combustion furnace, and the fluidized medium flows through the suction conduit together with the gas in the combustion furnace. It is extracted into the media container.
【0004】これに対して、特開平4−050443号
公報に開示の技術は、流動媒体粒子の抜き出し、移送
は、移動層と気流相の組合せで行なうことを特徴とする
ものである。この技術では、流動層燃焼炉内の流動媒体
粒子を媒体容器に輸送するための手段として、燃焼炉流
動層下端部に、媒体粒子の移動層下降管を開孔して設け
る。さらに、移動層下降管の下端に粒子流量調整用のL
バルブを設置し、さらに、媒体粒子移送のためのガス上
昇流を有する気流輸送管を媒体容器の空塔部に開孔して
接続して、媒体粒子を重力による下降流れの移動層及び
気流輸送ガスのよる気流相によって移送しようとするも
のである。On the other hand, the technique disclosed in Japanese Patent Application Laid-Open No. 4-050443 is characterized in that the fluid medium particles are extracted and transported by a combination of a moving bed and an air flow phase. In this technique, as a means for transporting fluidized medium particles in a fluidized bed combustion furnace to a medium vessel, a moving bed downcomer pipe for medium particles is provided at the lower end of the fluidized bed combustion furnace. Further, at the lower end of the moving bed downcomer, there is an L for adjusting the particle flow rate.
A valve is installed, and further, an air flow transport pipe having an upward flow of gas for transferring the medium particles is opened and connected to the empty tower part of the medium container to move the medium particles by gravity to a moving layer of downward flow and air flow transportation. It is intended to be transferred by the gas flow phase due to gas.
【0005】[0005]
【発明が解決しようとする課題】しかし、上述の手段で
は、流動層燃焼炉からの媒体粒子抜き出し量の安定な制
御が難しいという問題がある。すなわち、流動層燃焼炉
下部の移動層に設けたLバルブのエアレーションガス量
が一定でも、流動層燃焼炉内の流動媒体を抜き出すこと
により燃焼炉内の流動媒体の層高が低下し、Lバルブ上
部の移動層下降管と燃焼炉内の媒体粒子によるシール性
が低下し、媒体粒子抜き出し量が減少し、さらには移動
層下降管内で粒子が流動し、粒子の移送ができなくな
る。However, the above-mentioned means has a problem that it is difficult to stably control the amount of medium particles extracted from the fluidized bed combustion furnace. That is, even if the amount of aeration gas in the L valve provided in the moving bed below the fluidized bed combustion furnace is constant, the bed height of the fluidized medium in the combustion furnace is lowered by extracting the fluidized medium in the fluidized bed combustion furnace, and the L valve is The sealing performance due to the medium particles in the upper moving bed downcomer and the combustion furnace deteriorates, the amount of medium particles taken out decreases, and further, the particles flow in the moving bed downcomer, making it impossible to transfer the particles.
【0006】また、媒体容器と流動層炉間の差圧がある
一定値以上になるとLバルブの制御空気を遮断しても、
流動層炉から媒体容器へ粒子が流出し、粒子流量の制御
が困難になるという問題がある。これは、流動層から移
動層下降管に巻き込んだ燃焼ガスがLバルブの制御空気
と同じ働きをするためである。また、移動層下降管及び
Lバルブ内の粒子温度が急激に上昇し、Lバルブに供給
した制御空気の体積膨張により、粒子流量の制御が困難
になる問題がある。Further, even if the control air of the L valve is shut off when the pressure difference between the medium container and the fluidized bed furnace exceeds a certain value,
There is a problem that particles flow out from the fluidized bed furnace into the medium container, making it difficult to control the particle flow rate. This is because the combustion gas entrained in the moving bed downcomer from the fluidized bed has the same function as the control air of the L valve. Further, there is a problem that the particle temperature in the moving bed downcomer and the L valve rapidly rises, and the volume expansion of the control air supplied to the L valve makes it difficult to control the particle flow rate.
【0007】本発明は、かかる課題を解決し、流動層燃
焼炉からの流動媒体の粒子取り出し量を、負荷変化速度
に対応して精度よく調節することのできる加圧流動層ボ
イラ及びその負荷制御方法を提供することを目的とす
る。SUMMARY OF THE INVENTION The present invention solves the above problems, and a pressurized fluidized bed boiler capable of accurately adjusting the amount of particles taken out of a fluidized medium from a fluidized bed combustion furnace in accordance with the load change rate and its load control. The purpose is to provide a method.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
の第1の発明は、燃焼炉と、この燃焼炉の流動層部から
流動層媒体をガスとともに取り出す移動層下降管と、こ
の取り出した流動層媒体を貯溜する媒体容器と、前記の
貯溜された流動層媒体を前記燃焼炉流動層部に戻す移動
層戻り管と、前記移動層下降管に連結されたLバルブ
と、このLバルブに吹き込むエアレーションガス量を調
節し、前記の流動層媒体の単位時間あたりの取り出し量
を調節するガス量調節手段とを備え、前記燃焼炉流動層
部と前記媒体容器との間で前記流動層媒体を移送、返送
して前記流動層部の層高を制御し、負荷の制御を行なう
加圧流動層ボイラにおいて、前記移動層下降管内の単位
長さあたりの差圧を検出する第1の差圧計と、前記燃焼
炉と前記媒体容器との間の差圧を検出する第2の差圧計
と、前記燃焼炉と前記媒体容器との間の差圧を調節する
差圧調節手段と、前記第1及び第2の差圧計による検出
信号に基づいて前記の流動層媒体の単位時間あたりの取
り出し量を判断し、前記差圧調節手段による前記燃焼炉
と前記媒体容器との間の差圧の調節及び、又はガス量調
節手段による前記エアレーションガス量の調節により、
前記の流動層媒体の単位時間あたりの取り出し量を所定
の設定量に調節する制御器とを備えたことを特徴とする
加圧流動層ボイラである。A first invention for solving the above-mentioned problems is a combustion furnace, a moving-bed downcomer for taking out a fluidized-bed medium together with gas from a fluidized-bed section of the combustion furnace, and the taken-out tube. A medium container for storing the fluidized bed medium, a moving bed return pipe for returning the stored fluidized bed medium to the fluidized bed portion of the combustion furnace, an L valve connected to the moving bed downcomer, and this L valve Gas amount adjusting means for adjusting the amount of aeration gas blown in and adjusting the amount of the fluidized bed medium taken out per unit time are provided, and the fluidized bed medium is provided between the combustion furnace fluidized bed section and the medium container. In a pressurized fluidized bed boiler that transfers and returns to control the bed height of the fluidized bed section and controls the load, a first differential pressure gauge for detecting a differential pressure per unit length in the moving bed downcomer. , The combustion furnace and the medium container A second differential pressure gauge for detecting a differential pressure between the two, a differential pressure adjusting means for adjusting a differential pressure between the combustion furnace and the medium container, and a detection signal by the first and second differential pressure gauges. The amount of the fluidized bed medium taken out per unit time is determined, and the differential pressure between the combustion furnace and the medium container is adjusted by the differential pressure adjusting means, or the aeration gas amount by the gas amount adjusting means. By adjusting
A pressurized fluidized bed boiler comprising: a controller for adjusting the amount of the fluidized bed medium taken out per unit time to a predetermined set amount.
【0009】また、燃焼炉と、この燃焼炉の流動層部か
ら流動層媒体をガスとともに取り出す移動層下降管と、
この取り出した流動層媒体を貯溜する媒体容器と、前記
の貯溜された流動層媒体を前記燃焼炉流動層部に戻す移
動層戻り管と、前記移動層下降管に連結されたLバルブ
と、このLバルブに吹き込むエアレーションガス量を調
節し、前記の流動層媒体の単位時間あたりの取り出し量
を調節するガス量調節手段とを備えた加圧流動層ボイラ
の、前記燃焼炉流動層部と前記媒体容器との間で前記流
動層媒体を移送、返送して前記流動層部の層高を制御
し、負荷の制御を行なう加圧流動層ボイラの負荷制御方
法において、前記移動層下降管内の単位長さあたりの差
圧を検出する工程と、前記燃焼炉と前記媒体容器との間
の差圧を検出する工程と、この両差圧検出工程による検
出信号に基づいて前記の流動層媒体の単位時間あたりの
取り出し量を判断し、前記燃焼炉と前記媒体容器との間
の差圧の調節及び、又はガス量調節手段による前記エア
レーションガス量の調節により、前記の流動層媒体の単
位時間あたりの取り出し量を所定の設定量に調節する工
程とを含むことを特徴とする加圧流動層ボイラの負荷制
御方法を第2の発明とする。Further, a combustion furnace and a moving bed downcomer for taking out a fluidized bed medium together with gas from a fluidized bed portion of the combustion furnace,
A medium container for storing the fluidized bed medium taken out, a moving bed return pipe for returning the stored fluidized bed medium to the fluidized bed portion of the combustion furnace, an L valve connected to the moving bed downcomer, and The combustion furnace fluidized bed section and the medium of a pressurized fluidized bed boiler provided with gas amount adjusting means for adjusting the amount of aeration gas blown into the L valve and adjusting the amount of the fluidized bed medium taken out per unit time. In the load control method of the pressurized fluidized bed boiler, which controls the load by controlling the bed height of the fluidized bed portion by transferring and returning the fluidized bed medium to and from the container, a unit length in the moving bed downcomer A step of detecting the differential pressure per unit, a step of detecting the differential pressure between the combustion furnace and the medium container, the unit time of the fluidized bed medium based on the detection signal by the differential pressure detection step Determine the amount taken out per By adjusting the differential pressure between the combustion furnace and the medium container and / or adjusting the aeration gas amount by the gas amount adjusting means, the amount of the fluidized bed medium taken out per unit time is adjusted to a predetermined set amount. A second aspect of the present invention is a load control method for a pressurized fluidized bed boiler, comprising:
【0010】[0010]
【作用】移動層下降管内の流動媒体粒子やガスの流速
は、移動層下降管内の差圧と、媒体容器と流動層炉との
間の差圧とに支配される。したがって、これらの差圧を
検出することで、移動層下降管内の流動媒体粒子の単位
時間あたりの取り出し量を知ることができる。そこで、
エアレーションガス量を調節することで、あるいは、燃
焼炉と媒体容器との差圧の調節により、流動媒体粒子の
単位時間あたりの取り出し量を所定の設定量に調節する
ことができる。例えば、所定の設定量より流動層媒体の
取り出し量が減少したときは、移動層下降管内の単位長
さあたりの差圧を大きくすることによっても、燃焼炉と
媒体容器との差圧を小さくすることによっても流動層媒
体の取り出し量を増大することができる。The flow velocity of the fluidized medium particles and gas in the moving bed downcomer is governed by the differential pressure in the moving bed downcomer and the differential pressure between the medium container and the fluidized bed furnace. Therefore, by detecting these differential pressures, the amount of the fluidized medium particles taken out per unit time in the moving bed downcomer can be known. Therefore,
By adjusting the amount of aeration gas or by adjusting the differential pressure between the combustion furnace and the medium container, the amount of the fluidized medium particles taken out per unit time can be adjusted to a predetermined set amount. For example, when the taken-out amount of the fluidized bed medium is smaller than a predetermined set amount, the differential pressure per unit length in the moving bed downcomer is also increased to reduce the differential pressure between the combustion furnace and the medium container. This can also increase the amount of the fluidized bed medium taken out.
【0011】また、エアレーションガス量により流動媒
体粒子の取り出し量を調節できないときは、燃焼炉と媒
体容器との差圧を調節することにより、所定の設定量に
調節することができる。When the amount of fluid medium particles taken out cannot be adjusted by adjusting the amount of aeration gas, the pressure can be adjusted to a predetermined amount by adjusting the differential pressure between the combustion furnace and the medium container.
【0012】[0012]
【実施例】図1は、本発明の一実施例である加圧流動層
ボイラの系統図である。本実施例の加圧流動層ボイラ
は、流動層燃焼炉1、媒体容器2、サイクロン3などが
圧力容器4に収納されている。流動層燃焼炉1には、そ
の底部側に燃焼用空気5の分散板6が設けられ、その上
部に流動媒体が充填されている。この流動媒体は、分散
板6を通って供給された燃焼用空気5によって気泡8を
発生し、流動層7を形成する。石炭10は給炭管9によ
って流動層7内に供給され燃焼される。流動層7内には
伝熱管11が配列され、燃焼熱を吸収してスチームを発
生する。13は燃焼炉空塔部である。なお、図1に示し
た分散板6、伝熱管11、給炭管9などは、あくまでも
模式的に示したものであり、同図は本発明の範囲を限定
するものではない。FIG. 1 is a system diagram of a pressurized fluidized bed boiler which is an embodiment of the present invention. In the pressurized fluidized bed boiler of this embodiment, a fluidized bed combustion furnace 1, a medium container 2, a cyclone 3 and the like are housed in a pressure container 4. The fluidized bed combustion furnace 1 is provided with a dispersion plate 6 for the combustion air 5 on the bottom side and is filled with a fluidized medium on the upper side. This fluid medium generates bubbles 8 by the combustion air 5 supplied through the dispersion plate 6 to form a fluidized bed 7. Coal 10 is supplied into the fluidized bed 7 by the coal feeding pipe 9 and burned. Heat transfer tubes 11 are arranged in the fluidized bed 7 to absorb combustion heat and generate steam. 13 is a combustion furnace empty tower part. It should be noted that the dispersion plate 6, the heat transfer tube 11, the coal feeding tube 9 and the like shown in FIG. 1 are merely schematic, and the same figure does not limit the scope of the present invention.
【0013】流動層燃焼炉1の側壁底部側には、移動層
下降管12が開孔して設けられ、移動層下降管12は、
流動層燃焼炉1の側壁底部より鉛直方向に対して傾斜し
て延出し、さらに、鉛直下方に向かって延びてLバルブ
13を形成する。Lバルブ13には、コントロールバル
ブ14により流量を調節されたエアレーションガス15
が供給される。On the bottom side of the side wall of the fluidized bed combustion furnace 1, a moving bed downcomer pipe 12 is provided with an opening.
An L valve 13 is formed by extending from the bottom of the side wall of the fluidized bed combustion furnace 1 so as to be inclined with respect to the vertical direction, and further extending vertically downward. The L valve 13 has an aeration gas 15 whose flow rate is adjusted by the control valve 14.
Is supplied.
【0014】移動層下降管12の鉛直下方に向かって延
びた部分には、差圧計16が設置され、移動層下降管1
2の単位長さあたりの差圧を連続的に検知し、この差圧
の検出信号は制御ボックス17に入力される。また、流
動層燃焼炉1と媒体容器2との差圧を検出する差圧計3
0も設けられ、この差圧の検出信号も制御ボックス17
に入力される。制御ボックス17では、これらの入力信
号を演算処理して、媒体容器2の空塔部18から開口し
た導管19に設置した減圧弁20、コントロールバルブ
14に操作信号を送ることができる。Lバルブ13から
媒体容器2の空塔部18に気流輸送管21が接続され、
その下端からはバルブ22を通って気流輸送ガス23が
供給される。媒体容器2は、その下端が円錐状に絞られ
移動層管24となり、さらに、Lバルブ25が連結さ
れ、流動層燃焼炉1の側壁底部に開孔して接続されてい
る。Lバルブ25には、バルブ26を通ってエアレーシ
ョンガス27が供給される。また、媒体容器2と流動層
燃焼炉1間にもの差圧計26が設置され、その信号は制
御ボックス17に接続される。A differential pressure gauge 16 is installed in a portion of the moving bed downcomer 12 extending vertically downward, and the moving bed downcomer 1 is installed.
The differential pressure per unit length of 2 is continuously detected, and the detection signal of this differential pressure is input to the control box 17. Further, a differential pressure gauge 3 for detecting a differential pressure between the fluidized bed combustion furnace 1 and the medium container 2
0 is also provided, and this differential pressure detection signal is also sent to the control box 17
Entered in. In the control box 17, these input signals can be arithmetically processed to send operation signals to the pressure reducing valve 20 and the control valve 14 installed in the conduit 19 opened from the empty column portion 18 of the medium container 2. An airflow transport pipe 21 is connected from the L valve 13 to the empty tower portion 18 of the medium container 2,
Airflow transport gas 23 is supplied from the lower end through valve 22. The lower end of the medium container 2 is squeezed into a conical shape to form a moving bed pipe 24, and an L valve 25 is connected to the medium container 2 and is connected to the bottom of the side wall of the fluidized bed combustion furnace 1 by opening a hole. Aeration gas 27 is supplied to the L valve 25 through the valve 26. Further, a differential pressure gauge 26 is installed between the medium container 2 and the fluidized bed combustion furnace 1, and its signal is connected to the control box 17.
【0015】流動層媒体を流動層燃焼炉1から移送、あ
るいは返送するための媒体を輸送するための管、例え
ば、気流輸送管21、Lバルブ25などや機器などは、
本実施例では圧力容器4内に収納されているが、これら
は、圧力容器4の外に設けることもできる。Pipes for transporting the medium for transferring or returning the fluidized bed medium from the fluidized bed combustion furnace 1, for example, the air flow transport pipe 21, the L valve 25 and the like, equipment and the like,
In this embodiment, they are housed in the pressure vessel 4, but they can be provided outside the pressure vessel 4.
【0016】このような本実施例の加圧流動層ボイラに
おいて、例えば、燃焼炉1の圧力は10〜20気圧、燃
焼温度は800〜900℃、燃焼炉1の空塔部13のガ
ス速度は0.5〜1.5m/sの範囲が採用される。流動
媒体及び層内脱硫剤として最大径3mm程度の石灰石粒
子が用いられる。In the pressurized fluidized bed boiler of this embodiment, for example, the pressure of the combustion furnace 1 is 10 to 20 atm, the combustion temperature is 800 to 900 ° C., and the gas velocity of the empty column portion 13 of the combustion furnace 1 is A range of 0.5 to 1.5 m / s is adopted. Limestone particles having a maximum diameter of about 3 mm are used as the fluidized medium and the in-layer desulfurizing agent.
【0017】スチーム発生量の制御は次のようにして行
う。例えば、流動層が伝熱管4群をすべて埋没させる高
さ28にある状態から、流動媒体を移動層下降管12、
Lバルブ13、気流輸送管21を通して媒体容器2に抜
き出して移送すると、燃焼炉1内の流動層高さは28′
の位置に下降し、伝熱管4群の一部が流動層7から露出
し、流動層7内に埋没する伝熱面積が低下して、スチー
ム発生量を減少させることができる。逆に、燃焼炉内の
流動層が28′の状態から媒体容器2内の流動媒体29
を移動層管24、Lバルブ25を通して流動層燃焼炉1
に戻すことによって伝熱管11群をある水準まで流動層
に埋没させて伝熱面積を増加させることによってスチー
ム発生量を所望に増加させることができる。The amount of steam generated is controlled as follows. For example, from a state in which the fluidized bed is at a height 28 where all the heat transfer tubes 4 are buried, the fluidized medium is moved to the moving bed downcomer 12,
When it is extracted and transferred to the medium container 2 through the L valve 13 and the air flow transport pipe 21, the height of the fluidized bed in the combustion furnace 1 is 28 '.
To a position where a part of the heat transfer tube group 4 is exposed from the fluidized bed 7, the heat transfer area buried in the fluidized bed 7 is reduced, and the steam generation amount can be reduced. On the contrary, from the state of the fluidized bed 28 'in the combustion furnace to the fluidized medium 29 in the medium container 2
Through the moving bed tube 24 and the L valve 25 to the fluidized bed combustion furnace 1
The heat generation amount can be increased as desired by increasing the heat transfer area by burying the heat transfer tube group 11 in the fluidized bed to a certain level.
【0018】以上のようにして負荷変化を行うが、本実
施例の加圧流動層ボイラによれば、流動層7の層高変化
を一定速度で安定に行うことができる。例えば、負荷を
低下させる際、燃焼炉1から流動媒体を移動層下降管1
2、Lバルブ13、気流輸送管21を通って媒体容器2
に移動させるが、その流動媒体粒子の流量は移動層下降
管12に設けた差圧計16による、移動層下降管12の
単位長さあたりの差圧の信号と燃焼炉1、媒体容器間に
設置した差圧計30の差圧で推定できる。Although the load is changed as described above, according to the pressurized fluidized bed boiler of this embodiment, the height of the fluidized bed 7 can be changed stably at a constant speed. For example, when the load is reduced, the fluidized medium is moved from the combustion furnace 1 into the moving bed downcomer 1
2, the L valve 13, and the air flow pipe 21 to pass the medium container 2
The flow rate of the fluidized medium particles is set between the combustion furnace 1 and the medium container by the differential pressure gauge 16 provided in the moving bed downcomer 12 and the signal of the differential pressure per unit length of the moving bed downcomer 12. It can be estimated by the differential pressure of the differential pressure gauge 30.
【0019】図2は、Lバルブ13を流れる流動媒体粒
子の流量と、移動層下降管12の単位長さあたりの差圧
と、燃焼炉1、媒体容器2間の差圧の相間関係とを示す
グラフ図である。Lバルブ13を流れる媒体粒子流量
は、移動層下降管12の単位長さあたりの差圧及び燃焼
炉1と媒体容器2間の差圧によって変化する。移動層下
降の圧力はプラス、マイナス双方の値をもつが、燃焼炉
1と媒体容器2間の差圧は、常時、媒体容器2内圧力<
燃焼炉1内圧力となる。ここで、移動層下降管12の差
圧がプラス側とは、移動層下降管12の下部に圧力が高
く、上部において低いことを示す。逆に、移動層下降管
12の差圧がマイナス側とは、移動層下降管12の下部
に圧力が低く、上部において高くなることを示す。同図
において明らかなように、移動層下降管12の単位長さ
あたりの差圧が大きくなるに従い、あるいは、燃焼炉
1、媒体容器2間の差圧が小さくなるに従い、流動媒体
粒子の流量は大きくなる。また、制御不可能領域として
示した範囲は、エアレーションガス15の流量により流
動媒体粒子の流量を調節できない範囲である。FIG. 2 shows the flow rate of fluid medium particles flowing through the L valve 13, the differential pressure per unit length of the moving bed downcomer 12, and the interphase relationship of the differential pressure between the combustion furnace 1 and the medium container 2. It is a graph figure which shows. The flow rate of the medium particles flowing through the L valve 13 changes depending on the differential pressure per unit length of the moving bed downcomer 12 and the differential pressure between the combustion furnace 1 and the medium container 2. The moving bed descending pressure has both positive and negative values, but the pressure difference between the combustion furnace 1 and the medium container 2 is always less than the internal pressure of the medium container 2.
It becomes the pressure in the combustion furnace 1. Here, the positive side of the differential pressure of the moving bed downcomer 12 indicates that the pressure is high in the lower part of the moving bed downcomer 12 and low in the upper part. On the contrary, when the differential pressure of the moving bed downcomer 12 is negative, it means that the pressure is low in the lower part of the moving bed downcomer 12 and high in the upper part. As is clear from the figure, as the differential pressure per unit length of the moving bed downcomer 12 increases or the differential pressure between the combustion furnace 1 and the medium container 2 decreases, the flow rate of the fluidized medium particles is growing. The range shown as the uncontrollable region is a range in which the flow rate of the fluidized medium particles cannot be adjusted by the flow rate of the aeration gas 15.
【0020】より具体的な制御の内容を図3を参照して
説明する。図3は、本実施例の加圧流動層ボイラの作用
を説明するグラフ図である。流動媒体粒子の流量特性X
を中心とした許容範囲εが、流動媒体粒子の流量の所定
の設定量であるとする。例えば、媒体容器2と燃焼炉1
間の差圧を0mmAq(ポイントe)に設定し、粒子流
量をaのポイントで、流動層7の層高の低下を開始した
とする。燃焼炉1内の層高が低下すると、流動層7によ
るシール効果がなくなり、粒子流量がbのポイントまで
低下する。ポイントbは、流量特性Xより流動媒体粒子
の流量の少ない流量特性Yにあり、粒子流量すなわち層
高変化速度が低下している。これをもとの設定量に戻す
ためには、粒子流量をcのポイントにもってくる必要が
ある。そのためには、減圧弁30を操作し、媒体容器2
と燃焼炉1間の差圧をポイントeからポイントfに下げ
ることで可能となる。流動媒体粒子の流量の所定の設定
量には、一定の幅εがあり、この許容範囲ε内に納まる
ように媒体容器2と燃焼炉1間の差圧を滑らかに制御す
る。More specific control contents will be described with reference to FIG. FIG. 3 is a graph illustrating the operation of the pressurized fluidized bed boiler of this embodiment. Flow rate characteristics of fluid medium particles X
It is assumed that an allowable range ε centered on is a predetermined set amount of the flow amount of the fluid medium particles. For example, the medium container 2 and the combustion furnace 1
It is assumed that the pressure difference between them is set to 0 mmAq (point e) and the particle flow rate starts to decrease the bed height of the fluidized bed 7 at the point a. When the bed height in the combustion furnace 1 decreases, the sealing effect of the fluidized bed 7 disappears, and the particle flow rate decreases to the point of b. The point b is in the flow rate characteristic Y in which the flow rate of the fluidized medium particles is smaller than the flow rate characteristic X, and the particle flow rate, that is, the bed height change speed is reduced. In order to return this to the original set amount, it is necessary to bring the particle flow rate to the point of c. For that purpose, the pressure reducing valve 30 is operated, and the medium container 2
This can be achieved by lowering the pressure difference between the combustion furnace 1 and point e from point e. The predetermined set amount of the flow medium particles has a certain width ε, and the differential pressure between the medium container 2 and the combustion furnace 1 is smoothly controlled so as to be within the allowable range ε.
【0021】次に、移動層下降管12内の単位長さあた
りの差圧と、媒体容器2と燃焼炉1間の差圧とが、図3
に示すLバルブ13に導入されるエアレーションガス1
5による流動媒体粒子の流量の制御不可能領域に入った
場合の、流動層7の層高の制御について説明する。ポイ
ントgで運転していたときに、何らかの原因でポイント
hのエアレーションガス15による粒子流量の制御不可
能領域Aに入ると、媒体容器2と燃焼炉1間の差圧をl
のポイントまで移動する。この操作は、減圧弁30の閉
じることで対応できる。その結果、粒子流量特性のポイ
ントiへ移り、粒子流量は初期の特性Xより低下し、制
御不可能領域Aを脱する。これを、初期の粒子流量まで
戻すには、Lバルブ14の制御によりエアレーションガ
ス15流量を増加し、ポイントkに移動する。Next, the differential pressure per unit length in the moving bed downcomer 12 and the differential pressure between the medium container 2 and the combustion furnace 1 are shown in FIG.
Aeration gas 1 introduced into the L valve 13 shown in FIG.
The control of the bed height of the fluidized bed 7 in the case where the flow rate of the fluidized medium particles enters the uncontrollable region by 5 will be described. If the particle flow rate uncontrollable region A due to the aeration gas 15 at the point h is entered for some reason while operating at the point g, the differential pressure between the medium container 2 and the combustion furnace 1 is set to l.
Move to the point. This operation can be handled by closing the pressure reducing valve 30. As a result, the point moves to the point i of the particle flow rate characteristic, the particle flow rate becomes lower than the initial characteristic X, and the particle is out of the uncontrollable region A. In order to return this to the initial particle flow rate, the flow rate of the aeration gas 15 is increased by the control of the L valve 14 to move to the point k.
【0022】また、何らかの原因で、移動層下降管12
の差圧が、プラス1000mmAq/mを越えて、エア
レーションガス15による流動媒体粒子の流量の制御不
可能領域Bに入った場合には、Lバルブ13に導入され
るエアレーションガス15を遮断し、さらに、媒体容器
2と燃焼炉1間の差圧をマイナス側に調整する制御を行
なえばよい。For some reason, the moving bed downcomer 12
When the differential pressure exceeds 1000 mmAq / m and enters the uncontrollable region B of the flow rate of the fluidized medium particles by the aeration gas 15, the aeration gas 15 introduced into the L valve 13 is shut off, and The control for adjusting the differential pressure between the medium container 2 and the combustion furnace 1 to the negative side may be performed.
【0023】[0023]
【発明の効果】以上説明した本発明によれば、流動層燃
焼炉からの流動媒体の粒子取り出し量を、負荷変化速度
に対応して精度よく調節でき、したがって、負荷変化時
にもNOx、CO、SO2等の有害な物質の異常発生を
生じることなく安定した運転ができる加圧流動層ボイラ
及びその負荷制御方法を提供することができる。According to the present invention described above, the amount of particles taken out of the fluidized medium from the fluidized bed combustion furnace can be adjusted accurately in accordance with the load changing speed, and therefore NOx, CO, and It is possible to provide a pressurized fluidized bed boiler and a load control method therefor capable of stable operation without causing abnormal generation of harmful substances such as SO 2 .
【図1】本発明の一実施例である加圧流動層ボイラの系
統図である。FIG. 1 is a system diagram of a pressurized fluidized bed boiler which is an embodiment of the present invention.
【図2】本発明の一実施例である加圧流動層ボイラにつ
き、Lバルブを流れる流動媒体粒子の流量と、移動層下
降管の単位長さあたりの差圧と、燃焼炉、媒体容器間の
差圧の相間関係とを示すグラフ図である。FIG. 2 shows a flow rate of fluid medium particles flowing through an L valve, a differential pressure per unit length of a moving bed downcomer, a combustion furnace, and a medium container in a pressurized fluidized bed boiler which is an embodiment of the present invention. It is a graph figure which shows the phase relationship of the differential pressure of.
【図3】本発明の一実施例である加圧流動層ボイラの作
用を説明するグラフ図である。FIG. 3 is a graph showing the operation of a pressurized fluidized bed boiler which is an embodiment of the present invention.
1 流動層燃焼炉 2 媒体容器 5、5´ 層高 7 流動層部 12 移動層下降管 13 Lバルブ 14 コントロールバルブ 15 エアレーションガス 16 差圧計 17 制御ボックス 20 減圧弁 25 Lバルブ 29 流動層媒体 30 差圧計 1 fluidized bed combustion furnace 2 medium container 5, 5'bed height 7 fluidized bed section 12 moving bed downcomer 13 L valve 14 control valve 15 aeration gas 16 differential pressure gauge 17 control box 20 pressure reducing valve 25 L valve 29 fluidized bed medium 30 differential Pressure gauge
Claims (2)
動層媒体をガスとともに取り出す移動層下降管と、この
取り出した流動層媒体を貯溜する媒体容器と、前記の貯
溜された流動層媒体を前記燃焼炉流動層部に戻す移動層
戻り管と、前記移動層下降管に連結されたLバルブと、
このLバルブに吹き込むエアレーションガス量を調節
し、前記の流動層媒体の単位時間あたりの取り出し量を
調節するガス量調節手段とを備え、前記燃焼炉流動層部
と前記媒体容器との間で前記流動層媒体を移送、返送し
て前記流動層部の層高を制御し、負荷の制御を行なう加
圧流動層ボイラにおいて、前記移動層下降管内の単位長
さあたりの差圧を検出する第1の差圧計と、前記燃焼炉
と前記媒体容器との間の差圧を検出する第2の差圧計
と、前記燃焼炉と前記媒体容器との間の差圧を調節する
差圧調節手段と、前記第1及び第2の差圧計による検出
信号に基づいて前記の流動層媒体の単位時間あたりの取
り出し量を判断し、前記差圧調節手段による前記燃焼炉
と前記媒体容器との間の差圧の調節及び、又はガス量調
節手段による前記エアレーションガス量の調節により、
前記の流動層媒体の単位時間あたりの取り出し量を所定
の設定量に調節する制御器とを備えたことを特徴とする
加圧流動層ボイラ。1. A combustion furnace, a moving bed downcomer for taking out a fluidized bed medium together with gas from a fluidized bed portion of the combustion furnace, a medium container for storing the taken out fluidized bed medium, and the stored fluidized bed. A moving bed return pipe for returning the medium to the fluidized bed portion of the combustion furnace; an L valve connected to the moving bed downcomer;
Gas amount adjusting means for adjusting the amount of aeration gas blown into the L valve and adjusting the amount of the fluidized bed medium taken out per unit time are provided, and the gas is provided between the combustion furnace fluidized bed section and the medium container. In a pressurized fluidized bed boiler that transfers and returns a fluidized bed medium to control the bed height of the fluidized bed section to control the load, first detecting a differential pressure per unit length in the moving bed downcomer. Differential pressure gauge, a second differential pressure gauge for detecting a differential pressure between the combustion furnace and the medium container, and a differential pressure adjusting means for adjusting the differential pressure between the combustion furnace and the medium container, The amount of the fluidized bed medium taken out per unit time is determined based on the detection signals of the first and second differential pressure gauges, and the differential pressure between the combustion furnace and the medium container is adjusted by the differential pressure adjusting means. And / or gas amount adjusting means By adjusting the Shongasu amount,
A pressurized fluidized bed boiler, comprising: a controller for adjusting the amount of the fluidized bed medium taken out per unit time to a predetermined set amount.
動層媒体をガスとともに取り出す移動層下降管と、この
取り出した流動層媒体を貯溜する媒体容器と、前記の貯
溜された流動層媒体を前記燃焼炉流動層部に戻す移動層
戻り管と、前記移動層下降管に連結されたLバルブと、
このLバルブに吹き込むエアレーションガス量を調節
し、前記の流動層媒体の単位時間あたりの取り出し量を
調節するガス量調節手段とを備えた加圧流動層ボイラ
の、前記燃焼炉流動層部と前記媒体容器との間で前記流
動層媒体を移送、返送して前記流動層部の層高を制御
し、負荷の制御を行なう加圧流動層ボイラの負荷制御方
法において、前記移動層下降管内の単位長さあたりの差
圧を検出する工程と、前記燃焼炉と前記媒体容器との間
の差圧を検出する工程と、この両差圧検出工程による検
出信号に基づいて前記の流動層媒体の単位時間あたりの
取り出し量を判断し、前記燃焼炉と前記媒体容器との間
の差圧の調節及び、又はガス量調節手段による前記エア
レーションガス量の調節により、前記の流動層媒体の単
位時間あたりの取り出し量を所定の設定量に調節する工
程とを含むことを特徴とする加圧流動層ボイラの負荷制
御方法。2. A combustion furnace, a moving bed downcomer for taking out the fluidized bed medium together with gas from the fluidized bed portion of the combustion furnace, a medium container for storing the taken out fluidized bed medium, and the stored fluidized bed. A moving bed return pipe for returning the medium to the fluidized bed portion of the combustion furnace; an L valve connected to the moving bed downcomer;
The combustion furnace fluidized bed section and the combustion fluidized bed section of a pressurized fluidized bed boiler provided with gas amount adjusting means for adjusting the amount of aeration gas blown into the L valve and adjusting the amount of the fluidized bed medium taken out per unit time. In the load control method of the pressurized fluidized bed boiler, which controls the load by controlling the bed height of the fluidized bed portion by transferring and returning the fluidized bed medium to and from the medium container, a unit in the moving bed downcomer. A step of detecting a differential pressure per length, a step of detecting a differential pressure between the combustion furnace and the medium container, a unit of the fluidized bed medium based on a detection signal by the both differential pressure detection steps By determining the amount taken out per time, by adjusting the differential pressure between the combustion furnace and the medium container, or, or by adjusting the aeration gas amount by the gas amount adjusting means, per unit time of the fluidized bed medium take out Load control method of pressurized fluid Doso boiler which comprises a step of adjusting to a predetermined set amount.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8444294A JPH07293819A (en) | 1994-04-22 | 1994-04-22 | Pressurized fluidized bed type boiler and its load controlling method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8444294A JPH07293819A (en) | 1994-04-22 | 1994-04-22 | Pressurized fluidized bed type boiler and its load controlling method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH07293819A true JPH07293819A (en) | 1995-11-10 |
Family
ID=13830717
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8444294A Pending JPH07293819A (en) | 1994-04-22 | 1994-04-22 | Pressurized fluidized bed type boiler and its load controlling method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07293819A (en) |
-
1994
- 1994-04-22 JP JP8444294A patent/JPH07293819A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8602693B2 (en) | Method and apparatus for controlling a stream of solids | |
| US4709663A (en) | Flow control device for solid particulate material | |
| PL179305B1 (en) | Method of and apparatus for controlling temperature of a reaction bed in reactors with circulating fluidised beds | |
| EP0390776B1 (en) | Method and reactor for combustion in a fluidised bed | |
| US4614167A (en) | Combustion chamber having beds located one above the other and a method of controlling it | |
| JPH07293819A (en) | Pressurized fluidized bed type boiler and its load controlling method | |
| Knowlton | Standpipes and return systems | |
| EP0541419A1 (en) | A method for making a fluid bed furnace having an external circulation system | |
| JP3016913B2 (en) | Operating method of pressurized fluidized bed combustion device | |
| JP2004132621A (en) | Particle circulation amount control method and apparatus in circulating fluidized bed boiler | |
| JPH04260708A (en) | Method of controlling pressurized fluidized bed type combustion device | |
| JPS59213435A (en) | Downflow controlling method in fluidized bed of powder and particulate body | |
| JP2957243B2 (en) | Pressurized fluidized bed combustion device | |
| JPH04124505A (en) | Method of controlling layer height of pressurized fluidized bed combustion furnace | |
| EP0141543A2 (en) | Non-mechanical conveyancing system and process | |
| JPS5944348B2 (en) | Fluidized medium pumping device for multi-column circulation pyrolysis equipment | |
| JPH0745467Y2 (en) | Gas control valve for solid particulate recirculation | |
| JPH06272816A (en) | Pressurized fluidized bed type combustion furnace | |
| JP2909297B2 (en) | Fluidized bed height control device for combustion furnace | |
| JPH06249409A (en) | Pressurized fluidized bed boiler | |
| JP2995692B2 (en) | Fluidized bed boiler bed height control device | |
| JPS60105807A (en) | Fluidized bed type boiler and controlling method thereof | |
| JP3063362B2 (en) | Pressurized fluidized bed combustion furnace | |
| JPH0625602B2 (en) | Fluidized bed boiler control method | |
| JPH0960801A (en) | Fluidized bed combustion equipment |