JPH07302887A - 二重制御ゲートを有するsoi上の半導体ランダム・アクセス・メモリ・セル - Google Patents
二重制御ゲートを有するsoi上の半導体ランダム・アクセス・メモリ・セルInfo
- Publication number
- JPH07302887A JPH07302887A JP7075618A JP7561895A JPH07302887A JP H07302887 A JPH07302887 A JP H07302887A JP 7075618 A JP7075618 A JP 7075618A JP 7561895 A JP7561895 A JP 7561895A JP H07302887 A JPH07302887 A JP H07302887A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- silicon
- control gate
- oxide
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/681—Floating-gate IGFETs having only two programming levels
- H10D30/683—Floating-gate IGFETs having only two programming levels programmed by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/201—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates the substrates comprising an insulating layer on a semiconductor body, e.g. SOI
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
- Thin Film Transistor (AREA)
Abstract
(57)【要約】
【目的】 二重制御ゲートを有する改良された不揮発ラ
ンダム・アクセス・メモリを提供する。 【構成】 SOI基板上に製造され、浮遊ゲートの上に
配置される第1ワード線制御ゲートに加えて、セルの導
電チャネルの下に埋められた第2制御ゲートを含み、第
2制御ゲートの電圧を変更することによって浮遊チャネ
ルの電位が変調され、これによって、アレイの特定のセ
ルを選択でき、隣接セルを妨害せずに浮遊ゲートとチャ
ネルを介するFNトンネリングによってプログラムまた
は消去できる、メモリ・セル・アレイ用のスタックド・
ゲート・メモリ・セルを開示する。浮遊ゲートに記憶さ
れた情報を読み取っている間に、第2制御ゲートを使用
して、妨害を防ぐことができる。第2制御ゲートは、ビ
ット線と平行であり、第1ワード線制御ゲートと垂直で
ある。浮遊ゲートとセルは、第1制御ゲートと第2制御
ゲートの交点に置かれる。したがって、第1制御ゲート
と第2制御ゲートの電圧を変更することによって、FN
トンネリングを介してセルをプログラムし、消去するこ
とができる。
ンダム・アクセス・メモリを提供する。 【構成】 SOI基板上に製造され、浮遊ゲートの上に
配置される第1ワード線制御ゲートに加えて、セルの導
電チャネルの下に埋められた第2制御ゲートを含み、第
2制御ゲートの電圧を変更することによって浮遊チャネ
ルの電位が変調され、これによって、アレイの特定のセ
ルを選択でき、隣接セルを妨害せずに浮遊ゲートとチャ
ネルを介するFNトンネリングによってプログラムまた
は消去できる、メモリ・セル・アレイ用のスタックド・
ゲート・メモリ・セルを開示する。浮遊ゲートに記憶さ
れた情報を読み取っている間に、第2制御ゲートを使用
して、妨害を防ぐことができる。第2制御ゲートは、ビ
ット線と平行であり、第1ワード線制御ゲートと垂直で
ある。浮遊ゲートとセルは、第1制御ゲートと第2制御
ゲートの交点に置かれる。したがって、第1制御ゲート
と第2制御ゲートの電圧を変更することによって、FN
トンネリングを介してセルをプログラムし、消去するこ
とができる。
Description
【0001】
【産業上の利用分野】本発明は、全般的には半導体ラン
ダム・アクセス・メモリ・セル構造とその製造方法に関
し、具体的には、二重制御ゲートを有し、SOI(sili
con-on-insulator)構造上に製造される不揮発性ランダ
ム・アクセス・メモリ・セルに関する。
ダム・アクセス・メモリ・セル構造とその製造方法に関
し、具体的には、二重制御ゲートを有し、SOI(sili
con-on-insulator)構造上に製造される不揮発性ランダ
ム・アクセス・メモリ・セルに関する。
【0002】
【従来の技術】半導体メモリ・セルは、プログラム機能
と消去機能に関してファウラー−ノルトハイムのトンネ
リングを用いて製造され、これらは、消去可能なプログ
ラム可能ランダム・アクセス・メモリ(EPROM)・
セル、電気的に消去可能なプログラム可能メモリ(EE
PROM)・セルおよびフラッシュ・メモリとして使用
される。
と消去機能に関してファウラー−ノルトハイムのトンネ
リングを用いて製造され、これらは、消去可能なプログ
ラム可能ランダム・アクセス・メモリ(EPROM)・
セル、電気的に消去可能なプログラム可能メモリ(EE
PROM)・セルおよびフラッシュ・メモリとして使用
される。
【0003】米国特許第5055898号明細書には、
基板と、少なくとも部分的に基板内に形成され、誘電的
に基板から絶縁されている複数のトレンチ・コンデンサ
とを含む半導体メモリ・セルとその製造方法が開示され
ている。SOI領域には、絶縁体の上に横たわるシリコ
ン層が含まれる。このシリコン層は、複数の能動デバイ
ス領域に区別され、そのそれぞれが、導電領域のうちの
1つの上に配置される。能動デバイス領域のそれぞれ
は、アクセス・トランジスタのゲート・ノードを形成す
るために上に横たわる第1電極またはワード線に結合さ
れ、アクセス・トランジスタのソース・ノードを形成す
るために第2電極またはビット線に結合され、アクセス
・トランジスタのドレイン・ノードを形成するために下
に横たわるトレンチ・コンデンサに結合される。ワード
線には、1対の対向する電気的に絶縁された垂直側壁が
含まれ、アクセス・トランジスタのそれぞれのソース・
ノードとドレイン・ノードは、それぞれが、垂直側壁の
うちの1つの上に配置された電気導体からなる。メモリ
・セルのアレイには、さらに、能動デバイス領域を基板
に結合して、浮遊基板効果を減少または除去するための
構造が含まれる。
基板と、少なくとも部分的に基板内に形成され、誘電的
に基板から絶縁されている複数のトレンチ・コンデンサ
とを含む半導体メモリ・セルとその製造方法が開示され
ている。SOI領域には、絶縁体の上に横たわるシリコ
ン層が含まれる。このシリコン層は、複数の能動デバイ
ス領域に区別され、そのそれぞれが、導電領域のうちの
1つの上に配置される。能動デバイス領域のそれぞれ
は、アクセス・トランジスタのゲート・ノードを形成す
るために上に横たわる第1電極またはワード線に結合さ
れ、アクセス・トランジスタのソース・ノードを形成す
るために第2電極またはビット線に結合され、アクセス
・トランジスタのドレイン・ノードを形成するために下
に横たわるトレンチ・コンデンサに結合される。ワード
線には、1対の対向する電気的に絶縁された垂直側壁が
含まれ、アクセス・トランジスタのそれぞれのソース・
ノードとドレイン・ノードは、それぞれが、垂直側壁の
うちの1つの上に配置された電気導体からなる。メモリ
・セルのアレイには、さらに、能動デバイス領域を基板
に結合して、浮遊基板効果を減少または除去するための
構造が含まれる。
【0004】米国特許第4999313号明細書には、
同一の絶縁体基板上に、ある電気伝導型の半導体単結晶
領域と、反対の電気伝導型の半導体単結晶領域とを含む
複数の半導体単結晶領域を有する半導体物品が、それを
製造するための工程と共に開示されている。少なくとも
一方の電気伝導型の半導体単結晶領域は、半導体材料の
単一の核だけが成長でき、その後、半導体材料が中心と
して形成された単一の核の周囲に成長できる範囲で、絶
縁体基板の材料より核形成密度が十分に大きく、十分に
微細である異なる材料を形成することによってもたらさ
れる。
同一の絶縁体基板上に、ある電気伝導型の半導体単結晶
領域と、反対の電気伝導型の半導体単結晶領域とを含む
複数の半導体単結晶領域を有する半導体物品が、それを
製造するための工程と共に開示されている。少なくとも
一方の電気伝導型の半導体単結晶領域は、半導体材料の
単一の核だけが成長でき、その後、半導体材料が中心と
して形成された単一の核の周囲に成長できる範囲で、絶
縁体基板の材料より核形成密度が十分に大きく、十分に
微細である異なる材料を形成することによってもたらさ
れる。
【0005】米国特許第4334347号明細書には、
浮遊ゲートへの電荷(電子または正孔)の注入に関する
バリヤ高が減らされている、改良された電荷保持特性お
よび持続時間特性を有する、改良されたゲート注入式浮
遊ゲート・メモリ・デバイスが開示されている。これ
は、制御電極と浮遊ゲートの絶縁層の間の半絶縁性の多
結晶シリコンの層を利用することによって達成される。
浮遊ゲートへの電荷(電子または正孔)の注入に関する
バリヤ高が減らされている、改良された電荷保持特性お
よび持続時間特性を有する、改良されたゲート注入式浮
遊ゲート・メモリ・デバイスが開示されている。これ
は、制御電極と浮遊ゲートの絶縁層の間の半絶縁性の多
結晶シリコンの層を利用することによって達成される。
【0006】アコビック(Acovic)他著、IBM Technica
l Disclosure Bulletin Vol. 34, No. 6 November 199
1、ページ238-241、表題VACUUM-SEALED SILICON-RICH-O
XIDEEEPROM CELLには、制御ゲートと浮遊ゲートのシリ
コンに富む酸化物インジェクタの間の真空内での電子伝
達を使用するEEPROMセルが記載されている。Si
O2の代わりに真空を使用するので、セルの耐久性と保
持が非常に高く、真の不揮発性RAMセルの候補となっ
ている。SROインジェクタと真空を使用することによ
って、プログラミング電圧を下げることができる。
l Disclosure Bulletin Vol. 34, No. 6 November 199
1、ページ238-241、表題VACUUM-SEALED SILICON-RICH-O
XIDEEEPROM CELLには、制御ゲートと浮遊ゲートのシリ
コンに富む酸化物インジェクタの間の真空内での電子伝
達を使用するEEPROMセルが記載されている。Si
O2の代わりに真空を使用するので、セルの耐久性と保
持が非常に高く、真の不揮発性RAMセルの候補となっ
ている。SROインジェクタと真空を使用することによ
って、プログラミング電圧を下げることができる。
【0007】
【発明が解決しようとする課題】本発明の目的は、二重
制御ゲートを有する改良された不揮発性ランダム・アク
セス半導体メモリ・セルを提供することである。
制御ゲートを有する改良された不揮発性ランダム・アク
セス半導体メモリ・セルを提供することである。
【0008】本発明のもう1つの目的は、SOI基板上
に製造された二重ゲート不揮発性ランダム・アクセス半
導体メモリ・セルを提供することである。
に製造された二重ゲート不揮発性ランダム・アクセス半
導体メモリ・セルを提供することである。
【0009】本発明のもう1つの目的は、プログラムと
消去にファウラー−ノルトハイム・トンネリングを使用
するか、チャネル・ホット・キャリヤ・プログラミング
も使用できる、不揮発性ランダム・アクセス・メモリ・
セルを提供することである。
消去にファウラー−ノルトハイム・トンネリングを使用
するか、チャネル・ホット・キャリヤ・プログラミング
も使用できる、不揮発性ランダム・アクセス・メモリ・
セルを提供することである。
【0010】本発明のもう1つの目的は、隣接セルを妨
害しないより低い電圧のトンネル動作を可能にするため
第1および第2の制御ゲートを含む、ファウラー−ノル
トハイム・トンネリングを用いるランダム・アクセス・
メモリ・セルを提供することである。
害しないより低い電圧のトンネル動作を可能にするため
第1および第2の制御ゲートを含む、ファウラー−ノル
トハイム・トンネリングを用いるランダム・アクセス・
メモリ・セルを提供することである。
【0011】
【実施例】図1を参照すると、消去機能を強化し、特に
ファウラー−ノルトハイム・トンネリングを使用する時
のプログラム・モード中と消去モード中の妨害を防ぐた
め、二重制御ゲートをSOI(silicon-on-insulator)
基板上に製造された、不揮発性ランダム・アクセス・メ
モリ(NVRAM)・セルの断面図が示されている。
ファウラー−ノルトハイム・トンネリングを使用する時
のプログラム・モード中と消去モード中の妨害を防ぐた
め、二重制御ゲートをSOI(silicon-on-insulator)
基板上に製造された、不揮発性ランダム・アクセス・メ
モリ(NVRAM)・セルの断面図が示されている。
【0012】NVRAMセルのプログラミング機構とし
てチャネル・ホット・キャリヤ注入の代わりにファウラ
ー−ノルトハイム・トンネリング(以下ではFNトンネ
リングと呼称する)を使用すると、電力消費を減らし、
性能を高めることができる。しかし、スタックド・ゲー
トNVRAMのアレイ内でFNトンネリングを使用し
て、1つのセルをプログラムすると、通常は、他のセル
へ連続して延びるワード線(制御ゲート)上に必要な高
電圧のために、隣接セルが妨害を受ける。その結果、選
択されたワード線の下のすべてのセルがプログラムされ
るか、選択されたセルとソースまたはドレインを共用す
るセルがプログラムされるかのいずれかになる。この欠
点を「妨害(disturb)」と称する。
てチャネル・ホット・キャリヤ注入の代わりにファウラ
ー−ノルトハイム・トンネリング(以下ではFNトンネ
リングと呼称する)を使用すると、電力消費を減らし、
性能を高めることができる。しかし、スタックド・ゲー
トNVRAMのアレイ内でFNトンネリングを使用し
て、1つのセルをプログラムすると、通常は、他のセル
へ連続して延びるワード線(制御ゲート)上に必要な高
電圧のために、隣接セルが妨害を受ける。その結果、選
択されたワード線の下のすべてのセルがプログラムされ
るか、選択されたセルとソースまたはドレインを共用す
るセルがプログラムされるかのいずれかになる。この欠
点を「妨害(disturb)」と称する。
【0013】消去機構としてFNトンネリングを使用す
ると、同一の妨害問題が生じる。ただし、ブロック消去
は、現在のNVRAM応用例では許容される。ソリッド
・ステート・ディスクの応用分野では、NVRAMが選
択的消去能力を有することが望ましい。
ると、同一の妨害問題が生じる。ただし、ブロック消去
は、現在のNVRAM応用例では許容される。ソリッド
・ステート・ディスクの応用分野では、NVRAMが選
択的消去能力を有することが望ましい。
【0014】図1に示された本発明の実施例では、前述
のFNトンネリングを使用するプログラム中および消去
中の妨害問題が、セルの導電チャネルの下に埋められた
第2制御ゲート14を有するSOI(シリコン層10、
酸化物層12)構造上に作られた本発明のスタックド・
ゲートNVRAMセルによって克服される。
のFNトンネリングを使用するプログラム中および消去
中の妨害問題が、セルの導電チャネルの下に埋められた
第2制御ゲート14を有するSOI(シリコン層10、
酸化物層12)構造上に作られた本発明のスタックド・
ゲートNVRAMセルによって克服される。
【0015】第2制御ゲート14の電圧を変更すると、
浮遊チャネルの電位が変調され、これによって、隣接セ
ルを妨害せずに浮遊ゲート40とチャネルを介するFN
トンネリングによって特定のセルを選択でき、プログラ
ムまたは消去できるようになる。浮遊ゲート40に記憶
された情報を読み取っている間にも、第2制御ゲート1
4を使用して妨害を防ぐことができる。
浮遊チャネルの電位が変調され、これによって、隣接セ
ルを妨害せずに浮遊ゲート40とチャネルを介するFN
トンネリングによって特定のセルを選択でき、プログラ
ムまたは消去できるようになる。浮遊ゲート40に記憶
された情報を読み取っている間にも、第2制御ゲート1
4を使用して妨害を防ぐことができる。
【0016】その代わりに、p型シリコン層を酸化物層
12の代わりに使用することも可能である。
12の代わりに使用することも可能である。
【0017】第2制御ゲート14は、ビット線(ソース
34−1またはドレイン34−2)と平行であり、第1
制御ゲート44(ワード線でもある)に対して垂直であ
る。浮遊ゲートとセルは、第2制御ゲート14と第1制
御ゲート44の交点に置かれる。したがって、第2制御
ゲート14と第1制御ゲート44の電圧だけを変更する
ことによって、FNトンネリングを介してセルをプログ
ラムし、消去することができる。
34−1またはドレイン34−2)と平行であり、第1
制御ゲート44(ワード線でもある)に対して垂直であ
る。浮遊ゲートとセルは、第2制御ゲート14と第1制
御ゲート44の交点に置かれる。したがって、第2制御
ゲート14と第1制御ゲート44の電圧だけを変更する
ことによって、FNトンネリングを介してセルをプログ
ラムし、消去することができる。
【0018】具体的に言うと、図1の不揮発性ランダム
・アクセス・メモリ・アレイの断面図は、図2に示され
たアレイの平面図の切断線AA'に沿った断面図であ
る。図1の構造には、基板であるシリコン層10が含ま
れる。2000Åの厚さとすることができる酸化物層1
2と、1000Åの厚さとすることができる埋め込まれ
た第2制御ゲート14は、薄い酸化物層26の下で、
0.5μの厚さとすることのできる導電チャネル34の
下に置かれる。導電チャネル34は、ソース34−1と
ドレイン34−2の間に配置される。
・アクセス・メモリ・アレイの断面図は、図2に示され
たアレイの平面図の切断線AA'に沿った断面図であ
る。図1の構造には、基板であるシリコン層10が含ま
れる。2000Åの厚さとすることができる酸化物層1
2と、1000Åの厚さとすることができる埋め込まれ
た第2制御ゲート14は、薄い酸化物層26の下で、
0.5μの厚さとすることのできる導電チャネル34の
下に置かれる。導電チャネル34は、ソース34−1と
ドレイン34−2の間に配置される。
【0019】たとえば7nm厚のゲート酸化物層38
を、ソース、ドレインおよびチャネルの上に成膜させ
る。浮遊ゲート40は、ゲート酸化物層38の上に置か
れ、たとえば5nm厚のSiO2、5nm厚のSi3N4
および5nm厚のSiO2を有する酸化物/窒化物/酸
化物(ONO)42の層によって覆われる。たとえば1
000Åないし2000Åの厚さのドーピングされたポ
リシリコンの層である第1制御ゲート44が、ワード線
制御ゲートをもたらす。このワード線を第1制御ゲート
44と称し、埋め込まれたゲートを第2制御ゲート14
と称する。
を、ソース、ドレインおよびチャネルの上に成膜させ
る。浮遊ゲート40は、ゲート酸化物層38の上に置か
れ、たとえば5nm厚のSiO2、5nm厚のSi3N4
および5nm厚のSiO2を有する酸化物/窒化物/酸
化物(ONO)42の層によって覆われる。たとえば1
000Åないし2000Åの厚さのドーピングされたポ
リシリコンの層である第1制御ゲート44が、ワード線
制御ゲートをもたらす。このワード線を第1制御ゲート
44と称し、埋め込まれたゲートを第2制御ゲート14
と称する。
【0020】図2を参照すると、図1の構造の平面図が
示され、図1の第2制御ゲート14、第1制御ゲート4
4およびビット線である導電チャネル34が示されてい
る。
示され、図1の第2制御ゲート14、第1制御ゲート4
4およびビット線である導電チャネル34が示されてい
る。
【0021】図3ないし図10を参照すると、NVRA
Mの製造工程のさまざまな段階の横断面図が示されてい
る。図3では、シリコン層10が設けられ、その上に二
酸化珪素の酸化物層12が成膜されている。SLO(si
licon lateral overgrow)として当技術分野で既知の処
理を使用して、第2制御ゲート14となるシリコンの層
を、酸化物層12の上で成長させる。このSLO処理
で、酸化物層12に孔16をあけ、適当な温度と圧力の
条件を用いて、第2制御ゲート14のシリコンの層を、
孔16を介してシリコン層10を種として使用して酸化
物層12の上に(たとえばエピタキシャルに)成長させ
る。孔16は、デバイスが製造される区域から離れた位
置にあけられる。前に述べたように、酸化物層12の代
わりにp型シリコンを使用する場合、このSLO処理は
不要である。
Mの製造工程のさまざまな段階の横断面図が示されてい
る。図3では、シリコン層10が設けられ、その上に二
酸化珪素の酸化物層12が成膜されている。SLO(si
licon lateral overgrow)として当技術分野で既知の処
理を使用して、第2制御ゲート14となるシリコンの層
を、酸化物層12の上で成長させる。このSLO処理
で、酸化物層12に孔16をあけ、適当な温度と圧力の
条件を用いて、第2制御ゲート14のシリコンの層を、
孔16を介してシリコン層10を種として使用して酸化
物層12の上に(たとえばエピタキシャルに)成長させ
る。孔16は、デバイスが製造される区域から離れた位
置にあけられる。前に述べたように、酸化物層12の代
わりにp型シリコンを使用する場合、このSLO処理は
不要である。
【0022】代替案として、図3の構造を、酸化物層
(たとえば12)とシリコン層(たとえば14)からな
るSOI構造に置き換え、必要なところにn+ドーパン
トを高エネルギ注入することができる。
(たとえば12)とシリコン層(たとえば14)からな
るSOI構造に置き換え、必要なところにn+ドーパン
トを高エネルギ注入することができる。
【0023】もう1つの代替案は、酸素を注入して埋め
込まれた酸化物を形成した後に、1300℃で20時間
焼きなますSIMOX処理を使用することである。
込まれた酸化物を形成した後に、1300℃で20時間
焼きなますSIMOX処理を使用することである。
【0024】図3の構造を使用する場合、たとえば20
nm厚の、酸化物層18と窒化物層20を、図4に示さ
れるようにシリコン層である第2制御ゲート14上に成
膜する。上側の窒化物層20に、エッチング・マスクと
して働くフォトレジスト22でパターンを形成して、図
5に示されるように、そこから窒化物層20および酸化
物層18を貫通して、第2制御ゲート14になるシリコ
ン層まで孔をエッチングする。
nm厚の、酸化物層18と窒化物層20を、図4に示さ
れるようにシリコン層である第2制御ゲート14上に成
膜する。上側の窒化物層20に、エッチング・マスクと
して働くフォトレジスト22でパターンを形成して、図
5に示されるように、そこから窒化物層20および酸化
物層18を貫通して、第2制御ゲート14になるシリコ
ン層まで孔をエッチングする。
【0025】フォトレジストを取り除き、エッチングさ
れた孔を酸化物24で満たし、この構造を、標準的な化
学機械的研摩を使用して研摩して、窒化物層20と酸化
物層18を除去すると、図6に示された構造が残る。
れた孔を酸化物24で満たし、この構造を、標準的な化
学機械的研摩を使用して研摩して、窒化物層20と酸化
物層18を除去すると、図6に示された構造が残る。
【0026】たとえば10nm厚の、薄い酸化物層26
を、図7に示されるようにこの構造の上に成膜または成
長させる。窒化物28と厚い酸化物30の局所層を、図
7に示されるように酸化物層26の上に形成して、研摩
止めとして働かせる。孔32を酸化物層26にあけ、S
LO処理を繰り返して、第2制御ゲート14になるシリ
コン層を種として用いて酸化物層26の上に導電チャネ
ル34になるシリコン層を形成する。
を、図7に示されるようにこの構造の上に成膜または成
長させる。窒化物28と厚い酸化物30の局所層を、図
7に示されるように酸化物層26の上に形成して、研摩
止めとして働かせる。孔32を酸化物層26にあけ、S
LO処理を繰り返して、第2制御ゲート14になるシリ
コン層を種として用いて酸化物層26の上に導電チャネ
ル34になるシリコン層を形成する。
【0027】窒化物28と酸化物30を研摩止めとして
使用して、導電チャネル34になるシリコン層を、酸化
物30の水準まで研摩する。次のステップは、図8に示
されるチャネル・ドーピングとしてのp型ドーパント
(5x1016)のイオン注入である。
使用して、導電チャネル34になるシリコン層を、酸化
物30の水準まで研摩する。次のステップは、図8に示
されるチャネル・ドーピングとしてのp型ドーパント
(5x1016)のイオン注入である。
【0028】たとえば7nm厚の、ゲート酸化物層38
を、図9に示されるようにこの構造の上に成膜させる。
図10を参照すると、次に、ドーピングされないポリシ
リコンの層(浮遊ゲート40になる)を、図9の構造の
上に成膜させる。このポリシリコン層40を、リソグラ
フィ技法を使用してパターン形成して、チャネル領域で
ある浮遊ゲート40を形成する。このポリシリコンは、
まずx方向にパターン形成され(図11)、次に、ソー
ス、ドレインおよび浮遊ゲートに関して同時にイオン注
入される(n+ 1020)。その後、このポリシリコン
をy方向にパターン形成して、浮遊ゲート(正方形)を
形成する(図12)。その後、イオン注入(p型 5x
1019)を行って、ソースとドレインの間の絶縁を形成
する。
を、図9に示されるようにこの構造の上に成膜させる。
図10を参照すると、次に、ドーピングされないポリシ
リコンの層(浮遊ゲート40になる)を、図9の構造の
上に成膜させる。このポリシリコン層40を、リソグラ
フィ技法を使用してパターン形成して、チャネル領域で
ある浮遊ゲート40を形成する。このポリシリコンは、
まずx方向にパターン形成され(図11)、次に、ソー
ス、ドレインおよび浮遊ゲートに関して同時にイオン注
入される(n+ 1020)。その後、このポリシリコン
をy方向にパターン形成して、浮遊ゲート(正方形)を
形成する(図12)。その後、イオン注入(p型 5x
1019)を行って、ソースとドレインの間の絶縁を形成
する。
【0029】たとえば5nmのSiO2、10nmのS
i3N4および5nmのSiO2の、ONO層42を、浮
遊ゲート40の上に成膜し、第1制御ゲート44になる
ドーピングされたポリシリコン層を、ONO層42の上
に成膜して、NVRAMの第1制御ゲート44(ワード
線)をもたらす。
i3N4および5nmのSiO2の、ONO層42を、浮
遊ゲート40の上に成膜し、第1制御ゲート44になる
ドーピングされたポリシリコン層を、ONO層42の上
に成膜して、NVRAMの第1制御ゲート44(ワード
線)をもたらす。
【0030】もう一度図1を参照すると、第2制御ゲー
ト14が設けられていることがわかる。これによって、
高電圧を使用せずにプログラムと消去に望ましいFNト
ンネリングを使用できるようになる。FNトンネリング
には、シリコン領域の間の酸化物をまたいで電子を加速
するために強い電界が必要なので、過去においては、こ
の強い電界をもたらすのに高電圧が使用された。この高
電圧は、ワード線に沿ったセルのすべてが、一緒にプロ
グラムされ、消去されるという結果をもたらした。とい
うのは、ワード線が連続しており、高電圧を伝えるから
である。この状態を、「妨害」と称する。図1に示され
た本発明の実施例では、実際のチャネル領域をまたぐ高
い電圧が必要な場合に、第1制御ゲート44(ワード
線)と第2制御ゲート14の両方に電圧を印加すること
ができる。たとえば、FNトンネリングに15Vの電位
差が必要な場合、過去においては、ワード線が15Vに
され、妨害状態が発生する。本発明を使用すれば、第2
制御ゲート14にー10Vの電圧、第1制御ゲート44
(ワード線)に+5Vの電圧を印加して、妨害状態を引
き起こさずに15Vの電位差がもたらされる。
ト14が設けられていることがわかる。これによって、
高電圧を使用せずにプログラムと消去に望ましいFNト
ンネリングを使用できるようになる。FNトンネリング
には、シリコン領域の間の酸化物をまたいで電子を加速
するために強い電界が必要なので、過去においては、こ
の強い電界をもたらすのに高電圧が使用された。この高
電圧は、ワード線に沿ったセルのすべてが、一緒にプロ
グラムされ、消去されるという結果をもたらした。とい
うのは、ワード線が連続しており、高電圧を伝えるから
である。この状態を、「妨害」と称する。図1に示され
た本発明の実施例では、実際のチャネル領域をまたぐ高
い電圧が必要な場合に、第1制御ゲート44(ワード
線)と第2制御ゲート14の両方に電圧を印加すること
ができる。たとえば、FNトンネリングに15Vの電位
差が必要な場合、過去においては、ワード線が15Vに
され、妨害状態が発生する。本発明を使用すれば、第2
制御ゲート14にー10Vの電圧、第1制御ゲート44
(ワード線)に+5Vの電圧を印加して、妨害状態を引
き起こさずに15Vの電位差がもたらされる。
【0031】ここまでに述べたものは、セルの導電チャ
ネルの下に埋められた第2制御ゲートを有するSOI構
造上に製造されたスタックド・ゲートNVRAMセルで
ある。第2制御ゲートに電圧を印加し、変更することに
よって、チャネルの電位が変調され、これによって、特
定のセルを選択し、隣接セルを妨害せずに浮遊ゲートと
そのチャネルを介するFNトンネリングによってプログ
ラムまたは消去できるようになる。浮遊ゲートに記憶さ
れた情報を読み取っている間にも、第2制御ゲートを使
用して妨害を防ぐことができる。
ネルの下に埋められた第2制御ゲートを有するSOI構
造上に製造されたスタックド・ゲートNVRAMセルで
ある。第2制御ゲートに電圧を印加し、変更することに
よって、チャネルの電位が変調され、これによって、特
定のセルを選択し、隣接セルを妨害せずに浮遊ゲートと
そのチャネルを介するFNトンネリングによってプログ
ラムまたは消去できるようになる。浮遊ゲートに記憶さ
れた情報を読み取っている間にも、第2制御ゲートを使
用して妨害を防ぐことができる。
【0032】第2制御ゲートは、ビット線(ソースとド
レイン)に平行であり、第1制御ゲートであるワード線
に垂直である。浮遊ゲートとセルは、第1制御ゲートと
第2制御ゲートが交叉する交点に置かれる。したがっ
て、第1制御ゲートと第2制御ゲートの電圧だけを変更
することによって、FNトンネリングを介してセルをプ
ログラムしたり、消去することができる。しかし、本発
明は、FNトンネリング応用例に制限されるものではな
く、ホット・チャネル・キャリヤ注入にも利用できる。
レイン)に平行であり、第1制御ゲートであるワード線
に垂直である。浮遊ゲートとセルは、第1制御ゲートと
第2制御ゲートが交叉する交点に置かれる。したがっ
て、第1制御ゲートと第2制御ゲートの電圧だけを変更
することによって、FNトンネリングを介してセルをプ
ログラムしたり、消去することができる。しかし、本発
明は、FNトンネリング応用例に制限されるものではな
く、ホット・チャネル・キャリヤ注入にも利用できる。
【0033】前述の説明は、本発明の例示にすぎないこ
とを理解されたい。当業者であれば、本発明から逸脱す
ることなくさまざまな代替案や修正を考案できる。した
がって、本発明は、請求の範囲に含まれるそのような代
替案、修正および変形のすべてを含むものである。
とを理解されたい。当業者であれば、本発明から逸脱す
ることなくさまざまな代替案や修正を考案できる。した
がって、本発明は、請求の範囲に含まれるそのような代
替案、修正および変形のすべてを含むものである。
【0034】まとめとして、本発明の構成に関して以下
の事項を開示する。
の事項を開示する。
【0035】(1)電気絶縁材料の第1層と、前記第1
層の上に設けられた、能動デバイスの隣接するソース領
域、チャネル領域およびドレイン領域を含む、半導体材
料の層と、前記半導体材料の層の前記チャネル領域の上
に設けられた浮遊ゲート要素と、前記浮遊ゲート要素の
上に設けられた第1制御ゲート要素と、前記電気絶縁材
料の第1層内に配置され、第2制御ゲート要素を提供す
るために前記チャネル領域の下に設けられた半導体領域
と、を含む、メモリ・アレイ用の二重制御ゲート・ラン
ダム・アクセス・メモリ・セル。 (2)前記第1層の上に横たわる前記半導体材料の層
が、前記ソース領域、チャネル領域およびドレイン領域
をもたらすために交番する導電率の別個の領域に区別さ
れ、前記メモリ・セル構造がさらに、前記半導体材料の
層と前記上に設けられた浮遊ゲート要素との間に配置さ
れた絶縁材料の層と、前記浮遊ゲート要素と前記上に横
たわる第1制御ゲート要素との間に配置された絶縁材料
の層とを含むことを特徴とする、上記(1)に記載の二
重制御ゲート・メモリ・セル。 (3)前記第1制御ゲートが、ポリシリコンのワード線
であることを特徴とする、上記(2)に記載の二重制御
ゲート・メモリ・セル。 (4)二重制御ゲート・ランダム・アクセス・メモリ構
造を製造する方法であって、絶縁体層上のシリコン層か
らなるSOI基板から、選択された部分を取り除き、ト
レンチ区域によって分離された前記シリコン層の残りの
部分を残すステップ1と、前記SOI基板の前記シリコ
ン層の前記残りの部分の間のトレンチ区域に酸化物を満
たして、前記SOI基板の前記絶縁体層上にシリコンと
酸化物の交番する部分の層を残し、前記シリコン部分
が、第1デバイス制御ゲート領域をもたらすようにする
ステップ2と、ステップ2で形成された前記交番するシ
リコンおよび酸化物の層の上に比較的薄い酸化物材料の
層を形成するステップ3と、ステップ3で形成された前
記酸化物層の上にシリコンの層を形成するステップ4
と、ステップ4で形成された前記シリコン層にドーパン
トを打ち込んでチャネルを形成するステップ5と、ステ
ップ5の前記シリコン層の上に酸化物材料の層を形成し
て、ゲート酸化物層を設けるステップ6と、前記ゲート
酸化物層上に別個のポリシリコン領域の層を形成し、パ
ターン形成して、ソース領域およびドレイン領域を形成
するステップ7と、前記ゲート酸化物およびチャネル領
域の上に絶縁材料の層とドーピングされたポリシリコン
の層とを形成して、二重ゲート・ランダム・アクセス・
メモリ・セルをもたらすため第2制御ゲート領域を設け
るステップ8とを含む、前記方法。 (5)前記ステップ1が、絶縁物層上のシリコンの層か
らなるSOI基板に二酸化珪素の層を成膜するステップ
と、ステップ1Aで成膜された前記二酸化珪素の層の上
に窒化物の層を成膜するステップと、前記絶縁物層から
前記窒化物層、二酸化珪素層およびシリコン層の選択さ
れた部分をマスキングし、エッチングし、取り除いて、
前記トレンチ区域によって離隔される前記絶縁物上の窒
化物、二酸化珪素およびシリコンの別個の部分の層を残
すステップと、前記残りのシリコン層から前記窒化物層
および二酸化珪素層を取り除くステップと、を含むこと
を特徴とする、上記(4)に記載の二重制御ゲート・ラ
ンダム・アクセス・メモリ構造を製造する方法。 (6)前記ステップ1の前記SOI基板の前記絶縁物層
上の前記シリコン層が、前記絶縁物層の底に前記シリコ
ンの層を成膜し、前記絶縁物層に孔を作り、熱を印加し
て前記シリコン層を前記絶縁物層の上に成長させること
によって形成されることを特徴とする、上記(4)に記
載の二重制御ゲート・ランダム・アクセス・メモリ構造
を製造する方法。 (7)前記ステップ4が、前記ステップ3で形成された
前記薄い酸化物層の上に研摩止めを成膜するステップ
と、前記薄い酸化物層と前記研摩止めとの上に前記シリ
コンの層を形成するステップと、前記シリコン層を前記
研摩止めまで機械研摩するステップとを含むことを特徴
とする、上記(4)に記載の二重制御ゲート・ランダム
・アクセス・メモリ構造を製造する方法。 (8)前記ステップ4で設けられる前記シリコンの層
が、前記SOI基板上から残っている前記シリコン部分
の上まで、前記ステップ3で形成された前記薄い酸化物
層に孔を作り、熱を印加して前記シリコンの層に前記シ
リコン部分から前記薄い酸化物の層の上に前記シリコン
の層を成長させることによって形成されることを特徴と
する、上記(4)に記載の二重制御ゲート・ランダム・
アクセス・メモリ構造を製造する方法。
層の上に設けられた、能動デバイスの隣接するソース領
域、チャネル領域およびドレイン領域を含む、半導体材
料の層と、前記半導体材料の層の前記チャネル領域の上
に設けられた浮遊ゲート要素と、前記浮遊ゲート要素の
上に設けられた第1制御ゲート要素と、前記電気絶縁材
料の第1層内に配置され、第2制御ゲート要素を提供す
るために前記チャネル領域の下に設けられた半導体領域
と、を含む、メモリ・アレイ用の二重制御ゲート・ラン
ダム・アクセス・メモリ・セル。 (2)前記第1層の上に横たわる前記半導体材料の層
が、前記ソース領域、チャネル領域およびドレイン領域
をもたらすために交番する導電率の別個の領域に区別さ
れ、前記メモリ・セル構造がさらに、前記半導体材料の
層と前記上に設けられた浮遊ゲート要素との間に配置さ
れた絶縁材料の層と、前記浮遊ゲート要素と前記上に横
たわる第1制御ゲート要素との間に配置された絶縁材料
の層とを含むことを特徴とする、上記(1)に記載の二
重制御ゲート・メモリ・セル。 (3)前記第1制御ゲートが、ポリシリコンのワード線
であることを特徴とする、上記(2)に記載の二重制御
ゲート・メモリ・セル。 (4)二重制御ゲート・ランダム・アクセス・メモリ構
造を製造する方法であって、絶縁体層上のシリコン層か
らなるSOI基板から、選択された部分を取り除き、ト
レンチ区域によって分離された前記シリコン層の残りの
部分を残すステップ1と、前記SOI基板の前記シリコ
ン層の前記残りの部分の間のトレンチ区域に酸化物を満
たして、前記SOI基板の前記絶縁体層上にシリコンと
酸化物の交番する部分の層を残し、前記シリコン部分
が、第1デバイス制御ゲート領域をもたらすようにする
ステップ2と、ステップ2で形成された前記交番するシ
リコンおよび酸化物の層の上に比較的薄い酸化物材料の
層を形成するステップ3と、ステップ3で形成された前
記酸化物層の上にシリコンの層を形成するステップ4
と、ステップ4で形成された前記シリコン層にドーパン
トを打ち込んでチャネルを形成するステップ5と、ステ
ップ5の前記シリコン層の上に酸化物材料の層を形成し
て、ゲート酸化物層を設けるステップ6と、前記ゲート
酸化物層上に別個のポリシリコン領域の層を形成し、パ
ターン形成して、ソース領域およびドレイン領域を形成
するステップ7と、前記ゲート酸化物およびチャネル領
域の上に絶縁材料の層とドーピングされたポリシリコン
の層とを形成して、二重ゲート・ランダム・アクセス・
メモリ・セルをもたらすため第2制御ゲート領域を設け
るステップ8とを含む、前記方法。 (5)前記ステップ1が、絶縁物層上のシリコンの層か
らなるSOI基板に二酸化珪素の層を成膜するステップ
と、ステップ1Aで成膜された前記二酸化珪素の層の上
に窒化物の層を成膜するステップと、前記絶縁物層から
前記窒化物層、二酸化珪素層およびシリコン層の選択さ
れた部分をマスキングし、エッチングし、取り除いて、
前記トレンチ区域によって離隔される前記絶縁物上の窒
化物、二酸化珪素およびシリコンの別個の部分の層を残
すステップと、前記残りのシリコン層から前記窒化物層
および二酸化珪素層を取り除くステップと、を含むこと
を特徴とする、上記(4)に記載の二重制御ゲート・ラ
ンダム・アクセス・メモリ構造を製造する方法。 (6)前記ステップ1の前記SOI基板の前記絶縁物層
上の前記シリコン層が、前記絶縁物層の底に前記シリコ
ンの層を成膜し、前記絶縁物層に孔を作り、熱を印加し
て前記シリコン層を前記絶縁物層の上に成長させること
によって形成されることを特徴とする、上記(4)に記
載の二重制御ゲート・ランダム・アクセス・メモリ構造
を製造する方法。 (7)前記ステップ4が、前記ステップ3で形成された
前記薄い酸化物層の上に研摩止めを成膜するステップ
と、前記薄い酸化物層と前記研摩止めとの上に前記シリ
コンの層を形成するステップと、前記シリコン層を前記
研摩止めまで機械研摩するステップとを含むことを特徴
とする、上記(4)に記載の二重制御ゲート・ランダム
・アクセス・メモリ構造を製造する方法。 (8)前記ステップ4で設けられる前記シリコンの層
が、前記SOI基板上から残っている前記シリコン部分
の上まで、前記ステップ3で形成された前記薄い酸化物
層に孔を作り、熱を印加して前記シリコンの層に前記シ
リコン部分から前記薄い酸化物の層の上に前記シリコン
の層を成長させることによって形成されることを特徴と
する、上記(4)に記載の二重制御ゲート・ランダム・
アクセス・メモリ構造を製造する方法。
【図1】SOI基板上の二重制御ゲート不揮発性ランダ
ム・アクセス半導体メモリ・セルの立面断面図である。
ム・アクセス半導体メモリ・セルの立面断面図である。
【図2】図1に示されたメモリ・セルの平面図である。
【図3】図1および図2のメモリ・セルの製造工程のさ
まざまな段階での、メモリ・セルの立面断面図である。
まざまな段階での、メモリ・セルの立面断面図である。
【図4】図1および図2のメモリ・セルの製造工程のさ
まざまな段階での、メモリ・セルの立面断面図である。
まざまな段階での、メモリ・セルの立面断面図である。
【図5】図1および図2のメモリ・セルの製造工程のさ
まざまな段階での、メモリ・セルの立面断面図である。
まざまな段階での、メモリ・セルの立面断面図である。
【図6】図1および図2のメモリ・セルの製造工程のさ
まざまな段階での、メモリ・セルの立面断面図である。
まざまな段階での、メモリ・セルの立面断面図である。
【図7】図1および図2のメモリ・セルの製造工程のさ
まざまな段階での、メモリ・セルの立面断面図である。
まざまな段階での、メモリ・セルの立面断面図である。
【図8】図1および図2のメモリ・セルの製造工程のさ
まざまな段階での、メモリ・セルの立面断面図である。
まざまな段階での、メモリ・セルの立面断面図である。
【図9】図1および図2のメモリ・セルの製造工程のさ
まざまな段階での、メモリ・セルの立面断面図である。
まざまな段階での、メモリ・セルの立面断面図である。
【図10】図1および図2のメモリ・セルの製造工程の
さまざまな段階での、メモリ・セルの立面断面図であ
る。
さまざまな段階での、メモリ・セルの立面断面図であ
る。
【図11】図1および図2のメモリ・セルの製造工程の
さまざまな段階での、メモリ・セルの平面図である。
さまざまな段階での、メモリ・セルの平面図である。
【図12】図1および図2のメモリ・セルの製造工程の
さまざまな段階での、メモリ・セルの平面図である。
さまざまな段階での、メモリ・セルの平面図である。
10 シリコン層 12 酸化物層 14 第2制御ゲート 16 孔 18 酸化物層 20 窒化物層 22 フォトレジスト 24 酸化物 26 酸化物層 28 窒化物 30 酸化物 32 孔 34 導電チャネル 34−1 ソース 34−2 ドレイン 38 ゲート酸化物層 40 浮遊ゲート 42 ONO層 44 第1制御ゲート
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/792 29/786 9056−4M H01L 29/78 612 B 9056−4M 617 N (72)発明者 ベン・ソン・ウー アメリカ合衆国10598 ニューヨーク州ヨ ークタウン・ハイツ ブレンダー・レーン 750
Claims (8)
- 【請求項1】電気絶縁材料の第1層と、 前記第1層の上に設けられた、能動デバイスの隣接する
ソース領域、チャネル領域およびドレイン領域を含む、
半導体材料の層と、 前記半導体材料の層の前記チャネル領域の上に設けられ
た浮遊ゲート要素と、 前記浮遊ゲート要素の上に設けられた第1制御ゲート要
素と、 前記電気絶縁材料の第1層内に配置され、第2制御ゲー
ト要素を提供するために前記チャネル領域の下に設けら
れた半導体領域と、 を含む、メモリ・アレイ用の二重制御ゲート・ランダム
・アクセス・メモリ・セル。 - 【請求項2】前記第1層の上に横たわる前記半導体材料
の層が、前記ソース領域、チャネル領域およびドレイン
領域をもたらすために交番する導電率の別個の領域に区
別され、前記メモリ・セル構造がさらに、前記半導体材
料の層と前記上に設けられた浮遊ゲート要素との間に配
置された絶縁材料の層と、前記浮遊ゲート要素と前記上
に横たわる第1制御ゲート要素との間に配置された絶縁
材料の層とを含むことを特徴とする、請求項1に記載の
二重制御ゲート・メモリ・セル。 - 【請求項3】前記第1制御ゲートが、ポリシリコンのワ
ード線であることを特徴とする、請求項2に記載の二重
制御ゲート・メモリ・セル。 - 【請求項4】二重制御ゲート・ランダム・アクセス・メ
モリ構造を製造する方法であって、 絶縁体層上のシリコン層からなるSOI基板から、選択
された部分を取り除き、トレンチ区域によって分離され
た前記シリコン層の残りの部分を残すステップ1と、 前記SOI基板の前記シリコン層の前記残りの部分の間
のトレンチ区域に酸化物を満たして、前記SOI基板の
前記絶縁体層上にシリコンと酸化物の交番する部分の層
を残し、前記シリコン部分が、第1デバイス制御ゲート
領域をもたらすようにするステップ2と、 ステップ2で形成された前記交番するシリコンおよび酸
化物の層の上に比較的薄い酸化物材料の層を形成するス
テップ3と、 ステップ3で形成された前記酸化物層の上にシリコンの
層を形成するステップ4と、 ステップ4で形成された前記シリコン層にドーパントを
打ち込んでチャネルを形成するステップ5と、 ステップ5の前記シリコン層の上に酸化物材料の層を形
成して、ゲート酸化物層を設けるステップ6と、 前記ゲート酸化物層上に別個のポリシリコン領域の層を
形成し、パターン形成して、ソース領域およびドレイン
領域を形成するステップ7と、 前記ゲート酸化物およびチャネル領域の上に絶縁材料の
層とドーピングされたポリシリコンの層とを形成して、
二重ゲート・ランダム・アクセス・メモリ・セルをもた
らすため第2制御ゲート領域を設けるステップ8とを含
む、前記方法。 - 【請求項5】前記ステップ1が、 絶縁物層上のシリコンの層からなるSOI基板に二酸化
珪素の層を成膜するステップと、 ステップ1Aで成膜された前記二酸化珪素の層の上に窒
化物の層を成膜するステップと、 前記絶縁物層から前記窒化物層、二酸化珪素層およびシ
リコン層の選択された部分をマスキングし、エッチング
し、取り除いて、前記トレンチ区域によって離隔される
前記絶縁物上の窒化物、二酸化珪素およびシリコンの別
個の部分の層を残すステップと、 前記残りのシリコン層から前記窒化物層および二酸化珪
素層を取り除くステップと、 を含むことを特徴とする、請求項4に記載の二重制御ゲ
ート・ランダム・アクセス・メモリ構造を製造する方
法。 - 【請求項6】前記ステップ1の前記SOI基板の前記絶
縁物層上の前記シリコン層が、前記絶縁物層の底に前記
シリコンの層を成膜し、前記絶縁物層に孔を作り、熱を
印加して前記シリコン層を前記絶縁物層の上に成長させ
ることによって形成されることを特徴とする、請求項4
に記載の二重制御ゲート・ランダム・アクセス・メモリ
構造を製造する方法。 - 【請求項7】前記ステップ4が、前記ステップ3で形成
された前記薄い酸化物層の上に研摩止めを成膜するステ
ップと、前記薄い酸化物層と前記研摩止めとの上に前記
シリコンの層を形成するステップと、前記シリコン層を
前記研摩止めまで機械研摩するステップとを含むことを
特徴とする、請求項4に記載の二重制御ゲート・ランダ
ム・アクセス・メモリ構造を製造する方法。 - 【請求項8】前記ステップ4で設けられる前記シリコン
の層が、前記SOI基板上から残っている前記シリコン
部分の上まで、前記ステップ3で形成された前記薄い酸
化物層に孔を作り、熱を印加して前記シリコンの層に前
記シリコン部分から前記薄い酸化物の層の上に前記シリ
コンの層を成長させることによって形成されることを特
徴とする、請求項4に記載の二重制御ゲート・ランダム
・アクセス・メモリ構造を製造する方法。
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/235,768 US5446299A (en) | 1994-04-29 | 1994-04-29 | Semiconductor random access memory cell on silicon-on-insulator with dual control gates |
| US235768 | 1994-04-29 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07302887A true JPH07302887A (ja) | 1995-11-14 |
| JP3096401B2 JP3096401B2 (ja) | 2000-10-10 |
Family
ID=22886832
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP07075618A Expired - Fee Related JP3096401B2 (ja) | 1994-04-29 | 1995-03-31 | 二重制御ゲートを有するsoi上の半導体ランダム・アクセス・メモリ・セルおよびその製造方法 |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US5446299A (ja) |
| JP (1) | JP3096401B2 (ja) |
| KR (1) | KR0174633B1 (ja) |
| DE (1) | DE19512431C2 (ja) |
| TW (1) | TW280025B (ja) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002353342A (ja) * | 2001-05-24 | 2002-12-06 | Sony Corp | 不揮発性半導体メモリ装置の動作方法 |
| JP2006511097A (ja) * | 2002-12-06 | 2006-03-30 | コーネル リサーチ ファンデーション インコーポレーテッド | 裏側のトラッピングを用いた、拡張性のあるナノ−トランジスタおよびメモリ |
| JP2006190932A (ja) * | 2004-12-29 | 2006-07-20 | Hynix Semiconductor Inc | チャージトラップインシュレータメモリ装置 |
Families Citing this family (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6218703B1 (en) * | 1995-07-23 | 2001-04-17 | Ricoh Company, Ltd. | Semiconductor device with control electrodes formed from semiconductor material |
| KR0179175B1 (ko) * | 1995-10-05 | 1999-03-20 | 문정환 | 반도체 메모리 장치 및 제조방법 |
| JP3535307B2 (ja) * | 1996-03-15 | 2004-06-07 | 株式会社半導体エネルギー研究所 | 半導体装置 |
| JP2877103B2 (ja) * | 1996-10-21 | 1999-03-31 | 日本電気株式会社 | 不揮発性半導体記憶装置およびその製造方法 |
| US5933735A (en) * | 1997-01-16 | 1999-08-03 | United Microelectronics Corp. | Semiconductor read-only memory device and method of fabricating the same |
| US5943573A (en) * | 1997-01-17 | 1999-08-24 | United Microelectronics Corp. | Method of fabricating semiconductor read-only memory device |
| AU3818997A (en) * | 1997-07-25 | 1999-02-16 | Regents Of The University Of Minnesota | Single-electron floating-gate mos memory |
| US6069380A (en) * | 1997-07-25 | 2000-05-30 | Regents Of The University Of Minnesota | Single-electron floating-gate MOS memory |
| US6064589A (en) * | 1998-02-02 | 2000-05-16 | Walker; Darryl G. | Double gate DRAM memory cell |
| US6384439B1 (en) * | 1998-02-02 | 2002-05-07 | Texas Instruments, Inc. | DRAM memory cell and array having pass transistors with recessed channels |
| US6445032B1 (en) * | 1998-05-04 | 2002-09-03 | International Business Machines Corporation | Floating back gate electrically erasable programmable read-only memory(EEPROM) |
| KR100267013B1 (ko) * | 1998-05-27 | 2000-09-15 | 윤종용 | 반도체 장치 및 그의 제조 방법 |
| US7192829B2 (en) * | 1998-07-17 | 2007-03-20 | Micron Technology, Inc. | Methods of forming floating gate transistors |
| GB9818310D0 (en) * | 1998-08-22 | 1998-10-14 | Koninkl Philips Electronics Nv | Thin film transistors and their manufacture |
| KR100308072B1 (ko) * | 1998-08-27 | 2001-10-19 | 박종섭 | 반도체소자의 제조방법 |
| US6358819B1 (en) | 1998-12-15 | 2002-03-19 | Lsi Logic Corporation | Dual gate oxide process for deep submicron ICS |
| US6252275B1 (en) | 1999-01-07 | 2001-06-26 | International Business Machines Corporation | Silicon-on-insulator non-volatile random access memory device |
| US6391658B1 (en) * | 1999-10-26 | 2002-05-21 | International Business Machines Corporation | Formation of arrays of microelectronic elements |
| JP3573691B2 (ja) * | 2000-07-03 | 2004-10-06 | シャープ株式会社 | 不揮発性半導体記憶装置およびその製造方法 |
| US6441436B1 (en) * | 2000-11-29 | 2002-08-27 | United Microelectronics Corp. | SOI device and method of fabrication |
| JP4216483B2 (ja) * | 2001-02-15 | 2009-01-28 | 株式会社東芝 | 半導体メモリ装置 |
| US6855977B2 (en) * | 2001-05-07 | 2005-02-15 | Advanced Micro Devices, Inc. | Memory device with a self-assembled polymer film and method of making the same |
| TWI230392B (en) * | 2001-06-18 | 2005-04-01 | Innovative Silicon Sa | Semiconductor device |
| US6462388B1 (en) * | 2001-07-26 | 2002-10-08 | Hewlett-Packard Company | Isolation of memory cells in cross point arrays |
| EP1357603A3 (en) | 2002-04-18 | 2004-01-14 | Innovative Silicon SA | Semiconductor device |
| EP1355316B1 (en) * | 2002-04-18 | 2007-02-21 | Innovative Silicon SA | Data storage device and refreshing method for use with such device |
| DE10223505A1 (de) * | 2002-05-27 | 2003-12-11 | Infineon Technologies Ag | Verfahren zum Herstellen einer Speicherzelle, Speicherzelle und Speicherzellen-Anordnung |
| US6912150B2 (en) * | 2003-05-13 | 2005-06-28 | Lionel Portman | Reference current generator, and method of programming, adjusting and/or operating same |
| US20040228168A1 (en) * | 2003-05-13 | 2004-11-18 | Richard Ferrant | Semiconductor memory device and method of operating same |
| US7085153B2 (en) * | 2003-05-13 | 2006-08-01 | Innovative Silicon S.A. | Semiconductor memory cell, array, architecture and device, and method of operating same |
| JP2004363443A (ja) * | 2003-06-06 | 2004-12-24 | Toshiba Corp | 不揮発性半導体記憶装置及びその製造方法 |
| US7335934B2 (en) * | 2003-07-22 | 2008-02-26 | Innovative Silicon S.A. | Integrated circuit device, and method of fabricating same |
| US7184298B2 (en) * | 2003-09-24 | 2007-02-27 | Innovative Silicon S.A. | Low power programming technique for a floating body memory transistor, memory cell, and memory array |
| US7158410B2 (en) * | 2004-08-27 | 2007-01-02 | Micron Technology, Inc. | Integrated DRAM-NVRAM multi-level memory |
| US7547945B2 (en) | 2004-09-01 | 2009-06-16 | Micron Technology, Inc. | Transistor devices, transistor structures and semiconductor constructions |
| US7476939B2 (en) * | 2004-11-04 | 2009-01-13 | Innovative Silicon Isi Sa | Memory cell having an electrically floating body transistor and programming technique therefor |
| US7251164B2 (en) * | 2004-11-10 | 2007-07-31 | Innovative Silicon S.A. | Circuitry for and method of improving statistical distribution of integrated circuits |
| US7301838B2 (en) * | 2004-12-13 | 2007-11-27 | Innovative Silicon S.A. | Sense amplifier circuitry and architecture to write data into and/or read from memory cells |
| US7301803B2 (en) | 2004-12-22 | 2007-11-27 | Innovative Silicon S.A. | Bipolar reading technique for a memory cell having an electrically floating body transistor |
| DE102005017071B4 (de) * | 2004-12-29 | 2011-09-15 | Hynix Semiconductor Inc. | Schwebe-Gate-Speichereinrichtung |
| DE102005017072A1 (de) * | 2004-12-29 | 2006-07-13 | Hynix Semiconductor Inc., Ichon | Ladungsfalle- bzw. Ladung-Trap-Isolator-Speichereinrichtung |
| US7384849B2 (en) | 2005-03-25 | 2008-06-10 | Micron Technology, Inc. | Methods of forming recessed access devices associated with semiconductor constructions |
| US7282401B2 (en) | 2005-07-08 | 2007-10-16 | Micron Technology, Inc. | Method and apparatus for a self-aligned recessed access device (RAD) transistor gate |
| US7867851B2 (en) | 2005-08-30 | 2011-01-11 | Micron Technology, Inc. | Methods of forming field effect transistors on substrates |
| US7606066B2 (en) | 2005-09-07 | 2009-10-20 | Innovative Silicon Isi Sa | Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same |
| US7355916B2 (en) * | 2005-09-19 | 2008-04-08 | Innovative Silicon S.A. | Method and circuitry to generate a reference current for reading a memory cell, and device implementing same |
| US20070085140A1 (en) * | 2005-10-19 | 2007-04-19 | Cedric Bassin | One transistor memory cell having strained electrically floating body region, and method of operating same |
| US7683430B2 (en) * | 2005-12-19 | 2010-03-23 | Innovative Silicon Isi Sa | Electrically floating body memory cell and array, and method of operating or controlling same |
| US7700441B2 (en) | 2006-02-02 | 2010-04-20 | Micron Technology, Inc. | Methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates |
| US7542345B2 (en) | 2006-02-16 | 2009-06-02 | Innovative Silicon Isi Sa | Multi-bit memory cell having electrically floating body transistor, and method of programming and reading same |
| US7492632B2 (en) | 2006-04-07 | 2009-02-17 | Innovative Silicon Isi Sa | Memory array having a programmable word length, and method of operating same |
| US7606098B2 (en) | 2006-04-18 | 2009-10-20 | Innovative Silicon Isi Sa | Semiconductor memory array architecture with grouped memory cells, and method of controlling same |
| WO2007128738A1 (en) | 2006-05-02 | 2007-11-15 | Innovative Silicon Sa | Semiconductor memory cell and array using punch-through to program and read same |
| US7646071B2 (en) * | 2006-05-31 | 2010-01-12 | Intel Corporation | Asymmetric channel doping for improved memory operation for floating body cell (FBC) memory |
| US8069377B2 (en) | 2006-06-26 | 2011-11-29 | Micron Technology, Inc. | Integrated circuit having memory array including ECC and column redundancy and method of operating the same |
| US7542340B2 (en) | 2006-07-11 | 2009-06-02 | Innovative Silicon Isi Sa | Integrated circuit including memory array having a segmented bit line architecture and method of controlling and/or operating same |
| US7602001B2 (en) * | 2006-07-17 | 2009-10-13 | Micron Technology, Inc. | Capacitorless one transistor DRAM cell, integrated circuitry comprising an array of capacitorless one transistor DRAM cells, and method of forming lines of capacitorless one transistor DRAM cells |
| US7772632B2 (en) | 2006-08-21 | 2010-08-10 | Micron Technology, Inc. | Memory arrays and methods of fabricating memory arrays |
| US7589995B2 (en) * | 2006-09-07 | 2009-09-15 | Micron Technology, Inc. | One-transistor memory cell with bias gate |
| KR101277402B1 (ko) | 2007-01-26 | 2013-06-20 | 마이크론 테크놀로지, 인코포레이티드 | 게이트형 바디 영역으로부터 격리되는 소스/드레인 영역을 포함하는 플로팅-바디 dram 트랜지스터 |
| US8518774B2 (en) | 2007-03-29 | 2013-08-27 | Micron Technology, Inc. | Manufacturing process for zero-capacitor random access memory circuits |
| JP6105190B2 (ja) * | 2007-05-07 | 2017-03-29 | ルムス テクノロジー インコーポレイテッド | エチレン炉輻射コイルのデコーキング法 |
| US8064274B2 (en) | 2007-05-30 | 2011-11-22 | Micron Technology, Inc. | Integrated circuit having voltage generation circuitry for memory cell array, and method of operating and/or controlling same |
| US8085594B2 (en) | 2007-06-01 | 2011-12-27 | Micron Technology, Inc. | Reading technique for memory cell with electrically floating body transistor |
| US7923373B2 (en) | 2007-06-04 | 2011-04-12 | Micron Technology, Inc. | Pitch multiplication using self-assembling materials |
| WO2009039169A1 (en) | 2007-09-17 | 2009-03-26 | Innovative Silicon S.A. | Refreshing data of memory cells with electrically floating body transistors |
| US8536628B2 (en) | 2007-11-29 | 2013-09-17 | Micron Technology, Inc. | Integrated circuit having memory cell array including barriers, and method of manufacturing same |
| US8349662B2 (en) | 2007-12-11 | 2013-01-08 | Micron Technology, Inc. | Integrated circuit having memory cell array, and method of manufacturing same |
| US8773933B2 (en) | 2012-03-16 | 2014-07-08 | Micron Technology, Inc. | Techniques for accessing memory cells |
| US8014195B2 (en) | 2008-02-06 | 2011-09-06 | Micron Technology, Inc. | Single transistor memory cell |
| US8189376B2 (en) | 2008-02-08 | 2012-05-29 | Micron Technology, Inc. | Integrated circuit having memory cells including gate material having high work function, and method of manufacturing same |
| US7973364B2 (en) * | 2008-02-27 | 2011-07-05 | Globalfoundries Inc. | Method for forming a one-transistor memory cell and related structure |
| US7957206B2 (en) | 2008-04-04 | 2011-06-07 | Micron Technology, Inc. | Read circuitry for an integrated circuit having memory cells and/or a memory cell array, and method of operating same |
| US7947543B2 (en) | 2008-09-25 | 2011-05-24 | Micron Technology, Inc. | Recessed gate silicon-on-insulator floating body device with self-aligned lateral isolation |
| US7933140B2 (en) | 2008-10-02 | 2011-04-26 | Micron Technology, Inc. | Techniques for reducing a voltage swing |
| US7924630B2 (en) | 2008-10-15 | 2011-04-12 | Micron Technology, Inc. | Techniques for simultaneously driving a plurality of source lines |
| US8223574B2 (en) | 2008-11-05 | 2012-07-17 | Micron Technology, Inc. | Techniques for block refreshing a semiconductor memory device |
| US8213226B2 (en) | 2008-12-05 | 2012-07-03 | Micron Technology, Inc. | Vertical transistor memory cell and array |
| US8319294B2 (en) | 2009-02-18 | 2012-11-27 | Micron Technology, Inc. | Techniques for providing a source line plane |
| US8710566B2 (en) | 2009-03-04 | 2014-04-29 | Micron Technology, Inc. | Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device |
| KR20120006516A (ko) | 2009-03-31 | 2012-01-18 | 마이크론 테크놀로지, 인크. | 반도체 메모리 디바이스를 제공하기 위한 기술들 |
| US8139418B2 (en) | 2009-04-27 | 2012-03-20 | Micron Technology, Inc. | Techniques for controlling a direct injection semiconductor memory device |
| US8508994B2 (en) | 2009-04-30 | 2013-08-13 | Micron Technology, Inc. | Semiconductor device with floating gate and electrically floating body |
| US8498157B2 (en) | 2009-05-22 | 2013-07-30 | Micron Technology, Inc. | Techniques for providing a direct injection semiconductor memory device |
| US8537610B2 (en) | 2009-07-10 | 2013-09-17 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
| US9076543B2 (en) | 2009-07-27 | 2015-07-07 | Micron Technology, Inc. | Techniques for providing a direct injection semiconductor memory device |
| US8199595B2 (en) | 2009-09-04 | 2012-06-12 | Micron Technology, Inc. | Techniques for sensing a semiconductor memory device |
| US8174881B2 (en) | 2009-11-24 | 2012-05-08 | Micron Technology, Inc. | Techniques for reducing disturbance in a semiconductor device |
| US8310893B2 (en) | 2009-12-16 | 2012-11-13 | Micron Technology, Inc. | Techniques for reducing impact of array disturbs in a semiconductor memory device |
| US8416636B2 (en) | 2010-02-12 | 2013-04-09 | Micron Technology, Inc. | Techniques for controlling a semiconductor memory device |
| US8576631B2 (en) | 2010-03-04 | 2013-11-05 | Micron Technology, Inc. | Techniques for sensing a semiconductor memory device |
| US8411513B2 (en) | 2010-03-04 | 2013-04-02 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device having hierarchical bit lines |
| US8369177B2 (en) | 2010-03-05 | 2013-02-05 | Micron Technology, Inc. | Techniques for reading from and/or writing to a semiconductor memory device |
| EP2548227B1 (en) | 2010-03-15 | 2021-07-14 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
| US8411524B2 (en) | 2010-05-06 | 2013-04-02 | Micron Technology, Inc. | Techniques for refreshing a semiconductor memory device |
| US8531878B2 (en) | 2011-05-17 | 2013-09-10 | Micron Technology, Inc. | Techniques for providing a semiconductor memory device |
| US9559216B2 (en) | 2011-06-06 | 2017-01-31 | Micron Technology, Inc. | Semiconductor memory device and method for biasing same |
| US20130071992A1 (en) * | 2011-09-21 | 2013-03-21 | Nanya Technology Corporation | Semiconductor process |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2310970A (en) * | 1941-05-28 | 1943-02-16 | Alexander S Limpert | Heat exchanger |
| US4297719A (en) * | 1979-08-10 | 1981-10-27 | Rca Corporation | Electrically programmable control gate injected floating gate solid state memory transistor and method of making same |
| US4334347A (en) * | 1979-10-19 | 1982-06-15 | Rca Corporation | Method of forming an improved gate member for a gate injected floating gate memory device |
| JPS6178169A (ja) * | 1984-09-26 | 1986-04-21 | Hitachi Ltd | 半導体記憶装置 |
| US4833514A (en) * | 1985-05-01 | 1989-05-23 | Texas Instruments Incorporated | Planar FAMOS transistor with sealed floating gate and DCS+N2 O oxide |
| JPS63119218A (ja) * | 1986-11-07 | 1988-05-23 | Canon Inc | 半導体基材とその製造方法 |
| US4905062A (en) * | 1987-11-19 | 1990-02-27 | Texas Instruments Incorporated | Planar famos transistor with trench isolation |
| JP2714874B2 (ja) * | 1990-05-30 | 1998-02-16 | セイコーインスツルメンツ株式会社 | 半導体不揮発性メモリ |
| US5120670A (en) * | 1991-04-18 | 1992-06-09 | National Semiconductor Corporation | Thermal process for implementing the planarization inherent to stacked etch in virtual ground EPROM memories |
| US5055898A (en) * | 1991-04-30 | 1991-10-08 | International Business Machines Corporation | DRAM memory cell having a horizontal SOI transfer device disposed over a buried storage node and fabrication methods therefor |
-
1994
- 1994-04-29 US US08/235,768 patent/US5446299A/en not_active Expired - Fee Related
-
1995
- 1995-01-10 TW TW084100180A patent/TW280025B/zh active
- 1995-03-31 JP JP07075618A patent/JP3096401B2/ja not_active Expired - Fee Related
- 1995-04-03 DE DE19512431A patent/DE19512431C2/de not_active Expired - Fee Related
- 1995-04-27 KR KR1019950010080A patent/KR0174633B1/ko not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002353342A (ja) * | 2001-05-24 | 2002-12-06 | Sony Corp | 不揮発性半導体メモリ装置の動作方法 |
| JP2006511097A (ja) * | 2002-12-06 | 2006-03-30 | コーネル リサーチ ファンデーション インコーポレーテッド | 裏側のトラッピングを用いた、拡張性のあるナノ−トランジスタおよびメモリ |
| JP2006190932A (ja) * | 2004-12-29 | 2006-07-20 | Hynix Semiconductor Inc | チャージトラップインシュレータメモリ装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR0174633B1 (ko) | 1999-02-01 |
| JP3096401B2 (ja) | 2000-10-10 |
| DE19512431A1 (de) | 1995-11-02 |
| TW280025B (ja) | 1996-07-01 |
| DE19512431C2 (de) | 2001-09-13 |
| KR950030371A (ko) | 1995-11-24 |
| US5446299A (en) | 1995-08-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3096401B2 (ja) | 二重制御ゲートを有するsoi上の半導体ランダム・アクセス・メモリ・セルおよびその製造方法 | |
| US7307308B2 (en) | Buried bit line non-volatile floating gate memory cell with independent controllable control gate in a trench, and array thereof, and method of formation | |
| US5021848A (en) | Electrically-erasable and electrically-programmable memory storage devices with self aligned tunnel dielectric area and the method of fabricating thereof | |
| JP2566716B2 (ja) | トレンチ型eeprom | |
| US5242848A (en) | Self-aligned method of making a split gate single transistor non-volatile electrically alterable semiconductor memory device | |
| US4597060A (en) | EPROM array and method for fabricating | |
| EP0182198B1 (en) | Single transistor electrically programmable device and method | |
| US5029130A (en) | Single transistor non-valatile electrically alterable semiconductor memory device | |
| KR100221062B1 (ko) | 플래시메모리 및 그 제조방법 | |
| US5411905A (en) | Method of making trench EEPROM structure on SOI with dual channels | |
| US5045488A (en) | Method of manufacturing a single transistor non-volatile, electrically alterable semiconductor memory device | |
| US5572054A (en) | Method of operating a single transistor non-volatile electrically alterable semiconductor memory device | |
| EP0044384B1 (en) | Electrically alterable read only memory cell | |
| US5019879A (en) | Electrically-flash-erasable and electrically-programmable memory storage devices with self aligned tunnel dielectric area | |
| US5284785A (en) | Diffusionless source/drain conductor electrically-erasable, electrically-programmable read-only memory and methods for making and using the same | |
| US7205198B2 (en) | Method of making a bi-directional read/program non-volatile floating gate memory cell | |
| US5173436A (en) | Method of manufacturing an EEPROM with trench-isolated bitlines | |
| US4975384A (en) | Erasable electrically programmable read only memory cell using trench edge tunnelling | |
| US20030203557A1 (en) | Method and structure for an improved floating gate memory cell | |
| US5923063A (en) | Double density V nonvolatile memory cell | |
| EP0579779B1 (en) | A single transistor non-volatile electrically alterable semiconductor memory device | |
| US5990515A (en) | Trenched gate non-volatile semiconductor device and method with corner doping and sidewall doping | |
| US7151021B2 (en) | Bi-directional read/program non-volatile floating gate memory cell and array thereof, and method of formation | |
| US4713142A (en) | Method for fabricating EPROM array | |
| JPH04234174A (ja) | 不揮発性メモリ・セル |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |