[go: up one dir, main page]

JPH0730015B2 - Method for producing perpropionic acid - Google Patents

Method for producing perpropionic acid

Info

Publication number
JPH0730015B2
JPH0730015B2 JP30620686A JP30620686A JPH0730015B2 JP H0730015 B2 JPH0730015 B2 JP H0730015B2 JP 30620686 A JP30620686 A JP 30620686A JP 30620686 A JP30620686 A JP 30620686A JP H0730015 B2 JPH0730015 B2 JP H0730015B2
Authority
JP
Japan
Prior art keywords
acid
reaction
hydrogen peroxide
mol
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30620686A
Other languages
Japanese (ja)
Other versions
JPS63159365A (en
Inventor
薫 上野
隆良 増田
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP30620686A priority Critical patent/JPH0730015B2/en
Publication of JPS63159365A publication Critical patent/JPS63159365A/en
Publication of JPH0730015B2 publication Critical patent/JPH0730015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、過プロピオン酸の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing perpropionic acid.

〔従来の技術〕[Conventional technology]

過酸化水素とプロピオン酸とを反応させて過プロピオン
酸を製造するに際し、通常、反応時間を短縮するために
適当な触媒を使用することが公知であり、例えば、硫
酸、塩酸、燐酸、各種スルフォン酸、陽イオン交換樹
脂、硼酸などが提案されている。触媒に関する研究と同
時に、上記反応は水の生成は伴う平衡反応であるため、
平衡を生成系に移動させる方法が種々提案されている。
従来より提案されている方法を以下に例記する。
In producing perpropionic acid by reacting hydrogen peroxide with propionic acid, it is generally known to use a suitable catalyst in order to shorten the reaction time. For example, sulfuric acid, hydrochloric acid, phosphoric acid and various sulfones. Acids, cation exchange resins, boric acid, etc. have been proposed. At the same time as research on catalysts, the above reaction is an equilibrium reaction accompanied by the formation of water,
Various methods for moving the equilibrium to the production system have been proposed.
The method conventionally proposed is described below.

(1) 10〜41重量パーセントの硫酸水溶液を触媒とし
て過酸化水素とプロピオン酸との反応させ、ついで生成
したプロピオン酸をベンゼンなどの溶剤で抽出し、過酸
化水素の同伴水及び反応により生成した水を蒸留等によ
り除去し、濃縮された硫酸水溶液を反応系へ循環させる
方法(例えば、特開昭56−15263号、特開昭56−45457
号)。
(1) Propionic acid was reacted with hydrogen peroxide using 10 to 41 weight percent sulfuric acid aqueous solution as a catalyst, and then the generated propionic acid was extracted with a solvent such as benzene, and was generated by entrained water and reaction of hydrogen peroxide. A method in which water is removed by distillation and the concentrated aqueous solution of sulfuric acid is circulated to the reaction system (for example, JP-A-56-15263 and JP-A-56-45457).
issue).

(2) 数10%の硫酸水溶液、アルキルスルホン酸等の
酸触媒の存在下、水と不均一共沸混合物を形成し得る不
活性有機溶剤の存在下において、過酸化水素とプロピオ
ン酸とを反応させるに際し、反応混合物中に存在する水
を、水/有機溶剤共沸混合物の蒸留により除去する方法
(例えば、特開昭54−160313号)。
(2) Hydrogen peroxide and propionic acid are reacted with each other in the presence of an acid catalyst such as several 10% sulfuric acid aqueous solution and alkylsulfonic acid in the presence of an inert organic solvent capable of forming a heterogeneous azeotropic mixture with water. In this case, water present in the reaction mixture is removed by distillation of a water / organic solvent azeotrope (for example, JP-A-54-160313).

(3) 硫酸などの強酸触媒のかわりに、硼酸、酸化硼
酸、酸化砒素、酸化センサなどを触媒として均一な液相
中において(2)と同様にして過プロピオン酸を製造す
る方法(例えば、特開昭−56−15263号、特開昭56−454
57号)。
(3) Instead of a strong acid catalyst such as sulfuric acid, a method of producing perpropionic acid in the same liquid phase using boric acid, boric acid oxide, arsenic oxide, an oxidation sensor or the like as a catalyst (for example, a special method) Kai-56-15263, JP-A-56-454
No. 57).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記(1)の方法では反応液中から高収
率で過プロピオン酸を抽出するためには、大量の溶剤と
多くの抽出段数を必要とする。
However, the method (1) requires a large amount of solvent and a large number of extraction stages in order to extract perpropionic acid from the reaction solution in high yield.

また、抽出後の有機相中にも相当量の硫酸が移行するた
め、さらに有機相を水で洗浄して硫酸を除去し、ついで
共沸蒸留により乾燥する必要があるなど操作が煩雑であ
る。また、一般のオーステナイト系ステンレス鋼を使用
すると耐食性に問題が発生するばかりか、過プロピオン
酸収率が低下するなど工業的には困難である。
Further, since a considerable amount of sulfuric acid is transferred to the organic phase after extraction, it is necessary to wash the organic phase with water to remove sulfuric acid, and then to dry it by azeotropic distillation, which makes the operation complicated. Further, when general austenitic stainless steel is used, not only problems in corrosion resistance occur, but also the yield of perpropionic acid decreases, which is industrially difficult.

上記(2)の方法は反応混合物中の水を有機溶媒との共
沸蒸留によって除去するため、過酸化水素に基づく過プ
ロピオン酸の収率という点では優れた方法であるが、上
記(1)と同様に反応液中に硫酸などの強酸を含有する
ため、この除去に多大のエネルギーを必要とする。強酸
を含有したまま過プロピオン酸を使用すると望ましくな
い副反応が起こり、その結果目的生成物の収率を低下さ
せる。例えばオレフィンのエポキシ化反応においては、
生成したエポキシドが強酸触媒の作用により容易に開裂
して、モノおよびジエチルの混合物に転化してしまう。
また上記(1)と同様に高級耐食性材質が必要であるな
どの欠点を有する。
The method (2) above is an excellent method in terms of the yield of perpropionic acid based on hydrogen peroxide, since water in the reaction mixture is removed by azeotropic distillation with an organic solvent. Similarly, the reaction solution contains a strong acid such as sulfuric acid, and thus requires a large amount of energy for its removal. The use of perpropionic acid with the inclusion of strong acids leads to undesired side reactions, which reduces the yield of the desired product. For example, in the epoxidation reaction of olefin,
The epoxide formed is easily cleaved by the action of a strong acid catalyst and converted into a mixture of mono and diethyl.
Further, similarly to the above (1), it has a drawback that a high-grade corrosion resistant material is required.

上記(3)の方法では、硼酸のような弱酸を使用するた
め、反応液より触媒除去の必要がなく、また装置の耐食
性という点では大幅に改善されているが、反応の進行中
に水の不均質共沸蒸留を用いて過プロピオン酸を製造す
るこれらの方法は、認め得る程の量の過酸化物が、留出
したい水相中へ随判されるという欠点を有する。随判さ
れる過酸化物の量は、使用する共沸脱水溶剤の種類によ
って異なるが、一般に、装入された過酸化水素の4〜10
%にまで達し得るという問題がある。
In the above method (3), since a weak acid such as boric acid is used, it is not necessary to remove the catalyst from the reaction solution, and although the corrosion resistance of the apparatus is greatly improved, it is possible to remove water during the reaction. These processes for producing perpropionic acid using heterogeneous azeotropic distillation have the disadvantage that appreciable amounts of peroxide are adsorbed into the aqueous phase to be distilled. The amount of peroxide to be admitted depends on the type of azeotropic dehydration solvent used, but it is generally 4-10% of the charged hydrogen peroxide.
There is a problem that it can reach up to%.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

本発明者らは、上記の問題点を解決するための種々検討
した結果、遂に本発明を完成するに至った。
The present inventors finally conducted the present invention as a result of various studies for solving the above problems.

すなわち、本発明は、水と不均質な共沸物を形成しうる
溶剤と触媒の存在下、過酸化水素とプロピオン酸とを反
応させ、次いで過酸化水素と共に導入された水と反応中
に生成した水とを共沸蒸留により除去する過プロピオン
酸の製造方法において、プロピオン酸の一部を共沸蒸留
塔の塔頂部から連続的に挿入することを特徴とする過プ
ロピオン酸の製造方法である。
That is, according to the present invention, hydrogen peroxide and propionic acid are reacted in the presence of a solvent and a catalyst capable of forming an inhomogeneous azeotrope with water, and then produced during the reaction with water introduced together with hydrogen peroxide. In the method for producing perpropionic acid by removing azeotropic water with azeotropic distillation, a method for producing perpropionic acid, characterized in that a part of propionic acid is continuously inserted from the top of the azeotropic distillation column. .

本発明における連続的に装入するプロピオン酸の重量
は、共沸蒸留により除去する水の重量の0.3〜3.0倍であ
る。
The weight of propionic acid charged continuously in the present invention is 0.3 to 3.0 times the weight of water removed by azeotropic distillation.

プロピオン酸の装入量が0.3倍未満では過酸化物の水相
中への随判防止効果が十分でなく、また、装入量が3.0
倍を超えると過酸化物の随判量が一定となるため、これ
以上多量に装入する必要はない。
If the amount of propionic acid charged is less than 0.3 times, the effect of preventing the peroxide in the water phase from being discriminated is not sufficient, and the amount charged is 3.0.
If the amount is more than doubled, the amount of the peroxide will be constant, so that it is not necessary to charge a larger amount.

本発明においてプロピオン酸を連続的に装入するという
ことは、反応時間の大部分にわたって断続的に装入する
ことも意味するものである。
The continuous charging of propionic acid in the present invention also means intermittent charging over most of the reaction time.

本発明で用いる触媒は硼酸または硼酸と燐酸の併用であ
り、特にステンレス製反応器を使用する場合には、本発
明者らは先願(特願昭61−258392号)のように硼酸と燐
酸の併用が望ましい。本発明で用いる触媒は市販のオル
ト硼酸またはメタ硼酸を、燐酸は市販のオルト燐酸を使
用し得る。触媒の添加量は過酸化水素1モル当り0.03モ
ル以上が望ましい。0.03モル未満では過プロピオン酸の
収率が低下する。
The catalyst used in the present invention is boric acid or a combination of boric acid and phosphoric acid. Especially when a stainless steel reactor is used, the present inventors have found that boric acid and phosphoric acid were used as in the previous application (Japanese Patent Application No. 61-258392). It is desirable to use together. The catalyst used in the present invention may be commercially available orthoboric acid or metaboric acid, and the phosphoric acid may be commercially available orthophosphoric acid. The addition amount of the catalyst is preferably 0.03 mol or more per mol of hydrogen peroxide. If it is less than 0.03 mol, the yield of perpropionic acid is lowered.

しかし、1モル以上では過プロピオン酸の収率がほぼ一
定となるので、それ以上多量に添加する必要はない。
However, since the yield of perpropionic acid becomes almost constant when it is 1 mol or more, it is not necessary to add it in a larger amount.

本発明で用いる過酸化水素及びプロピオン酸は標準の市
販品の形で使用し得る。特に過酸化水素は、30〜60重量
パーセントの市販の水溶液の形で使用し得る。過酸化水
素とプロピオン酸のモル比は、特に限定されないが、過
酸化水素を効率良く反応させるためには、プロピオン酸
装入終了時のプロピオン酸/過酸化水素=2.0〜5.0(モ
ル比)が望ましい。
Hydrogen peroxide and propionic acid used in the present invention may be used in the form of standard commercial products. Hydrogen peroxide, in particular, may be used in the form of a 30 to 60 weight percent commercially available aqueous solution. The molar ratio of hydrogen peroxide and propionic acid is not particularly limited, but in order to react hydrogen peroxide efficiently, propionic acid / hydrogen peroxide at the end of propionic acid charging = 2.0 to 5.0 (molar ratio). desirable.

本発明で用いる共沸物を形成し得る溶剤としては、水と
不均質な共沸物を形成し、共沸組成中の水含量が大き
く、かつ蒸発潜熱の小さいものが経済的に有利である。
かかる溶剤としては、例えば、1,2ジクロルエタン、1,2
ジクロルプロパン、ベンゼン、シクロヘキサン等を挙げ
ることができる。
As the solvent capable of forming an azeotrope used in the present invention, one which forms a heterogeneous azeotrope with water, has a large water content in the azeotropic composition, and has a low latent heat of vaporization is economically advantageous .
Examples of such a solvent include 1,2 dichloroethane, 1,2
Examples thereof include dichloropropane, benzene and cyclohexane.

反応温度は50〜80℃が好ましく、50℃未満では過プロピ
オン酸の生成速度が遅く、80℃を超えると生成した過プ
ロピオン酸の分解損失が大きく、ともに収率を低下させ
る。反応圧力は反応系組成及び選択した温度に応じて異
なる減圧下で行われるが、通常100〜500mmHgである。
The reaction temperature is preferably 50 to 80 ° C. When the reaction temperature is lower than 50 ° C., the production rate of perpropionic acid is slow, and when the reaction temperature exceeds 80 ° C., the decomposition loss of the produced perpropionic acid is large and the yield is reduced. The reaction pressure is usually 100 to 500 mmHg under reduced pressure which varies depending on the composition of the reaction system and the temperature selected.

このようにして得られた過プロピオン酸は通常のエポキ
シ化、ケトンの酸化、芳香核の開環反応等に何ら支障な
く使用することができる。
The thus obtained perpropionic acid can be used for ordinary epoxidation, ketone oxidation, aromatic ring opening reaction and the like without any trouble.

尚、本発明の反応及び共沸蒸留は連続式でも回分式でも
可能である。
The reaction and azeotropic distillation of the present invention can be carried out continuously or batchwise.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明する。但
し、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples.

実施例1 塔頂部に還流コンデンサを取付けた10段オルダーショウ
蒸留塔付パイオレックスガラス製500ml反応器に、60%
過酸化水素47.6g(0.84モル)、プロピオン酸186.3g
(2.52モル)、触媒としてオルト硼酸3.3g(0.053モ
ル)、共沸脱水溶剤として1,2ジクロルエタン94gを装入
した。この反応器をオイルバスにより内温70℃、(反応
初期内圧200mmHg)に加熱した。共沸蒸留塔の塔頂のコ
ンデンサは凝縮した有機相だけが蒸留塔に還流され、一
方、分離した水相は連続的に排出されるように設計し
た。反応は水相の留出が終了するまで続け、2時間を要
した。一方、共沸蒸留塔の塔頂部より100gのプロピオン
酸をこの間、連続的に装入した。この間に35gの水相が
排出され、この中に過酸化水素0.009モル、過プロピオ
ン酸0.001モルが含まれていた。これは反応に用いた過
酸化水素の1.2%にあたる。また反応液中には0.788モル
の過プロピオン酸が含まれていた。反応条件及び結果を
まとめて表−1に示す。
Example 1 60% was added to a 500 ml reactor made of Piolex glass with a 10-stage Oldershaw distillation column equipped with a reflux condenser at the top of the column.
Hydrogen peroxide 47.6g (0.84mol), propionic acid 186.3g
(2.52 mol), orthoboric acid 3.3 g (0.053 mol) as a catalyst, and 1,2 dichloroethane 94 g as an azeotropic dehydration solvent were charged. The reactor was heated to an internal temperature of 70 ° C. (initial internal pressure of reaction: 200 mmHg) by an oil bath. The condenser at the top of the azeotropic distillation column was designed so that only the condensed organic phase was refluxed to the distillation column, while the separated aqueous phase was continuously discharged. The reaction continued for 2 hours until the distillation of the aqueous phase was completed. On the other hand, 100 g of propionic acid was continuously charged from the top of the azeotropic distillation column during this period. During this period, 35 g of an aqueous phase was discharged, and 0.009 mol of hydrogen peroxide and 0.001 mol of perpropionic acid were contained in this. This is 1.2% of the hydrogen peroxide used in the reaction. The reaction solution contained 0.788 mol of perpropionic acid. The reaction conditions and results are summarized in Table 1.

実施例2 塔頂部よりのプロピオン酸の装入量を20gとした以外は
実施例−1と同様の方法で実施した。反応に2時間20分
を要した。この間に35gの水相が排出され、この中に過
酸化水素0.012モル、過プロピオン酸0.002モルが含まれ
ていた。
Example 2 The procedure of Example 1 was repeated, except that the amount of propionic acid charged from the top of the tower was 20 g. The reaction took 2 hours and 20 minutes. During this period, 35 g of an aqueous phase was discharged, which contained 0.012 mol of hydrogen peroxide and 0.002 mol of perpropionic acid.

これは反応に用いた過酸化水素の1.7%にあたる。反応
条件及び結果をまとめて表−1に示す。
This is 1.7% of hydrogen peroxide used in the reaction. The reaction conditions and results are summarized in Table 1.

実施例3 共沸脱水溶剤として1,2ジクロルエタンのかわりに1,2ジ
クロルプロパン94gを使用し、反応初期内圧を170mmHg
(内温70℃)にした以外は、実施例−1と同様に実施し
た。反応時間に1時間40分を要し、この間に35gの水相
が排出された。この中に過酸化水素0.020モル、過プロ
ピオン酸0.003モルが含まれていた。これは反応に用い
た過酸化水素の2.7%にあたる。反応条件及び結果をま
とめて表−1に示す。
Example 3 As an azeotropic dehydration solvent, 94 g of 1,2 dichloropropane was used instead of 1,2 dichloroethane, and the initial internal pressure of the reaction was 170 mmHg.
Example 1 was repeated except that the internal temperature was 70 ° C. The reaction time required 1 hour and 40 minutes, during which 35 g of the aqueous phase was discharged. In this, 0.020 mol of hydrogen peroxide and 0.003 mol of perpropionic acid were contained. This corresponds to 2.7% of hydrogen peroxide used in the reaction. The reaction conditions and results are summarized in Table 1.

実施例4 反応器にSUS−316製500ml反応器を用い、触媒としてオ
ルト硼酸3.3g(0.053モル)、燐酸0.165g(0.0017モ
ル)を添加する以外は、実施例−1と同様の方法で実施
した。反応に2時間を要し、この間に35gの水相が排出
され、この中に過酸化水素0.010モル、過プロピオン酸
0.001モルが含まれていた。
Example 4 A procedure similar to that of Example 1 was carried out except that a 500 ml reactor made of SUS-316 was used as a reactor and 3.3 g (0.053 mol) of orthoboric acid and 0.165 g (0.0017 mol) of phosphoric acid were added as catalysts. did. The reaction takes 2 hours, during which 35 g of the aqueous phase is discharged, and 0.010 mol of hydrogen peroxide, perpropionic acid
It contained 0.001 mol.

これは反応に用いた過酸化水素の1.3%にあたる。反応
条件及び結果をまとめて表−1に示す。
This is 1.3% of the hydrogen peroxide used in the reaction. The reaction conditions and results are summarized in Table 1.

比較例1 プロピオン酸286.3g(3.87モル)を一括して装入し、反
応初期内圧を140mmHg(内温70℃)にする以外は、実施
例−1と同様に実施した。反応時間に1時間50分を要
し、この間に35gの水相が排出された。この中の過酸化
水素0.045モル、過プロピオン酸0.005モルが含まれてい
た。これは反応に用いた過酸化水素の6.0%にあたる。
反応条件及び結果をまとめて表−1に示す。
Comparative Example 1 The procedure of Example 1 was repeated except that 286.3 g (3.87 mol) of propionic acid was charged all at once and the initial internal pressure of the reaction was 140 mmHg (internal temperature 70 ° C.). The reaction time required 1 hour and 50 minutes, during which 35 g of the aqueous phase was discharged. In this, 0.045 mol of hydrogen peroxide and 0.005 mol of perpropionic acid were contained. This corresponds to 6.0% of hydrogen peroxide used in the reaction.
The reaction conditions and results are summarized in Table 1.

比較例2 塔頂部よりのプロピオン酸の装入量を6gとした以外は実
施例−1と同様の方法で実施した。反応に2時間を要
し、この間に35gの水相が排出され、この中に過酸化水
素0.033モル、過プロピオン酸0.003モルが含まれてい
た。
Comparative Example 2 The procedure of Example 1 was repeated, except that the amount of propionic acid charged from the top of the tower was 6 g. The reaction took 2 hours, during which 35 g of the aqueous phase was discharged, containing 0.033 mol of hydrogen peroxide and 0.003 mol of perpropionic acid.

これは反応に用いた過酸化水素の4.5%にあたる。反応
条件及び結果をまとめて表−1に示す。
This is 4.5% of the hydrogen peroxide used in the reaction. The reaction conditions and results are summarized in Table 1.

比較例3 プロピオン酸286.3g(3.87モル)を一括して装入し、共
沸脱水溶剤として1,2ジクロルエタンのかわりに1,2ジク
ロルプロパン94gを使用し、反応初期内圧を110mmHg(内
温70℃)とする以外は、実施例−1と同様にした。反応
時間に1時間30分を要し、この間に35gの水相が排出さ
れた。この中に過酸化水素0.092モル、過プロピオン酸
0.010モルが含まれていた。これは反応に用いた過酸化
水素の12.1%にあたる。反応条件及び結果をまとめて表
−1に示す。
Comparative Example 3 286.3 g (3.87 mol) of propionic acid was charged all at once, 94 g of 1,2 dichloropropane was used as the azeotropic dehydration solvent instead of 1,2 dichloroethane, and the initial internal pressure of the reaction was 110 mmHg (internal temperature). Example 1 was repeated except that the temperature was 70 ° C. The reaction time required 1 hour 30 minutes, during which 35 g of the aqueous phase was discharged. In this, 0.092 mol hydrogen peroxide, perpropionic acid
It contained 0.010 mol. This is 12.1% of the hydrogen peroxide used in the reaction. The reaction conditions and results are summarized in Table 1.

〔発明の効果〕 本発明は、実施例において明らかなように、共沸蒸留塔
の塔頂部よりプロピオン酸を連続的に装入するという簡
単な方法により、水相中に随判される過酸化物の損失を
大幅に低減出来、その結果、特に過酸化水素が有効に反
応に利用され、過プロピオン酸収率が向上するので、そ
の産業上の利用価値は大きい。
[Effects of the Invention] As is apparent from the examples, the present invention provides a pertinent peroxidation in the aqueous phase by a simple method of continuously charging propionic acid from the top of an azeotropic distillation column. Material loss can be greatly reduced, and as a result, especially hydrogen peroxide is effectively used for the reaction, and the yield of perpropionic acid is improved, so that its industrial utility value is great.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】水と不均質な共沸物を形成しうる溶剤と触
媒の存在下に、過酸化水素とプロピオン酸とを反応さ
せ、次いで過酸化水素と共に導入された水と反応中に生
成した水とを共沸蒸留により除去する過プロピオン酸の
製造方法において、プロピオン酸の一部を共沸蒸留塔の
塔頂部から連続的に装入することを特徴とする過プロピ
オン酸の製造方法。
1. A method of reacting hydrogen peroxide with propionic acid in the presence of a solvent and a catalyst capable of forming an inhomogeneous azeotrope with water, and then forming during the reaction with water introduced together with hydrogen peroxide. A method for producing perpropionic acid in which a portion of propionic acid is continuously charged from the top of an azeotropic distillation column in the method for producing perpropionic acid by removing azeotropic water with azeotropic distillation.
【請求項2】触媒が硼酸または硼酸と燐酸の併用である
特許請求の範囲第1項記載の過プロピオン酸の製造方
法。
2. The method for producing perpropionic acid according to claim 1, wherein the catalyst is boric acid or a combination of boric acid and phosphoric acid.
【請求項3】連続的に装入するプロピオン酸の重量が共
沸蒸留により除去される水の重量の0.3〜3.0倍である特
許請求の範囲第1項記載の過プロピオン酸の製造方法。
3. The method for producing perpropionic acid according to claim 1, wherein the weight of propionic acid charged continuously is 0.3 to 3.0 times the weight of the water removed by azeotropic distillation.
JP30620686A 1986-12-24 1986-12-24 Method for producing perpropionic acid Expired - Fee Related JPH0730015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30620686A JPH0730015B2 (en) 1986-12-24 1986-12-24 Method for producing perpropionic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30620686A JPH0730015B2 (en) 1986-12-24 1986-12-24 Method for producing perpropionic acid

Publications (2)

Publication Number Publication Date
JPS63159365A JPS63159365A (en) 1988-07-02
JPH0730015B2 true JPH0730015B2 (en) 1995-04-05

Family

ID=17954269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30620686A Expired - Fee Related JPH0730015B2 (en) 1986-12-24 1986-12-24 Method for producing perpropionic acid

Country Status (1)

Country Link
JP (1) JPH0730015B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014190A1 (en) * 1997-09-16 1999-03-25 Daicel Chemical Industries, Ltd. Process for preparing equilibrium peroxy acid and process for producing lactone
US5965737A (en) * 1999-02-17 1999-10-12 Bayer Corporation Approach to the conversion of 2-(methylthio)-5-(trifluoromethyl)-1,3,4-thiadiazole (TDA) to 2-(methylsulfonyl)-5-(trifluoromethyl)-1,3,4-thiadiazole (TDA sulfone)

Also Published As

Publication number Publication date
JPS63159365A (en) 1988-07-02

Similar Documents

Publication Publication Date Title
AU2002216112B2 (en) Preparation of oxirane compounds
AU2002216112A1 (en) Preparation of oxirane compounds
WO1997041088A1 (en) Process for preparing monoesters of 1,3-diols
JPH0333718B2 (en)
JPS61130247A (en) Continuous manufacture of 1,2-pentanediol
JPH0730015B2 (en) Method for producing perpropionic acid
JPS6052733B2 (en) Hydroquinone production method
JPH0730012B2 (en) Method for producing perpropionic acid
EP0037588B1 (en) Method of preparing furfuryl alcohols
KR870000547B1 (en) Process for the preparation of percarboxylic acid
EP0074162B1 (en) Process for producing p-cresol
JPH0730014B2 (en) Method for producing perpropionic acid
JP2544745B2 (en) Method for producing α-methylstyrene
JP3831021B2 (en) 2-Production method of indanones
JPS5833207B2 (en) Nikafuenoru no seizouhouhou
JP2533980B2 (en) Method for producing perpropionic acid
JPH0273033A (en) Production of 4, 4-dimethyl-1-(p-chlorophenyl) pentane-3-one
JP3989598B2 (en) Method for producing allyl alcohol
US2860145A (en) Preparation of dichloromaleic acid and dichloromaleic anhydride
JP2501603B2 (en) Method for producing α-methylstyrene
JPS5917099B2 (en) Manufacturing method of glycol monoester
JP2952027B2 (en) Method for producing cyclohexene oxide
JPH01132573A (en) Propylene oxide manufacturing method
JPS58121234A (en) Preparation of glutaraldehyde
JPS5917110B2 (en) Method for producing percarboxylic acid solution

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees