[go: up one dir, main page]

JPH0731220B2 - Hot wire insulation deterioration diagnosis device - Google Patents

Hot wire insulation deterioration diagnosis device

Info

Publication number
JPH0731220B2
JPH0731220B2 JP16537290A JP16537290A JPH0731220B2 JP H0731220 B2 JPH0731220 B2 JP H0731220B2 JP 16537290 A JP16537290 A JP 16537290A JP 16537290 A JP16537290 A JP 16537290A JP H0731220 B2 JPH0731220 B2 JP H0731220B2
Authority
JP
Japan
Prior art keywords
distribution
circuit
insulation deterioration
partial discharge
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16537290A
Other languages
Japanese (ja)
Other versions
JPH0454464A (en
Inventor
達希 岡本
易行 池田
良行 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP16537290A priority Critical patent/JPH0731220B2/en
Publication of JPH0454464A publication Critical patent/JPH0454464A/en
Publication of JPH0731220B2 publication Critical patent/JPH0731220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態において回転機巻線やCV絶縁ケーブル
などの絶縁劣化を、各種診断法により同時または別個に
迅速に診断できる装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a device capable of quickly and simultaneously diagnosing insulation deterioration of a rotating machine winding, a CV insulated cable, or the like by various diagnostic methods in a live state. Is.

(従来技術とその問題点) 電力系統において停電のない安定な送電を確保するため
には、系統を構成する回転機,ケーブル,トランスその
他の絶縁状態を実使用状態、即ち活線状態において確度
高く非破壊的に診断できることが理想である。
(Prior art and its problems) In order to ensure stable power transmission in a power system without power failure, the insulation state of rotating machines, cables, transformers, etc. that compose the system is highly accurate in the actual use state, that is, the live line state. Ideally, non-destructive diagnosis is possible.

ところで従来においては、絶縁劣化時生ずる部分放電パ
ルスの最大レベル、即ち見掛けの最大放電電荷qmax,損
失角(tanδ)の増加分Δtanδ,交流電流(容量電流
分)の増加分ΔIの推移などによる周知の絶縁劣化診断
法、更には本発明者等にもとづく部分放電位相特性であ
るφ−q分布の歪度が、絶縁劣化にもとづき変化するこ
とを利用した絶縁劣化診断法(特界昭60−203866号参
照)などの各種の診断パラメータを併用して、各方法に
よる絶縁劣化診断の長所短所を補い合って、確度の高い
絶縁劣化診断を行っている。
By the way, conventionally, it is well known that the maximum level of the partial discharge pulse generated at the time of insulation deterioration, that is, the apparent maximum discharge charge qmax, the increase Δtan δ of the loss angle (tan δ), and the increase ΔI of the alternating current (capacitance current). Insulation deterioration diagnosis method, and further, an insulation deterioration diagnosis method utilizing the fact that the skewness of the φ-q distribution, which is the partial discharge phase characteristic based on the present inventors, changes based on insulation deterioration (Tokukai Sho 60-203866). (See No.) and other various diagnostic parameters are used together to compensate for the merits and demerits of insulation deterioration diagnosis by each method, and highly accurate insulation deterioration diagnosis is performed.

しかしこのような従来方法では、上記の様な各種の診断
パラメータをそれぞれ別個の測定器を用い別個に求めて
いる。従って、測定作業が複雑であって多くの時間を必
要とするため作業コストの上昇を招き、しかも測定装置
全体の価格も高価となる。
However, in such a conventional method, various diagnostic parameters as described above are separately obtained by using different measuring devices. Therefore, the measurement work is complicated and requires a lot of time, which leads to an increase in the work cost, and the price of the entire measurement device becomes expensive.

これに加えて大きな欠点は、上記各診断パラメータの内
の損失角の増加分Δtanδ,交流電流の増加分Δlなど
の測定に当たっては、周知のように回転機その他診断対
象の運転を休止即ち測定中送電を停止しなければならな
い欠点がある。
In addition to this, a major drawback is that when measuring the increase Δtan δ of the loss angle and the increase Δl of the alternating current among the above-mentioned diagnostic parameters, it is well known that the operation of the rotating machine or other diagnostic object is stopped, that is, during measurement. There is a drawback that power transmission must be stopped.

(発明の目的) 本発明は前記部分放電位相特性即ちφ−q分布の歪度の
劣化、最大放電電荷qmaxはもとより、従来非活線状態に
おいてそれぞれ別個の測定器ににより求められていた損
失角の増加分Δtanδや交流電流の増加分ΔIなどの診
断パラメータをも、活線状態において1個の測定器によ
り、同時かつ容易迅速に求めるようにして、前記従来方
法の問題点の解決を図ったものである。
(Object of the Invention) In the present invention, not only the partial discharge phase characteristic, that is, the deterioration of the skewness of the φ-q distribution and the maximum discharge charge qmax, but also the loss angle which is conventionally obtained by a separate measuring device in a non-active state. In order to solve the above-mentioned problems of the conventional method, diagnostic parameters such as the increase Δtan δ of the AC current and the increase ΔI of the AC current are simultaneously and easily obtained by a single measuring device in a live state. It is a thing.

(問題点を解決するための本発明の手段) 本発明は絶縁劣化例えばボイド欠陥などにもとづいて発
生する部分放電パルスを検出し、t秒間(複数サイク
ル)中において測定された例えば第1図の如き部分放電
パルス信号データ群を(qi,φi)i=1‥‥n(ここ
でqi,φiにはそれぞれi番目のパルスの大きさ、i番
目のパルスの発生位相角、および測定パルス数)とし、
この部分放電パルスデータ群の大きさqのパルス数nを
教えて、パルスの大きさqの関数としたn(q)、即ち
サイクル平均のq−n分布と、印加電圧位相角φに対す
るサイクル当たりの平均パルス高さqをφの関数とした
q(φ)、即ちφ−q分布を求めることにより、最大放
電電荷qmaxと、損失角の増加分Δtanδ、充電電流の増
加分ΔIを求めうることを明らかにしてなされたもので
ある。即ち 最大放電電荷qmaxは、一定のパルス発生頻度n(q)
になるときのパルス検出レベルとして定義されているこ
とから、q−n分布を用いて以下の(1)式を満たすqm
axを演算することにより求めることができる。
(Means of the Present Invention for Solving Problems) The present invention detects a partial discharge pulse generated due to insulation deterioration, for example, a void defect, and measures during t seconds (a plurality of cycles), for example, as shown in FIG. Such partial discharge pulse signal data group is (qi, φi) i = 1 ... n (where qi and φi are the magnitude of the i-th pulse, the phase angle of the i-th pulse, and the number of measured pulses, respectively) age,
The number n of pulses having a size q of this partial discharge pulse data group is taught, and n (q) as a function of the pulse size q, that is, the q-n distribution of the cycle average and the cycle of the applied voltage phase angle φ per cycle It is possible to obtain the maximum discharge charge qmax, the increase in loss angle Δtanδ, and the increase in charging current ΔI by obtaining q (φ), which is the average pulse height q of φ as a function of φ, that is, φ-q distribution. Was made clear. That is, the maximum discharge charge qmax is a constant pulse generation frequency n (q)
Since it is defined as the pulse detection level when qm, qm that satisfies the following equation (1) using the qn distribution
It can be obtained by calculating ax.

損失角の増加分Δtanδはφ−q分布を用いて求め
られる。即ち部分放電のない場合の電流式は、 また部分放電のある場合の電流式は、 I′(φ)=I(φ)+q(d) として与えられる。
The increase Δtanδ of the loss angle is obtained using the φ-q distribution. That is, the current formula without partial discharge is Further, the current equation in the case of partial discharge is given as I '(φ) = I (φ) + q (d).

ここで損失角の増加分Δtanδは、部分放電のない場合
の損失角tanδ、放電のある場合の損失角をtanδ′とす
れば、定義から Δtanδ=tanδ′−tanδ として与えられ、以上から増加分Δtanδは ここで であるから、電流Iを例えば測定電圧と被絶縁診断機器
の定格容量から知ることにより、 により求められる。また損失角があまり大きくない範囲
即ちtanδ≪,|q(φ)|≪Iの場合にはcosδ1,qtan
δ0と考えられるので、近似的に によって求められる。
Here, if the loss angle tanδ without partial discharge and the loss angle with discharge tanδ 'are defined as Δtanδ = tanδ'-tanδ Is given as here Therefore, by knowing the current I from the measured voltage and the rated capacity of the device to be diagnosed, Required by. In the range where the loss angle is not so large, that is, tanδ <<, | q (φ) | << I, cosδ1, qtan
Since it is considered to be δ0, Required by.

充電電流の増加分ΔIは、部分放電のない場合の交流
電流の実効値をIとすると、部分充電のある場合の電流
Id(φ)は、前記損失角の算出の場合と同様 となり(ここでq(φ)は位相角当たりの部分放電電
流)、これからIdの実効値Ieは によって与えられる。
If the effective value of the alternating current without partial discharge is I, the increase ΔI of the charging current is the current with partial charge.
Id (φ) is the same as when calculating the loss angle (Where q (φ) is the partial discharge current per phase angle) and the effective value Ie of Id is Given by.

ここで充電電流の増加分ΔI[%]は、定義により部分
充電のある場合の交流電流の実効値Ieと、部分放電がな
い場合の交流電流の実効値Iの差のIに対するの割合で
ある。従って電流Iを例えば測定電圧と被絶縁劣化診断
機器の定格容量から知ればΔIは によって求められる。
Here, the increment ΔI [%] of the charging current is, by definition, a ratio of I to the difference between the effective value Ie of the alternating current when there is partial charging and the effective value I of the alternating current when there is no partial discharge. . Therefore, if the current I is known from the measured voltage and the rated capacity of the insulation deterioration diagnosis device, ΔI is Required by.

従って、以上から第2図に示す原理回路図のように被絶
縁劣化診断機器(1)の活線状態における接地線電流を
変流器などの電流検出器(2)により検出して、q−n
分布[n(q)]測定器とφ−q分布〔q(φ)]測定
器(3)に加え、その演算された出力のうちのq−n分
布出力を前記最大放電電荷qmaxの演算器(4)に加え、
またφ−q分布出力を部分放電のないときの交流電流が
それぞれ与えられる損失角の増加分Δtanδの演算器
(5)、および交流電流の増加分ΔI[%]の演算器
(6)に加えて、例えば前記(1)式,(3)式および
(4)式の演算を実行し、またφ−q分布の測定結果を
歪度演算器(7)に加えることにより、各診断パターン
を1個の測定装置を用いて、活線状態のまま同時かつ容
易迅速に求めることができる。次に本発明を実施例によ
って具体的に説明する。
Therefore, from the above, as shown in the principle circuit diagram shown in FIG. 2, the ground line current in the live state of the insulation deterioration diagnosing device (1) is detected by the current detector (2) such as a current transformer, and q- n
In addition to the distribution [n (q)] measuring device and the [phi] -q distribution [q ([phi])] measuring device (3), the q-n distribution output of the calculated outputs is used to calculate the maximum discharge charge qmax. In addition to (4),
In addition, the φ-q distribution output is added to the computing unit (5) of the increase amount Δtanδ of the loss angle to which the AC current is applied when there is no partial discharge, and the computing unit (6) of the increase amount ΔI [%] of the AC current. Then, for example, the calculations of the above formulas (1), (3), and (4) are executed, and the measurement result of the φ-q distribution is added to the skewness calculator (7). It is possible to simultaneously, easily and quickly obtain the values in a live state by using individual measuring devices. Next, the present invention will be specifically described with reference to examples.

(実施例) 第3図は本発明の一実施例のブロック回路図である。図
においてCTは変流器であって、被絶縁劣化診断機器Mの
接地線電流を検出する。BFはバンドパスフィルタであっ
て、検出された接地線電流から部分放電パルスを検出す
る。AMは増幅器であって、これらで部分放電パルス検出
回路Aを構成し、部分放電パルスを検出する。
(Embodiment) FIG. 3 is a block circuit diagram of an embodiment of the present invention. In the figure, CT is a current transformer, and detects the ground line current of the insulation deterioration diagnostic device M. BF is a bandpass filter, which detects a partial discharge pulse from the detected ground line current. AM is an amplifier, which constitutes a partial discharge pulse detection circuit A and detects a partial discharge pulse.

Bは位相角区別信号発生回路であって、このうちSVは同
期信号入力端子であって、既設の変成器やコンデンサ分
圧器などによって、被絶縁劣化診断機器Mの印加電圧、
即ち系統電圧を低圧化した第4図(a)の電圧eが同期
信号電圧として加えられる。ZCはゼロクロス信号発生回
路であって、第4図(b)のように同期信号電圧eの零
点において発生するパルスを送出する。CDは位相角区分
パルス発振回路、PCは位相カウンタであって、発振回路
CDは同期信号電圧eの周波数より高周波のパルス信号を
送出し、位相カウンタPCはゼロクロス信号発生回路ZCか
らのパルス信号を同期信号として、発振回路CDからの位
相角区分パルスを計数する。そして所定計数すること
に、第4図(c)のように同期信号電圧eの1サイクル
360゜を、N個に等分割した点毎に位相角区分パルスを
送出する。
B is a phase angle discriminating signal generating circuit, of which SV is a synchronizing signal input terminal, and the voltage applied to the insulation deterioration diagnosis device M by an existing transformer or a capacitor voltage divider,
That is, the voltage e of FIG. 4 (a), which is the system voltage lowered, is applied as the synchronizing signal voltage. ZC is a zero-cross signal generating circuit, which sends out a pulse generated at the zero point of the synchronizing signal voltage e as shown in FIG. 4 (b). CD is a phase angle division pulse oscillation circuit, PC is a phase counter,
The CD outputs a pulse signal having a frequency higher than the frequency of the synchronizing signal voltage e, and the phase counter PC counts the phase angle division pulses from the oscillating circuit CD using the pulse signal from the zero-cross signal generating circuit ZC as a synchronizing signal. Then, for a predetermined count, one cycle of the sync signal voltage e as shown in FIG.
A phase angle division pulse is transmitted for each point obtained by dividing 360 ° into N equal parts.

Cはn−q分布とφ−q分布の検出回路であって、この
うちPHはピークホールド回路、ASはオートシュレッショ
ルド回路であって、ピークホールド回路PHは前記部分放
電パルス検出回路Aの出力を入力とし,オートシュレッ
ショルド回路ASの設定閾値レベル以上の部分放電パルス
が入る毎にそのピークレベルを保持する。ADはアナログ
・デジタル変換回路、PSは極性判別回路、TOは集計回路
であって、集計回路TOは前記位相カウンタPCから位相角
区分パルスと、前記ピークホールド回路PHの出力および
極性判別回路PSの出力を入力とし、測定期間(複数サイ
クル)における、各サイクルのN個の位相角区間に生じ
た部分放電パルス、例えば第4図(d)(e)(f)
(g)に示すように、第1サイクルにおいてはq10.1,q
13.1,q90.1、第2サイクルにおいてはq10.2,q37.2,q
45.1、第3サイクルにおいてはq6.3,q13.3,q15.3,q
46.3また第Nサイクルにおいてはq3n,q10n,q15n,q34n,q
40.n,q44.n(なお足字の最初の数字は位相角区分番号、
次の足字はサイクル番号を示す)を同一位相角区分毎に
集計して、部分充電パルスの発生頻度の印加電圧位相角
特性、即ちφ−nのサイウル平均分布を求める。またこ
れと同時にピークホールド回路PHにより得られた、部分
放電パルスのピークレベル値を位相角区分毎に第4図
(g)のように集計して、見掛けの放電電荷qと発生位
相角φの分布(φ−q分布)のサイクル平均分布を求め
る。
C is a detection circuit of nq distribution and φ-q distribution, of which PH is a peak hold circuit, AS is an auto threshold circuit, and the peak hold circuit PH is the output of the partial discharge pulse detection circuit A. Is input and the peak level is held every time a partial discharge pulse above the threshold level set by the auto-threshold circuit AS is input. AD is an analog-digital conversion circuit, PS is a polarity determination circuit, TO is a totaling circuit, the totaling circuit TO is a phase angle division pulse from the phase counter PC, the output of the peak hold circuit PH and the polarity determination circuit PS. Partial discharge pulses generated in N phase angle sections of each cycle in the measurement period (a plurality of cycles) using the output as an input, for example, FIG. 4 (d) (e) (f)
As shown in (g), in the first cycle, q 10.1 , q
13.1 ,, q 90.1 , q 10.2 , q 37.2 , q in the second cycle
45.1 , q 6.3 , q 13.3 , q 15.3 , q in the 3rd cycle
46.3 In the Nth cycle, q 3 n, q 10 n, q 15 n, q 34 n, q
40.n , q 44.n (Note that the first number in the foot print is the phase angle classification number,
The next foot mark indicates the cycle number) and the applied voltage phase angle characteristic of the occurrence frequency of the partial charge pulse, that is, the sill mean distribution of φ-n is obtained. At the same time, the peak level values of the partial discharge pulses obtained by the peak hold circuit PH are tabulated for each phase angle section as shown in FIG. 4 (g), and the apparent discharge charge q and the generated phase angle φ are calculated. The cycle average distribution of the distribution (φ-q distribution) is obtained.

Dは演算表示回路で、このうちBMはバッファメモリ、CP
Uはマイクロコンピュータ、PRはプリンタで、マイクロ
コンピュータCPUはバッファメモリBMにメモリされた集
計回路TOからのφ−n分布とφ−q分布を一測定期間終
了後に読出して、前記した各式により最大放電電荷qma
x、損失角の増加分Δtanδ、および交流電流の増加分Δ
Iの演算を行い、またφ−q分布の歪度の演算を行って
プリントアウトする。
D is a calculation display circuit, of which BM is a buffer memory, CP
U is a microcomputer, PR is a printer, and the microcomputer CPU reads the φ-n distribution and the φ-q distribution from the totaling circuit TO stored in the buffer memory BM after one measurement period, and the maximum is calculated by the above-mentioned equations. Discharge charge qma
x, loss angle increment Δtanδ, and AC current increment Δ
I is calculated, and the skewness of the φ-q distribution is calculated and printed out.

次に本発明に実施例について説明する。Next, examples of the present invention will be described.

第1表は電圧6.6KV容量10,000kVAの発電機の巻線につい
て測定された従来方法と本発明による最大放電電荷qma
x、損失角の増加分Δtanδ、充電電流の増加分ΔIの比
較であって、診断精度は従来の非活線状態における診断
方法とほぼ同様である。
Table 1 shows the maximum discharge charge qma according to the present invention and the conventional method measured on the windings of a generator with a voltage of 6.6 KV and a capacity of 10,000 kVA.
It is a comparison between x, the increase amount of loss angle Δtan δ, and the increase amount of charging current ΔI, and the diagnostic accuracy is almost the same as the conventional diagnostic method in the non-active state.

(発明の効果) 以上のように本発明によれば部分放電パルスを測定する
だけで最大放電電荷qmaxのみならず損失角の増加分Δta
nδ、充電電流増加分ΔIをそれぞれ専用の測定器を用
いることなく同時に測定できる。従って従来方法に比べ
て測定装置の価額を低下できるばかりでなく、測定時間
の短縮と作業の容易化が量られるので、絶縁診断に要す
るにコストの大幅な低減を図りうる。またこれに加えて
活線状態で最大放電電荷などを測定できるので、診断精
度を向上できる。なお以上においてqmax,Δtanδ、ΔI
などを同時に測定するようにしたが、演算回路を選択的
に働かすことにより必要なもののみを測定できることは
云うまでもない。
(Effects of the Invention) As described above, according to the present invention, only by measuring the partial discharge pulse, not only the maximum discharge charge qmax but also the increase amount of the loss angle Δta
nδ and the charging current increase ΔI can be measured simultaneously without using dedicated measuring instruments. Therefore, not only the cost of the measuring device can be reduced as compared with the conventional method, but also the measurement time can be shortened and the work can be facilitated, so that the cost required for the insulation diagnosis can be significantly reduced. In addition to this, the maximum discharge charge and the like can be measured in a live state, so that the diagnostic accuracy can be improved. In the above, qmax, Δtanδ, ΔI
Although the above is measured at the same time, it goes without saying that only the necessary ones can be measured by selectively operating the arithmetic circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図は部分放電パルスの発生状況図、第2図は本発明
の原理説明図、第3図は本発明の一実施例回路図、第4
図は動作説明用の波形図である。 (1)……被絶縁劣化診断機器、(2)……電流検出
器、(3)……n−q分布とφ−q分布の検出器、
(4)……最大放電電荷の演算器、(5)……損失角の
増加分Δtanδ[%]の演算器、(6)……交流電流の
増加分ΔIの演算器、(7)……φ−q分布の歪度演算
器、M……被絶縁劣化診断機器、CT……変流器、BF……
バンドパスフィルタ、AM……増幅器、B……位相角区分
信号発生回路、SV……同期信号入力端子、PT……変成
器、ZC……ゼロクロス信号発生回路、CD……クロックパ
ルス発振回路、PC……位相カウンタ、C……n−qおよ
びφ−q分布の検出回路、PH……ピークホールド回路、
AS……オートシュレッショルド回路、AD……アナログ・
デジタル変換回路、PS……極性判別回路、TO……集計回
路、D……演算表示回路、BM……バッファメモリ、CPU
……マイクロコンピュータ、PR……プリンタ。
FIG. 1 is a partial discharge pulse generation state diagram, FIG. 2 is a diagram explaining the principle of the present invention, FIG. 3 is a circuit diagram of one embodiment of the present invention, and FIG.
The figure is a waveform diagram for explaining the operation. (1) …… Insulation deterioration diagnosis device, (2) …… Current detector, (3) …… Detector for nq distribution and φq distribution,
(4) ... calculator for maximum discharge charge, (5) ... calculator for increase in loss angle Δtanδ [%], (6) ... calculator for increase in alternating current ΔI, (7) ... φ-q distribution skewness calculator, M ... Insulation deterioration diagnosis device, CT ... Current transformer, BF ...
Band pass filter, AM ... Amplifier, B ... Phase angle division signal generator, SV ... Synchronous signal input terminal, PT ... Transformer, ZC ... Zero cross signal generator, CD ... Clock pulse oscillator, PC ... Phase counter, C ... nq and φ-q distribution detection circuit, PH ... Peak hold circuit,
AS ... Auto threshold circuit, AD ... Analog
Digital conversion circuit, PS …… Polarity discrimination circuit, TO …… Totaling circuit, D …… Computation display circuit, BM …… Buffer memory, CPU
…… Microcomputer, PR …… Printer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】活線状態における被絶縁劣化診断機器の接
地線電流の検出回路と、この回路により検出された部分
放電パルスの大きさqとその発生回数nの分布、および
前記部分放電パルスの大きさqとその発生位相角φの分
布を、測定複数サイクルにおけるサイクル平均として求
める回路と、この回路によるq−n分布を用いて最大放
電電荷qmaxを演算する回路と、前記φ−q分布と被絶縁
劣化診断機器の電流Iとを用いて損失角の増加分Δtan
δを演算する回路と、前記φ−q分布と被絶縁劣化診断
機器のIとを用いて充電電流の増加分ΔIを演算する回
路と、前記φ−q分布の歪度を演算する回路とを備え、
最大放電電荷qmax,損失角の増加分Δtanδ、充電電流の
増加分ΔI,φ−q分布の歪度を活線状態において同時ま
たは個別に測定できるようにしたことを特徴とする活線
絶縁劣化診断装置。
1. A circuit for detecting a grounding wire current of an apparatus for diagnosing insulation deterioration in a live state, a distribution q of partial discharge pulses detected by this circuit and a distribution of the number of occurrences n, and the partial discharge pulse. A circuit for obtaining the distribution of the magnitude q and its generated phase angle φ as a cycle average in a plurality of measurement cycles, a circuit for calculating the maximum discharge charge qmax using the qn distribution by this circuit, and the φ-q distribution The increase in loss angle Δtan
A circuit for calculating δ, a circuit for calculating the increment ΔI of the charging current by using the φ-q distribution and I of the insulation deterioration diagnosis device, and a circuit for calculating the skewness of the φ-q distribution. Prepare,
Diagnosis of hot-line insulation deterioration by enabling maximum discharge charge qmax, loss angle increment Δtanδ, charging current increment ΔI, and skewness of φ-q distribution to be measured simultaneously or individually in a live state. apparatus.
JP16537290A 1990-06-22 1990-06-22 Hot wire insulation deterioration diagnosis device Expired - Fee Related JPH0731220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16537290A JPH0731220B2 (en) 1990-06-22 1990-06-22 Hot wire insulation deterioration diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16537290A JPH0731220B2 (en) 1990-06-22 1990-06-22 Hot wire insulation deterioration diagnosis device

Publications (2)

Publication Number Publication Date
JPH0454464A JPH0454464A (en) 1992-02-21
JPH0731220B2 true JPH0731220B2 (en) 1995-04-10

Family

ID=15811126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16537290A Expired - Fee Related JPH0731220B2 (en) 1990-06-22 1990-06-22 Hot wire insulation deterioration diagnosis device

Country Status (1)

Country Link
JP (1) JPH0731220B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867277B2 (en) * 2005-10-14 2012-02-01 ブラザー工業株式会社 Spindle device and machine tool equipped with the device
KR101223072B1 (en) * 2007-05-14 2013-01-17 가드너 덴버 도이칠란트 게엠베하 Electric machine with air cooling system
JP7242225B2 (en) * 2018-09-14 2023-03-20 株式会社東芝 Partial discharge detection device, partial discharge detection method, partial discharge detection system, and computer program

Also Published As

Publication number Publication date
JPH0454464A (en) 1992-02-21

Similar Documents

Publication Publication Date Title
KR100206662B1 (en) Partial discharge measurement method using frequency spectrum analyzer
KR102019384B1 (en) Resolver management device, resolver system having the same, and operating method thereof
US8918301B2 (en) Motor condition inspection method and motor characteristic inspecting device
JPH0731220B2 (en) Hot wire insulation deterioration diagnosis device
JP2012154844A5 (en)
CN111431452B (en) Direct current bus current estimation method of motor controller
JP6199109B2 (en) Electricity meter weighing test equipment
RU2623696C1 (en) Way and generator rotor current measuring device with the brushless excitation
EP0479525A2 (en) Absolute position measuring resolver apparatus with backup means in power failure
CN103314302B (en) Strengthen the method and apparatus of the reliability of the generator Earth Fault Detection on electric rotating machine
US20230288481A1 (en) System and Method for Detecting Broken-Bar Fault in Squirrel-Cage Induction Motors
JP2018059848A (en) Rotary machine diagnosis system and data processing method thereof
JP2550987B2 (en) Signal gradient measuring instrument
JPS62118267A (en) Measuring method for potential of object
RU2298194C1 (en) Method of measurement of effective value of voltage in ac electric circuits
JPH11337629A (en) Calculation method for predicting current zero-point and detecting system thereof for synthesizing test
JP3499845B2 (en) Motor control device
JPS586379B2 (en) Field voltage and field current measuring device for brushless rotating electric machines
JP2002202329A (en) High frequency noise elimination method in power quality diagnosis
Jadrić et al. Determination of synchronous generator armature leakage reactance based on air gap flux density signal
SU43969A1 (en) Method and device for determining the angle of rotor position of electric machines relative to the voltage vector of a network
JPS61151478A (en) Apparatus for diagnosis of electromoter
JPH067144B2 (en) Automatic insulation diagnostic device
SU785663A1 (en) Method and apparatus for determining power losses in electric machine
JPS5820537B2 (en) Rotor winding temperature measuring device for brushless rotating machines

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees