JPH07303375A - Method for improving power factor of switching power unit and switching power unit - Google Patents
Method for improving power factor of switching power unit and switching power unitInfo
- Publication number
- JPH07303375A JPH07303375A JP6093225A JP9322594A JPH07303375A JP H07303375 A JPH07303375 A JP H07303375A JP 6093225 A JP6093225 A JP 6093225A JP 9322594 A JP9322594 A JP 9322594A JP H07303375 A JPH07303375 A JP H07303375A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- capacitor
- charging
- diode
- discharging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 11
- 239000003990 capacitor Substances 0.000 claims abstract description 119
- 238000007599 discharging Methods 0.000 claims abstract description 61
- 238000009499 grossing Methods 0.000 claims abstract description 55
- 238000004804 winding Methods 0.000 claims abstract description 45
- 230000007423 decrease Effects 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 230000033228 biological regulation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、スイッチング電源装
置の力率改善方法およびスイッチング電源装置に関し、
さらに詳しくは、回路の力率を従来よりも改善すること
が出来るスイッチング電源装置の力率改善方法およびそ
の力率改善方法を実施するスイッチング電源装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power factor correction method for a switching power supply and a switching power supply,
More particularly, the present invention relates to a power factor improving method for a switching power source device capable of improving the power factor of a circuit as compared with a conventional one, and a switching power source device implementing the power factor improving method.
【0002】[0002]
【従来の技術】図4は、従来のスイッチング電源装置の
一例を示す全体構成図である。このスイッチング電源装
置500は、一般にコンデンサインプット型整流平滑回
路と呼ばれる回路構成を有している。すなわち、交流電
源1による正弦波交流電圧Vsを全波整流器2で全波整
流し、一対の出力端子3,4間の全波整流電圧を平滑コ
ンデンサ55により平滑し、前記平滑コンデンサ55の
端子間電圧v55をDC−DCコンバータ6の入力端子
7,8に入力し、前記DC−DCコンバータ6の出力端
子9,10から安定した出力電圧Voを負荷11に供給
するように構成されている。2. Description of the Related Art FIG. 4 is an overall configuration diagram showing an example of a conventional switching power supply device. The switching power supply device 500 has a circuit configuration generally called a capacitor input type rectifying / smoothing circuit. That is, the sine wave AC voltage Vs from the AC power supply 1 is full-wave rectified by the full-wave rectifier 2, and the full-wave rectified voltage between the pair of output terminals 3 and 4 is smoothed by the smoothing capacitor 55. The voltage v55 is input to the input terminals 7 and 8 of the DC-DC converter 6, and a stable output voltage Vo is supplied to the load 11 from the output terminals 9 and 10 of the DC-DC converter 6.
【0003】次に、上記のスイッチング電源装置500
の動作を説明する。図5の(a)に示すように、交流電
源1からは、正弦波交流電圧Vsが出力されている。数
値例を示せば、正弦波交流電圧Vsの実効値を100V
とすると、ピーク値Vmは約140Vとなる。時刻to
に電源開閉器Kを閉じて交流電源1を投入すると、正弦
波交流電圧Vsは、全波整流器2により全波整流され
て、図6の(b)に示すように、全波整流電圧が得られ
る。Next, the switching power supply device 500 described above.
The operation of will be described. As shown in FIG. 5A, the AC power supply 1 outputs a sine wave AC voltage Vs. If a numerical example is shown, the effective value of the sine wave AC voltage Vs is 100V.
Then, the peak value Vm is about 140V. Time to
When the power switch K is closed and the AC power supply 1 is turned on, the sine wave AC voltage Vs is full-wave rectified by the full-wave rectifier 2 to obtain a full-wave rectified voltage as shown in FIG. To be
【0004】図5の(b)に示すように、時刻to〜t
o’の期間は、全波整流電圧が上昇するので、図5の
(c)に示すように、平滑コンデンサ55に充電電流i
55が流れる。このとき、図5の(d)に示すように、
平滑コンデンサ55の端子間電圧v55はピーク値Vm
まで上昇する。図5の(b)に示すように、時刻to’
を過ぎると、全波整流電圧が低下するので、平滑コンデ
ンサ55はDC−DCコンバータ6側へ放電する。この
ため、図5の(d)に示すように、端子間電圧v55は
徐々に低下する。As shown in FIG. 5 (b), times to-t
During the period of o ′, the full-wave rectified voltage rises, so that the charging current i is applied to the smoothing capacitor 55 as shown in FIG.
55 flows. At this time, as shown in FIG.
The inter-terminal voltage v55 of the smoothing capacitor 55 is the peak value Vm.
Rise to. As shown in FIG. 5B, time to '
After that, the full-wave rectified voltage drops, so that the smoothing capacitor 55 is discharged to the DC-DC converter 6 side. Therefore, as shown in FIG. 5D, the inter-terminal voltage v55 gradually decreases.
【0005】全波整流電圧が再び上昇して、時刻t1で
全波整流電圧が端子間電圧v55と等しくなると、図5
の(c)に示すように、全波整流電圧により充電電流i
55が流れ、平滑コンデンサ55は充電される。従っ
て、図5の(d)に示すように、端子間電圧v55は上
昇し、時刻t2でピーク値Vmになる。時刻t2を過ぎ
ると、前記to’以降の動作を繰り返す。When the full-wave rectified voltage rises again and the full-wave rectified voltage becomes equal to the inter-terminal voltage v55 at time t1, FIG.
As shown in (c) of FIG.
55 flows and the smoothing capacitor 55 is charged. Therefore, as shown in FIG. 5D, the inter-terminal voltage v55 rises and reaches the peak value Vm at the time t2. After time t2, the operations after to 'are repeated.
【0006】[0006]
【発明が解決しようとする課題】上記従来のスイッチン
グ電源装置500では、図5の(c)に示したように、
充電電流i55が急峻なパルス状波形となる。このた
め、交流電源1からの電流波形も急峻なパルス状とな
り、力率が低下し、高調波成分が多大に発生する問題点
がある。そこで、この発明の目的は、力率を改善し高調
波成分の発生を抑制することが出来るスイッチング電源
装置の力率改善方法およびその力率改善方法を実施する
スイッチング電源装置を提供することにある。In the above conventional switching power supply device 500, as shown in FIG.
The charging current i55 has a steep pulse waveform. Therefore, there is a problem that the current waveform from the AC power source 1 also has a steep pulse shape, the power factor is lowered, and a large amount of harmonic components are generated. Therefore, it is an object of the present invention to provide a power factor improving method for a switching power source device capable of improving the power factor and suppressing the generation of harmonic components, and a switching power source device implementing the power factor improving method. .
【0007】[0007]
【課題を解決するための手段】第1の観点では、この発
明は、交流電圧を整流する整流回路により得られた整流
電圧を平滑コンデンサにより平滑し、前記平滑コンデン
サの端子間電圧に基づく電圧を断続的にトランスの1次
巻線の両端に印加し、前記トランスの2次巻線に誘起し
た電圧を負荷側に供給するスイッチング電源装置におい
て、前記整流回路により得られた整流電圧により充電さ
れると共に前記1次巻線を所定の巻数比で分割する分割
点へ放電する充放電用コンデンサを設け、前記整流電圧
が前記充放電用コンデンサの端子間電圧よりも高くなる
と前記充放電用コンデンサを充電し、前記整流電圧が前
記平滑コンデンサの端子間電圧よりも高くなると前記平
滑コンデンサを充電し、前記整流電圧が低下し始めると
前記平滑コンデンサから放電を行なわない状態で前記充
放電用コンデンサから放電し、前記充放電用コンデンサ
の端子間電圧が所定電圧にまで低下すると前記平滑コン
デンサと前記充放電用コンデンサの両方から放電するこ
とを特徴とするスイッチング電源装置の力率改善方法を
提供する。According to a first aspect of the present invention, the present invention smoothes a rectified voltage obtained by a rectifying circuit for rectifying an AC voltage with a smoothing capacitor, and generates a voltage based on a voltage between terminals of the smoothing capacitor. In a switching power supply device which is intermittently applied to both ends of a primary winding of a transformer and supplies a voltage induced in a secondary winding of the transformer to a load side, the charging is performed by a rectified voltage obtained by the rectifier circuit. A charging / discharging capacitor that discharges the primary winding to a dividing point that divides the primary winding at a predetermined winding ratio is provided, and the charging / discharging capacitor is charged when the rectified voltage becomes higher than the terminal voltage of the charging / discharging capacitor. The smoothing capacitor is charged when the rectified voltage becomes higher than the inter-terminal voltage of the smoothing capacitor, and the smoothing capacitor is charged when the rectified voltage starts to decrease. Is discharged from the charging / discharging capacitor without discharging from the charging / discharging capacitor, and when the voltage between terminals of the charging / discharging capacitor drops to a predetermined voltage, discharging is performed from both the smoothing capacitor and the charging / discharging capacitor. Provided is a method for improving the power factor of a switching power supply device.
【0008】第2の観点では、この発明は、交流電圧を
整流する整流回路により得られた整流電圧を平滑コンデ
ンサにより平滑し、前記平滑コンデンサの端子間電圧に
基づく電圧を断続的にトランスの1次巻線の両端に印加
し、前記トランスの2次巻線に誘起した電圧を負荷側に
供給するスイッチング電源装置において、前記整流回路
の一方の出力側と前記平滑コンデンサの一端との間に第
1ダイオードを接続し、前記平滑コンデンサの一端と前
記1次巻線の一端との間に第2ダイオードを前記第1ダ
イオードと同じ向きで接続し、前記整流回路の一方の出
力側に充放電用コンデンサの一端を接続し、前記充放電
用コンデンサの他端を前記平滑コンデンサの他端に接続
し、前記充放電用コンデンサの一端と前記1次巻線を所
定の巻数比で分割する分割点との間に第3ダイオードを
前記第1ダイオードと同じ向きで接続してなることを特
徴とするスイッチング電源装置を提供する。In a second aspect, the present invention smoothes a rectified voltage obtained by a rectifying circuit for rectifying an AC voltage with a smoothing capacitor, and intermittently applies a voltage based on a voltage between terminals of the smoothing capacitor to the transformer 1. In a switching power supply device that applies a voltage applied to both ends of a secondary winding and induces a voltage induced in a secondary winding of the transformer to a load side, a switching power supply device is provided between one output side of the rectifier circuit and one end of the smoothing capacitor. One diode is connected, a second diode is connected between one end of the smoothing capacitor and one end of the primary winding in the same direction as the first diode, and one output side of the rectifier circuit is charged and discharged. One end of the capacitor is connected, the other end of the charging / discharging capacitor is connected to the other end of the smoothing capacitor, and one end of the charging / discharging capacitor and the primary winding are divided at a predetermined turn ratio. That to provide a switching power supply device according to claim a third diode between the dividing points that formed by connecting in the same direction as the first diode.
【0009】第3の観点では、この発明は、上記構成の
スイッチング電源装置において、整流回路の一方の出力
側に第1ダイオードと同じ向きの第4ダイオードの一端
を接続し、前記第4ダイオードの他端に補助充放電用コ
ンデンサの一端を接続し、前記補助充放電用コンデンサ
の一端に前記第1ダイオードと同じ向きの第5ダイオー
ドの一端を接続し、前記第5ダイオードの他端を、1次
巻線の一端と前記分割点の間に設けた補助分割点に接続
し、前記補助充放電用コンデンサの他端を平滑コンデン
サの他端に接続してなることを特徴とするスイッチング
電源装置を提供する。According to a third aspect of the present invention, in the switching power supply device having the above structure, one end of a fourth diode in the same direction as the first diode is connected to one output side of the rectifying circuit, and the fourth diode of the fourth diode is connected. One end of the auxiliary charging / discharging capacitor is connected to the other end, one end of a fifth diode in the same direction as the first diode is connected to one end of the auxiliary charging / discharging capacitor, and the other end of the fifth diode is connected to one end. A switching power supply device characterized in that it is connected to an auxiliary split point provided between one end of the next winding and the split point, and the other end of the auxiliary charging / discharging capacitor is connected to the other end of a smoothing capacitor. provide.
【0010】[0010]
【作用】上記第1の観点による力率改善方法および上記
第2の観点によるスイッチング電源装置では、トランス
の1次巻線に放電する平滑コンデンサとは別に、前記1
次巻線の分割点に放電する充放電用コンデンサを設け
た。トランスの1次巻線の電圧よりも分割点の電圧の方
が低いため、平滑コンデンサの端子間電圧は比較的高く
なり、充放電用コンデンサの端子間電圧は比較的低くな
る。この電圧差があるため、平滑コンデンサの充電のタ
イミングと充放電用コンデンサの充電のタイミングとが
時間的にずれる。すると、平滑コンデンサの充電電流と
充放電用コンデンサの充電電流の和である交流電源から
の電流波形は、平滑コンデンサの充電電流および充放電
用コンデンサの充電電流のそれぞれのパルス状波形より
も急峻性が緩和された波形となる。従って、力率が改善
され、高調波成分の発生が抑制されることとなる。In the power factor improving method according to the first aspect and the switching power supply apparatus according to the second aspect, the above-mentioned 1 is provided in addition to the smoothing capacitor discharged to the primary winding of the transformer.
A charging / discharging capacitor that discharges was provided at the dividing point of the next winding. Since the voltage at the dividing point is lower than the voltage at the primary winding of the transformer, the voltage across the smoothing capacitor is relatively high, and the voltage across the charging / discharging capacitor is relatively low. Due to this voltage difference, the charging timing of the smoothing capacitor and the charging timing of the charging / discharging capacitor are deviated in time. Then, the current waveform from the AC power supply, which is the sum of the charging current of the smoothing capacitor and the charging current of the charging / discharging capacitor, is steeper than the pulse-shaped waveforms of the charging current of the smoothing capacitor and the charging current of the charging / discharging capacitor. Is a relaxed waveform. Therefore, the power factor is improved and the generation of harmonic components is suppressed.
【0011】上記第3の観点によるスイッチング電源装
置では、トランスの1次巻線に放電する平滑コンデンサ
および前記1次巻線の分割点に放電する充放電用コンデ
ンサの外に、前記1次巻線の補助分割点に放電する補助
充放電用コンデンサを設けた。平滑コンデンサの端子間
電圧,充放電用コンデンサの端子間電圧および補助充放
電用コンデンサの端子間電圧がそれぞれ異なるため、充
電のタイミングが時間的にずれる。従って、交流電源か
らの電流波形の急峻性がさらに緩和され、力率が改善さ
れ、高調波成分の発生が抑制されることとなる。なお、
補助分割点を1つ以上設けてもよい。In the switching power supply device according to the third aspect, in addition to the smoothing capacitor discharging to the primary winding of the transformer and the charging / discharging capacitor discharging to the dividing point of the primary winding, the primary winding is also provided. An auxiliary charging / discharging capacitor that discharges is provided at the auxiliary dividing point. Since the voltage between the terminals of the smoothing capacitor, the voltage between the terminals of the charging / discharging capacitor, and the voltage between the terminals of the auxiliary charging / discharging capacitor are different, the charging timing is shifted in time. Therefore, the steepness of the current waveform from the AC power source is further alleviated, the power factor is improved, and the generation of harmonic components is suppressed. In addition,
You may provide one or more auxiliary division points.
【0012】[0012]
【実施例】以下、図に示す実施例によりこの発明をさら
に詳細に説明する。なお、これによりこの発明が限定さ
れるものではない。The present invention will be described in more detail with reference to the embodiments shown in the drawings. The present invention is not limited to this.
【0013】図1は、この発明の第1実施例のスイッチ
ング電源装置を示す全体構成図である。このスイッチン
グ電源装置100は、一般にフォワードコンバータと呼
ばれる回路構成を有している。すなわち、電源開閉器K
が閉じられると、交流電源1による正弦波交流電圧Vs
を全波整流器2で全波整流し、一対の出力端子3,4間
の全波整流電圧を平滑コンデンサ5により平滑する。そ
して、トランス14の1次巻線15と直列に接続された
スイッチ16を、PWM制御部24によりオン・オフす
ることで、前記平滑コンデンサ5の端子間電圧v5を前
記1次巻線15の両端に断続的に印加する。そして、ト
ランス14の2次巻線19に誘起した電圧を、整流ダイ
オード20と,還流ダイオード21と,チョークコイル
22と,コンデンサ23により直流化し、出力電圧Vo
として負荷11に供給する。前記出力電圧Voは、誤差
検出部26およびフォトカプラ25を介して、前記PW
M制御部24にフィードバックされ、安定化の制御に供
されている。FIG. 1 is an overall configuration diagram showing a switching power supply device according to a first embodiment of the present invention. This switching power supply device 100 has a circuit configuration generally called a forward converter. That is, the power switch K
Is closed, the sine wave AC voltage Vs generated by the AC power source 1
Is full-wave rectified by the full-wave rectifier 2, and the full-wave rectified voltage between the pair of output terminals 3 and 4 is smoothed by the smoothing capacitor 5. The switch 16 connected in series with the primary winding 15 of the transformer 14 is turned on / off by the PWM control unit 24, so that the inter-terminal voltage v5 of the smoothing capacitor 5 is applied to both ends of the primary winding 15. Apply intermittently. Then, the voltage induced in the secondary winding 19 of the transformer 14 is converted into a direct current by the rectifying diode 20, the free wheeling diode 21, the choke coil 22, and the capacitor 23 to output the output voltage Vo.
Is supplied to the load 11. The output voltage Vo is supplied to the PW via the error detector 26 and the photocoupler 25.
It is fed back to the M control unit 24 and used for stabilization control.
【0014】上記の構成に加えて、スイッチング電源装
置100は、前記全波整流器2の出力端子3と前記平滑
コンデンサ5の一端との間に第1ダイオード12を接続
し、前記平滑コンデンサ5の一端と前記1次巻線15の
一端との間に第2ダイオード13を接続している。ま
た、前記全波整流器2の出力端子3に充放電用コンデン
サ17の一端を接続し、前記充放電用コンデンサ17の
他端を前記平滑コンデンサ5の他端に接続している。そ
して、前記充放電用コンデンサ17の一端と前記1次巻
線15を所定の巻数比で分割する分割点27の間に、第
3ダイオード18を前記第1ダイオード12と同じ向き
で接続している。なお、前記1次巻線15の一端(図で
は上端)と前記分割点27との間の巻線を15a(巻数
n1)とし、前記1次巻線15の他端(図では下端)と
前記分割点27との間の巻線を15b(巻数n2)とす
る。In addition to the above configuration, in the switching power supply device 100, the first diode 12 is connected between the output terminal 3 of the full-wave rectifier 2 and one end of the smoothing capacitor 5, and one end of the smoothing capacitor 5 is connected. The second diode 13 is connected between the first winding 15 and one end of the primary winding 15. Further, one end of the charging / discharging capacitor 17 is connected to the output terminal 3 of the full-wave rectifier 2, and the other end of the charging / discharging capacitor 17 is connected to the other end of the smoothing capacitor 5. A third diode 18 is connected in the same direction as the first diode 12 between one end of the charging / discharging capacitor 17 and a dividing point 27 that divides the primary winding 15 at a predetermined turn ratio. . The winding between one end (upper end in the figure) of the primary winding 15 and the dividing point 27 is 15a (number of turns n1), and the other end (lower end in the figure) of the primary winding 15 and The winding between the division point 27 and 15b (number of turns n2).
【0015】次に、このスイッチング電源装置100の
動作を説明する。説明の都合上、以下の条件を満たすも
のとする。 スイッチ16がオン・オフする周波数は、正弦波交流
電圧Vsの周波数よりも十分に高いものとする。 ダイオード12,13,18は、理想ダイオードとす
る。 1次巻線15の巻数比n1:n2=1:1とする。Next, the operation of the switching power supply device 100 will be described. For convenience of explanation, it is assumed that the following conditions are satisfied. The frequency at which the switch 16 is turned on / off is sufficiently higher than the frequency of the sine wave AC voltage Vs. The diodes 12, 13, 18 are ideal diodes. The winding number ratio of the primary winding 15 is set to n1: n2 = 1: 1.
【0016】図2の(a)に示すように、交流電源1か
らは、正弦波交流電圧Vsが出力されている。数値例を
示せば、正弦波交流電圧Vsの実効値を100Vとする
と、ピーク値Vmは約140Vとなる。時刻toに電源
開閉器Kを閉じて交流電源1を投入すると、正弦波交流
電圧Vsは、全波整流器2により全波整流されて、図2
の(b)に示すように、全波整流電圧が得られる。As shown in FIG. 2A, the AC power supply 1 outputs a sinusoidal AC voltage Vs. As a numerical example, assuming that the effective value of the sine wave AC voltage Vs is 100V, the peak value Vm is about 140V. When the power switch K is closed and the AC power supply 1 is turned on at the time to, the sine wave AC voltage Vs is full-wave rectified by the full-wave rectifier 2 to generate
As shown in (b) of the above, a full-wave rectified voltage is obtained.
【0017】図2の(c)に示すように、時刻to〜t
o’の期間は、全波整流電圧が上昇するので、図2の
(c)に示すように、平滑コンデンサ5に充電電流i5
が流れる。このとき、図2の(d)に示すように、平滑
コンデンサ5の端子間電圧v5は、ピーク値Vmまで上
昇する。また、図2の(e)に示すように、充放電用コ
ンデンサ17には、充電電流i17が流れる。このと
き、図2の(f)に示すように、充放電用コンデンサ1
7の端子間電圧v17は、ピーク値Vmまで上昇する。As shown in (c) of FIG.
During the period of o ′, the full-wave rectified voltage rises, so that the charging current i5 is applied to the smoothing capacitor 5 as shown in FIG.
Flows. At this time, as shown in FIG. 2D, the inter-terminal voltage v5 of the smoothing capacitor 5 rises to the peak value Vm. Further, as shown in (e) of FIG. 2, the charging current i17 flows through the charging / discharging capacitor 17. At this time, as shown in (f) of FIG.
The inter-terminal voltage v17 of No. 7 rises to the peak value Vm.
【0018】時刻to’を過ぎると、図2の(b)に示
すように、全波整流電圧は、低下する。そこで、充放電
用コンデンサ17が放電して巻線15bに電流を流し、
図2の(f)に示すように、端子間電圧v17は徐々に
低下する。一方、(v17/n2)>(v5−v17)
/n1であるので、第2ダイオード13は逆バイアス状
態となり、且つ、端子間電圧v17<端子間電圧v5で
あるので、第1ダイオード12も逆バイアス状態となる
から、平滑コンデンサ5は、充電も放電もされず、端子
間電圧v5はピーク値Vmに保たれる。After the time to ', the full-wave rectified voltage decreases as shown in FIG. 2 (b). Therefore, the charging / discharging capacitor 17 discharges and current flows through the winding 15b,
As shown in FIG. 2F, the inter-terminal voltage v17 gradually decreases. On the other hand, (v17 / n2)> (v5-v17)
/ N1, the second diode 13 is in the reverse bias state, and the inter-terminal voltage v17 <the inter-terminal voltage v5. Therefore, the first diode 12 is also in the reverse bias state, so that the smoothing capacitor 5 is not charged. It is not discharged, and the terminal voltage v5 is kept at the peak value Vm.
【0019】端子間電圧v17がさらに低下し、時刻t
aで(v17/n2)=(v5−v17)/n1となる
と、第2ダイオード13が導通し、平滑コンデンサ5か
らも放電が開始される。そこで、時刻ta以降は、図2
の(d)に示すように、端子間電圧v5も徐々に低下す
る。このとき、第3ダイオード18は、平滑コンデンサ
5のエネルギーが充放電用コンデンサ17に流れ込むこ
とを阻止する。なお、上記の数値例では、時刻taの端
子間電圧v17(=Vn)は、約70Vである。The voltage v17 between terminals further decreases, and at time t
When (v17 / n2) = (v5-v17) / n1 in a, the second diode 13 becomes conductive and the smoothing capacitor 5 also starts discharging. Therefore, after the time ta, FIG.
As shown in (d), the inter-terminal voltage v5 also gradually decreases. At this time, the third diode 18 blocks the energy of the smoothing capacitor 5 from flowing into the charging / discharging capacitor 17. In the above numerical example, the inter-terminal voltage v17 (= Vn) at time ta is about 70V.
【0020】全波整流電圧が再び上昇して、時刻t3
で、全波整流電圧が端子間電圧v17と等しくなると、
図2の(e)に示すように、全波整流電圧により充電電
流i17が流れ、充放電用コンデンサ17が充電され
る。すると、図2の(f)に示すように、端子間電圧v
17は上昇する。そして、v17/n2>(v5−v1
7)/n1となるため、第2ダイオード13は逆バイア
ス状態となり、且つ、端子間電圧v17<端子間電圧v
5であるので、第1ダイオード12も逆バイアス状態と
なるから、平滑コンデンサ5は、充電も放電もされず、
端子間電圧v5は電圧Vtに保たれる。上記の数値例で
は、時刻t3の端子間電圧v5(=Vt)は、約100
Vである。また、時刻t3の端子間電圧v17(=V
u)は、約50Vである。At the time t3, the full-wave rectified voltage rises again.
Then, when the full-wave rectified voltage becomes equal to the inter-terminal voltage v17,
As shown in FIG. 2E, the charging current i17 flows by the full-wave rectified voltage, and the charging / discharging capacitor 17 is charged. Then, as shown in (f) of FIG.
17 rises. Then, v17 / n2> (v5-v1
7) / n1, the second diode 13 is in a reverse bias state, and the terminal voltage v17 <the terminal voltage v
Therefore, the smoothing capacitor 5 is neither charged nor discharged because the first diode 12 is also in the reverse bias state.
The terminal voltage v5 is maintained at the voltage Vt. In the above numerical example, the terminal voltage v5 (= Vt) at time t3 is about 100.
V. Further, the voltage v17 (= V between terminals at time t3
u) is about 50V.
【0021】全波整流電圧がさらに上昇して、時刻t4
で、全波整流電圧が端子間電圧v5(=Vt)と等しく
なると、図2の(c)に示すように、平滑コンデンサ5
にも充電電流i5が流れ、平滑コンデンサ5が充電され
る。すると、図2の(d)に示すように、端子間電圧v
5は上昇する。時刻t5を過ぎると、前記to’以降の
動作を繰り返す。At the time t4, the full-wave rectified voltage further rises.
Then, when the full-wave rectified voltage becomes equal to the inter-terminal voltage v5 (= Vt), as shown in FIG.
Also, the charging current i5 flows, and the smoothing capacitor 5 is charged. Then, as shown in (d) of FIG.
5 rises. After time t5, the operations after to 'are repeated.
【0022】結局のところ、全波整流器2からの出力電
流Iは、図2の(g)に示すように変化する。これは、
先に図5の(c)を用いて説明した従来のスイッチング
電源装置500における全波整流器2からの出力電流
(つまり充電電流i55)と比べて、波形の急峻性が緩
和されている。従って、交流電源1からの電流は急峻性
の緩和された波形となり、力率が改善され(従来の力率
が0.6程度である場合、0.7程度に改善できる)、
高調波成分の発生が抑制されることとなる。また、これ
により、1996年に開始予定の高調波電流規制[規制
内容の基はIEC(国際電気標準会議)による国際規格
IEC1000−3−2]に対応可能となる。After all, the output current I from the full-wave rectifier 2 changes as shown in (g) of FIG. this is,
The steepness of the waveform is relaxed as compared with the output current (that is, the charging current i55) from the full-wave rectifier 2 in the conventional switching power supply device 500 described above with reference to FIG. Therefore, the current from the AC power supply 1 has a waveform with a steepness alleviated, and the power factor is improved (when the conventional power factor is about 0.6, it can be improved to about 0.7),
The generation of harmonic components will be suppressed. Further, this makes it possible to comply with the harmonic current regulations [regulation content is based on the international standard IEC1000-3-2 by IEC (International Electrotechnical Commission)] scheduled to start in 1996.
【0023】−第2実施例− 図3は、この発明の第2実施例のスイッチング電源装置
を示す全体構成図である。このスイッチング電源装置2
00は、次の点が、第1実施例のスイッチング電源装置
100とは異なる。すなわち、全波整流器2の出力端子
3に第4ダイオード31の一端を接続し、その第4ダイ
オード31の他端に補助充放電用コンデンサ37の一端
を接続し、その補助充放電用コンデンサ37の一端に第
5ダイオード32の一端を接続し、その第5ダイオード
32の他端をトランス14の1次巻線15の一端と分割
点27’の間に設けた補助分割点33に接続している。
また、前記補助充放電用コンデンサ37の他端は、平滑
コンデンサ5の一端(つまり全波整流器2の出力端子
4)に接続している。-Second Embodiment- FIG. 3 is an overall configuration diagram showing a switching power supply device according to a second embodiment of the present invention. This switching power supply 2
00 is different from the switching power supply device 100 of the first embodiment in the following points. That is, one end of the fourth diode 31 is connected to the output terminal 3 of the full-wave rectifier 2, one end of the auxiliary charging / discharging capacitor 37 is connected to the other end of the fourth diode 31, and the auxiliary charging / discharging capacitor 37 One end of the fifth diode 32 is connected to one end, and the other end of the fifth diode 32 is connected to an auxiliary split point 33 provided between one end of the primary winding 15 of the transformer 14 and the split point 27 '. .
The other end of the auxiliary charging / discharging capacitor 37 is connected to one end of the smoothing capacitor 5 (that is, the output terminal 4 of the full-wave rectifier 2).
【0024】前記ダイオード31は、前記補助充放電用
コンデンサ37のエネルギーが充放電用コンデンサ17
に流れ込むことを阻止する。また、前記ダイオード32
は、前記平滑コンデンサ5のエネルギーが前記補助充放
電用コンデンサ37に流れ込むことを阻止する。In the diode 31, the energy of the auxiliary charging / discharging capacitor 37 is the charging / discharging capacitor 17
Prevent it from flowing into. In addition, the diode 32
Prevents the energy of the smoothing capacitor 5 from flowing into the auxiliary charging / discharging capacitor 37.
【0025】上記第2実施例のスイッチング電源装置2
00によれば、充放電用コンデンサ17の端子間電圧を
1次巻線15の分割点27’に印加するのに加えて、補
助充放電用コンデンサ37の端子間電圧を前記1次巻線
15の補助分割点33に印加するように構成したから、
平滑コンデンサ5の充電と充放電用コンデンサ17の充
電と補助充放電用コンデンサ37の充電のタイミングが
それぞれ異なるようになり、全波整流器2からの出力電
流波形の急峻性が一層緩和される。従って、交流電源1
からの電流は急峻性の緩和された波形となり、力率が改
善され、高調波成分の発生が抑制されるようになる。Switching power supply unit 2 of the second embodiment
According to 00, in addition to applying the inter-terminal voltage of the charging / discharging capacitor 17 to the dividing point 27 ′ of the primary winding 15, the inter-terminal voltage of the auxiliary charging / discharging capacitor 37 is applied to the primary winding 15 Since it is configured to be applied to the auxiliary division point 33 of
The charging timing of the smoothing capacitor 5, charging of the charging / discharging capacitor 17 and charging timing of the auxiliary charging / discharging capacitor 37 become different, and the steepness of the output current waveform from the full-wave rectifier 2 is further alleviated. Therefore, AC power supply 1
Current has a waveform with reduced steepness, the power factor is improved, and the generation of harmonic components is suppressed.
【0026】なお、上記第2実施例では、トランス14
の1次巻線15の一端と分割点27’との間に1つの補
助分割点33を設けたが、複数の補助分割点を設けても
よい。また、上記第1,第2実施例では、スイッチング
電源装置の回路構成は、フォワードコンバータとした
が、フライバックコンバータであってもよい。さらに、
スイッチング電源装置は、自励方式であってもよいし、
他励方式であってもよい。In the second embodiment, the transformer 14 is used.
Although one auxiliary division point 33 is provided between one end of the primary winding 15 and the division point 27 ', a plurality of auxiliary division points may be provided. Further, in the first and second embodiments, the circuit configuration of the switching power supply device is the forward converter, but it may be a flyback converter. further,
The switching power supply device may be a self-excited system,
The separately excited method may be used.
【0027】[0027]
【発明の効果】この発明のスイッチング電源装置の力率
改善方法によれば、力率を改善し、高調波成分の発生を
抑制することが出来る。また、この発明のスイッチング
電源装置によれば、力率改善用ICなどの高価なパーツ
を使用することなく、低コストで力率を改善できる。ま
た、平滑コンデンサと充放電用コンデンサの両方にエネ
ルギーが蓄積されるので、交流電圧の瞬時停電に対する
出力電圧の維持能力が高くなる。According to the power factor improving method for a switching power supply of the present invention, the power factor can be improved and the generation of harmonic components can be suppressed. Further, according to the switching power supply device of the present invention, the power factor can be improved at low cost without using expensive parts such as a power factor improving IC. Further, since energy is stored in both the smoothing capacitor and the charging / discharging capacitor, the ability to maintain the output voltage with respect to a momentary power failure of the AC voltage is increased.
【図1】この発明の第1実施例のスイッチング電源装置
を示す全体構成図である。FIG. 1 is an overall configuration diagram showing a switching power supply device according to a first embodiment of the present invention.
【図2】図1のスイッチング電源装置の動作を説明する
ための波形図である。FIG. 2 is a waveform diagram for explaining the operation of the switching power supply device of FIG.
【図3】この発明の第2実施例のスイッチング電源装置
を示す全体構成図である。FIG. 3 is an overall configuration diagram showing a switching power supply device according to a second embodiment of the present invention.
【図4】従来のスイッチング電源装置の一例を示す全体
構成図である。FIG. 4 is an overall configuration diagram showing an example of a conventional switching power supply device.
【図5】図4のスイッチング電源装置の動作を説明する
ための波形図である。5 is a waveform diagram for explaining the operation of the switching power supply device of FIG.
100,200 スイッチング電源装置 1 交流電源 2 全波整流器 3,4 出力端子 5 平滑コンデンサ 11 負荷 12,13,18 ダイオード 14 トランス 15 1次巻線 15a,15b 巻線 16 スイッチ 17 充放電用コンデンサ 19 2次巻線 20 整流ダイオード 21 還流ダイオード 23 チョークコイル 24 PWM制御部 25 フォトカプラ 26 誤差検出部 27,27’ 分割点 31,32 ダイオード 33 補助分割点 37 補助充放電用コンデンサ K 電源開閉器 100,200 Switching power supply device 1 AC power supply 2 Full wave rectifier 3,4 Output terminal 5 Smoothing capacitor 11 Load 12, 13, 18 Diode 14 Transformer 15 Primary winding 15a, 15b Winding 16 Switch 17 Charge / discharge capacitor 19 2 Next winding 20 Rectifying diode 21 Freewheeling diode 23 Choke coil 24 PWM control unit 25 Photocoupler 26 Error detection unit 27,27 'Dividing point 31,32 Diode 33 Auxiliary dividing point 37 Auxiliary charging / discharging capacitor K Power switch
Claims (3)
れた整流電圧を平滑コンデンサにより平滑し、前記平滑
コンデンサの端子間電圧に基づく電圧を断続的にトラン
スの1次巻線の両端に印加し、前記トランスの2次巻線
に誘起した電圧を負荷側に供給するスイッチング電源装
置において、 前記整流回路により得られた整流電圧により充電される
と共に前記1次巻線を所定の巻数比で分割する分割点へ
放電する充放電用コンデンサを設け、前記整流電圧が前
記充放電用コンデンサの端子間電圧よりも高くなると前
記充放電用コンデンサを充電し、前記整流電圧が前記平
滑コンデンサの端子間電圧よりも高くなると前記平滑コ
ンデンサを充電し、前記整流電圧が低下し始めると前記
平滑コンデンサから放電を行なわない状態で前記充放電
用コンデンサから放電し、前記充放電用コンデンサの端
子間電圧が所定電圧にまで低下すると前記平滑コンデン
サと前記充放電用コンデンサの両方から放電することを
特徴とするスイッチング電源装置の力率改善方法。1. A rectified voltage obtained by a rectifying circuit for rectifying an AC voltage is smoothed by a smoothing capacitor, and a voltage based on a voltage between terminals of the smoothing capacitor is intermittently applied to both ends of a primary winding of a transformer. In a switching power supply device that supplies a voltage induced in a secondary winding of the transformer to a load side, the primary winding is divided by a predetermined turn ratio while being charged by the rectified voltage obtained by the rectifying circuit. A charging / discharging capacitor that discharges to a dividing point is provided, and the charging / discharging capacitor is charged when the rectified voltage becomes higher than the terminal voltage of the charging / discharging capacitor, and the rectification voltage is higher than the terminal voltage of the smoothing capacitor. Becomes higher, the smoothing capacitor is charged, and when the rectified voltage starts decreasing, the smoothing capacitor is not discharged and the charging / discharging capacitor is charged. Discharged from capacitor, power factor correction method of the switching power supply voltage between the terminals of the charging and discharging capacitor is characterized in that the discharge from both of the smoothing capacitor and the charging and discharging capacitor and decreases to a predetermined voltage.
れた整流電圧を平滑コンデンサにより平滑し、前記平滑
コンデンサの端子間電圧に基づく電圧を断続的にトラン
スの1次巻線の両端に印加し、前記トランスの2次巻線
に誘起した電圧を負荷側に供給するスイッチング電源装
置において、 前記整流回路の一方の出力側と前記平滑コンデンサの一
端との間に第1ダイオードを接続し、前記平滑コンデン
サの一端と前記1次巻線の一端との間に第2ダイオード
を前記第1ダイオードと同じ向きで接続し、前記整流回
路の一方の出力側に充放電用コンデンサの一端を接続
し、前記充放電用コンデンサの他端を前記平滑コンデン
サの他端に接続し、前記充放電用コンデンサの一端と前
記1次巻線を所定の巻数比で分割する分割点との間に第
3ダイオードを前記第1ダイオードと同じ向きで接続し
てなることを特徴とするスイッチング電源装置。2. A rectified voltage obtained by a rectifying circuit for rectifying an AC voltage is smoothed by a smoothing capacitor, and a voltage based on a voltage between terminals of the smoothing capacitor is intermittently applied to both ends of a primary winding of a transformer. In a switching power supply device that supplies a voltage induced in a secondary winding of the transformer to a load side, a first diode is connected between one output side of the rectifier circuit and one end of the smoothing capacitor, A second diode is connected between one end of the capacitor and one end of the primary winding in the same direction as the first diode, and one end of a charging / discharging capacitor is connected to one output side of the rectifier circuit, The other end of the charging / discharging capacitor is connected to the other end of the smoothing capacitor, and a third die is provided between one end of the charging / discharging capacitor and a dividing point at which the primary winding is divided at a predetermined turn ratio. Switching power supply apparatus characterized by formed by connecting over de in the same direction as the first diode.
において、整流回路の一方の出力側に第1ダイオードと
同じ向きの第4ダイオードの一端を接続し、前記第4ダ
イオードの他端に補助充放電用コンデンサの一端を接続
し、前記補助充放電用コンデンサの一端に前記第1ダイ
オードと同じ向きの第5ダイオードの一端を接続し、前
記第5ダイオードの他端を、1次巻線の一端と前記分割
点の間に設けた補助分割点に接続し、前記補助充放電用
コンデンサの他端を平滑コンデンサの他端に接続してな
ることを特徴とするスイッチング電源装置。3. The switching power supply device according to claim 2, wherein one end of a fourth diode in the same direction as the first diode is connected to one output side of the rectifier circuit, and the other end of the fourth diode is supplemented. One end of a discharging capacitor is connected, one end of a fifth diode in the same direction as the first diode is connected to one end of the auxiliary charging / discharging capacitor, and the other end of the fifth diode is connected to one end of a primary winding. And an auxiliary dividing point provided between the dividing points, and the other end of the auxiliary charging / discharging capacitor is connected to the other end of the smoothing capacitor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6093225A JP3028026B2 (en) | 1994-05-02 | 1994-05-02 | Switching power supply |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6093225A JP3028026B2 (en) | 1994-05-02 | 1994-05-02 | Switching power supply |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07303375A true JPH07303375A (en) | 1995-11-14 |
| JP3028026B2 JP3028026B2 (en) | 2000-04-04 |
Family
ID=14076612
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6093225A Expired - Lifetime JP3028026B2 (en) | 1994-05-02 | 1994-05-02 | Switching power supply |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3028026B2 (en) |
-
1994
- 1994-05-02 JP JP6093225A patent/JP3028026B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JP3028026B2 (en) | 2000-04-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3230052B2 (en) | Power supply | |
| US20070217233A1 (en) | Apparatus and method for supplying dc power source | |
| US8189355B2 (en) | Multiple output switching power source apparatus | |
| JP7123712B2 (en) | power control unit | |
| US20090303751A1 (en) | Power source apparatus and control method thereof | |
| JPH07177745A (en) | Switching regulator | |
| JP2002101655A (en) | Switching power supply | |
| JPH0523040B2 (en) | ||
| JP3701015B2 (en) | Capacitor charging method and charging device therefor | |
| JPH02266868A (en) | Power source device control method | |
| JP3390688B2 (en) | DC power supply | |
| US7019986B2 (en) | Power conversion apparatus and dead time generator | |
| JP2017028783A (en) | Switching power supply | |
| JPH08130870A (en) | Charged capacitor power supply | |
| JP3028026B2 (en) | Switching power supply | |
| JP3567361B2 (en) | High power factor switching power supply | |
| JP3202117B2 (en) | High frequency heating equipment | |
| JP3096211B2 (en) | Switching regulator | |
| JP3019717B2 (en) | Switching power supply | |
| JP2728682B2 (en) | Uninterruptible power supply for computer | |
| KR100202024B1 (en) | Power-loss prevention circuit in switching-mode power supply | |
| JPH06284713A (en) | Switching power supply circuit | |
| JP2002034255A (en) | Power supply apparatus | |
| JPH10341571A (en) | Switching power supply device with power factor improvement function | |
| JPH10327581A (en) | Switching power supply |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100204 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110204 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110204 Year of fee payment: 11 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120204 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130204 Year of fee payment: 13 |
|
| EXPY | Cancellation because of completion of term |