[go: up one dir, main page]

JPH07320319A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH07320319A
JPH07320319A JP13811794A JP13811794A JPH07320319A JP H07320319 A JPH07320319 A JP H07320319A JP 13811794 A JP13811794 A JP 13811794A JP 13811794 A JP13811794 A JP 13811794A JP H07320319 A JPH07320319 A JP H07320319A
Authority
JP
Japan
Prior art keywords
layer
magnetic layer
plane
magneto
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13811794A
Other languages
Japanese (ja)
Inventor
Yoshihisa Suzuki
誉久 鈴木
Atsushi Yamaguchi
山口  淳
Satoshi Washimi
聡 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13811794A priority Critical patent/JPH07320319A/en
Publication of JPH07320319A publication Critical patent/JPH07320319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magneto-optical recording medium in which the CNR of reproduced signal is enhanced by reducing the noise caused by the disordered magnetizing direction or the crosstalk noise caused by reading up to the noncentral part of a laser spot. CONSTITUTION:An exchange coupling magnetic layer comprises a recording layer (vertical magnetization film) 5, and a first magnetic layer of in-plane magnetization film (reproduction layer) 4. A second magnetic layer of in-plane magnetization film 3 having such transmittance as allowing the laser light entering from the substrate 1 side to be reflected on the exchange coupling magnetic layer and returned back to the substrate 1, is provided between the exchange coupling magnetic layer and the the substrate 1. The initial magnetizing direction of the reproduction layer 4 is oriented in the in-plane direction by the second magnetic layer 3 magnetized in the in-plane direction within the temperature range from room temperature to the Curie point or Neel temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、記録層(=垂直磁化
膜)と再生層(=室温で面内磁化膜)から成る交換結合
磁性層を備え、記録層の磁化の方向を再生層に転写して
読み出すようにすることで、高記録密度化を達成する光
磁気記録メディアに関する。
BACKGROUND OF THE INVENTION The present invention comprises an exchange-coupling magnetic layer comprising a recording layer (= perpendicular magnetic film) and a reproducing layer (= in-plane magnetic film at room temperature). The present invention relates to a magneto-optical recording medium that achieves high recording density by transferring and reading.

【0002】[0002]

【従来の技術】光磁気記録メディアは、書き換え可能
で、記憶容量が大きく、信頼性の高い記録媒体として注
目されており、コンピュ−タメモリを始めとして多方面
に渡って実用化され、普及しはじめている。しかしなが
ら、情報量の増大と装置のダウンサイジング化に伴い、
より一層の高密度記録再生技術が要請されている。
2. Description of the Related Art Magneto-optical recording media have been attracting attention as rewritable recording media with large storage capacity and high reliability, and they have been put to practical use in various fields including computer memories and have become popular. There is. However, with the increase in the amount of information and downsizing of equipment,
There is a demand for higher density recording / reproducing technology.

【0003】高密度記録再生技術は、装置側の技術とメ
ディア側の技術とから成る。前者の技術としては、レ−
ザ光の回折限界を越える集光スポットを得るための光学
的超解像手法や、レ−ザ光の短波長化等の技術がある。
後者の技術としては、メディアの狭ピッチ化や、磁気多
層膜による再生分解能の向上化(Proceedings of Magne
to-Optical Recording International Symposium '92,
J.Magn.Soc.Jpn.,Vol.17,Supplement No.S1(1993),pp.2
01-204 参照)等の技術がある。ここで、磁気多層膜に
よる再生分解能の向上化技術は、レ−ザスポットの温度
分布が中心付近に於いて最高となるガウス分布を成すこ
とを利用して、記録層(=垂直磁化膜)の状態を再生層
(=室温で面内磁化膜)に選択的に転写して、該再生層
の状態を読み出すようにした技術である。
The high-density recording / reproducing technique is composed of a device-side technique and a medium-side technique. As the former technique,
There are techniques such as an optical super-resolution method for obtaining a focused spot that exceeds the diffraction limit of laser light and a technique for shortening the wavelength of laser light.
The latter technologies include narrowing the pitch of media and improving reproduction resolution by magnetic multilayer film (Proceedings of Magnet
to-Optical Recording International Symposium '92,
J.Magn.Soc.Jpn., Vol.17, Supplement No.S1 (1993), pp.2
(See 01-204). Here, the technique for improving the reproduction resolution by the magnetic multilayer film utilizes the fact that the temperature distribution of the laser spot has the highest Gaussian distribution in the vicinity of the center of the recording layer (= perpendicular magnetization film). In this technique, the state of the reproducing layer is read by selectively transferring the state to the reproducing layer (= in-plane magnetized film at room temperature).

【0004】[0004]

【発明が解決しようとする課題】レ−ザスポットで昇温
することにより記録層の状態を再生層に選択的に転写す
る光磁気記録メディアでは、記録層が垂直磁化膜である
ことの影響のため、該記録層に接している再生層の磁化
の方向は、初期状態に於いて完全な面内方向とはならな
い。このため、再生層に転写された状態を読み出す際に
は、磁化の方向が無秩序であることに起因するノイズ
や、レ−ザスポットの非中心部(周辺の低温部分)の状
態までも読み出してしまうことに起因するクロスト−ク
ノイズが発生して、CNR(Carrier to Noise Ratio)が
低下するという問題が生ずる。本発明は、上記のノイズ
を低減することにより、再生信号のCNRを改善するこ
とを目的とする。
In a magneto-optical recording medium in which the state of the recording layer is selectively transferred to the reproducing layer by raising the temperature at a laser spot, the influence of the fact that the recording layer is a perpendicular magnetization film is considered. Therefore, the magnetization direction of the reproducing layer in contact with the recording layer is not a perfect in-plane direction in the initial state. Therefore, when reading the state transferred to the reproducing layer, noise caused by the disordered magnetization direction and even the state of the non-center portion (the peripheral low temperature portion) of the laser spot are read. This causes crosstalk noise, which causes a problem that CNR (Carrier to Noise Ratio) is lowered. An object of the present invention is to improve the CNR of a reproduced signal by reducing the above noise.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、垂直
磁化膜である記録層と所定の転写温度まで昇温されるこ
とで前記記録層の磁化の方向を転写される第1の面内磁
化膜磁性層とから成る交換結合磁性層を有する光磁気記
録メディアに於いて、前記第1の面内磁化膜磁性層上に
光を透過する第2の面内磁化膜磁性層を設けたことを特
徴とする光磁気記録メディアである。上記に於いて、所
定の転写温度とは、第1の面内磁化膜磁性層(再生層)
の磁化の方向が面内方向から垂直方向に変化する温度を
いうものとする。
According to a first aspect of the present invention, a recording layer, which is a perpendicular magnetization film, and a first surface on which the magnetization direction of the recording layer is transferred by being heated to a predetermined transfer temperature. In a magneto-optical recording medium having an exchange-coupling magnetic layer composed of an in-plane magnetic film magnetic layer, a second in-plane magnetic film magnetic layer for transmitting light is provided on the first in-plane magnetic film magnetic layer. It is a magneto-optical recording medium characterized by the above. In the above description, the predetermined transfer temperature means the first in-plane magnetic film magnetic layer (reproducing layer).
The temperature at which the direction of the magnetization changes from the in-plane direction to the vertical direction.

【0006】請求項2の発明は、請求項1の第2の面内
磁化膜磁性層のキュリ−温度又はネ−ル温度が、前記転
写温度より低温である光磁気記録メディアである。請求
項3の発明は、請求項2の第2の面内磁化膜磁性層が、
30Å以上のNiO膜で構成された光磁気記録メディア
である。
A second aspect of the present invention is the magneto-optical recording medium, wherein the Curie temperature or the Neel temperature of the second in-plane magnetic film magnetic layer of the first aspect is lower than the transfer temperature. According to a third aspect of the present invention, the second in-plane magnetized magnetic film layer according to the second aspect is
It is a magneto-optical recording medium composed of a NiO film of 30 Å or more.

【0007】[0007]

【作用】請求項1の発明では、記録層(垂直磁化膜)に
接している第1の面内磁化膜磁性層(再生層)の反対面
に第2の面内磁化膜磁性層が設けられているため、記録
層の磁化の影響にもかかわらず、初期状態での第1の面
内磁化膜磁性層の磁化の方向は面内方向に揃う。請求項
2の発明では、第2の面内磁化膜磁性層のキュリ−温度
又はネ−ル温度が前記転写温度より低温であるため、情
報再生時には磁化が消失する。請求項3の発明では、第
2の面内磁化膜磁性層の好適材料及び好適厚さの例が与
えられる。
According to the first aspect of the invention, the second in-plane magnetic film magnetic layer is provided on the surface opposite to the first in-plane magnetic film magnetic layer (reproducing layer) in contact with the recording layer (perpendicular magnetic film). Therefore, despite the influence of the magnetization of the recording layer, the magnetization direction of the first in-plane magnetic film magnetic layer in the initial state is aligned with the in-plane direction. According to the second aspect of the present invention, the Curie temperature or the Neel temperature of the second in-plane magnetic film magnetic layer is lower than the transfer temperature, so that the magnetization disappears at the time of reproducing information. In the invention of claim 3, an example of a suitable material and a suitable thickness of the second in-plane magnetized film magnetic layer is given.

【0008】[0008]

【実施例】図1は実施例の光磁気記録メディアの構造を
模式的に示す断面図である。即ち、ポリカ−ボネ−ト製
の透明基板1上には、該基板1側から順に、厚さ800
〔Å〕のSiNから成る高屈折率層2、厚さ500
〔Å〕のNiOから成る第2の面内磁化膜磁性層3、厚
さ500〔Å〕のGdFeCoから成る第1の面内磁化
膜磁性層(再生層)4、厚さ1000〔Å〕のTbFe
Coから成る記録層5、厚さ1000〔Å〕のSiNか
ら成る酸化防止層6、厚さ約20〔μm〕の紫外線硬化
樹脂から成る保護層7が形成されている。なお、この構
造は、従来より公知のスパッタリング手法等を用いて作
製することができる。
EXAMPLE FIG. 1 is a sectional view schematically showing the structure of a magneto-optical recording medium of an example. That is, the transparent substrate 1 made of polycarbonate has a thickness of 800 in this order from the substrate 1 side.
[Å] SiN high refractive index layer 2, thickness 500
The second in-plane magnetized magnetic film layer 3 made of [Å] NiO, the first in-plane magnetized magnetic film layer (reproducing layer) 4 made of GdFeCo having a thickness of 500 [Å], and the thickness 1000 [Å] TbFe
A recording layer 5 made of Co, an antioxidant layer 6 made of SiN having a thickness of 1000 [Å], and a protective layer 7 made of an ultraviolet curable resin having a thickness of about 20 [μm] are formed. Note that this structure can be manufactured by using a conventionally known sputtering method or the like.

【0009】上記に於いて、垂直磁化膜である記録層5
と、室温で面内磁化膜である第1の面内磁化膜磁性層
(再生層)4とは磁気的に結合されており、この2つの
層により、交換結合磁性層が構成される。即ち、基板1
側からレ−ザスポットを入射させて第1の面内磁化膜磁
性層(再生層)4を所定の転写温度まで昇温させると、
該転写温度(この例では130℃)を越えた部位で、記
録層5の磁化の方向が第1の面内磁化膜磁性層(再生
層)4に転写される。この現象を利用して、本光磁気記
録メディアでは、記録層5の情報が再生される。なお、
上記の如く転写温度を130℃に設定することは、ここ
では、Gd:FeCoを25:75〔at%〕に調整す
ることで実現できる。
In the above, the recording layer 5 which is a perpendicular magnetization film
And the first in-plane magnetic film magnetic layer (reproducing layer) 4 which is an in-plane magnetic film at room temperature are magnetically coupled, and these two layers form an exchange coupling magnetic layer. That is, the substrate 1
When a laser spot is incident from the side to raise the temperature of the first in-plane magnetized film magnetic layer (reproducing layer) 4 to a predetermined transfer temperature,
The direction of the magnetization of the recording layer 5 is transferred to the first in-plane magnetic film magnetic layer (reproducing layer) 4 at a portion exceeding the transfer temperature (130 ° C. in this example). By utilizing this phenomenon, the information of the recording layer 5 is reproduced in the present magneto-optical recording medium. In addition,
Setting the transfer temperature to 130 ° C. as described above can be realized here by adjusting Gd: FeCo to 25:75 [at%].

【0010】また、上記NiOから成る第2の面内磁化
膜磁性層3では、室温からネ−ル温度(この例では10
0℃)までの温度範囲で、磁化の方向が面内に存在す
る。この第2の面内磁化膜磁性層3のレ−ザ光の透過率
としては、基板1側から入射されるレ−ザ光が、交換結
合磁性層の少なくとも第1の面内磁化膜磁性層(再生
層)4で反射されて基板1へ戻り、後段の光検出器(不
図示)で検出されるのに充分な透過率であることが要請
される。その一方で、第2の面内磁化膜磁性層3には、
第1の面内磁化膜磁性層(再生層)4の初期状態(非昇
温時)での磁化の向きを面内に揃える機能を果たすこと
が要請される。これらの事情より、上記NiOから成る
第2の面内磁化膜磁性層3の厚さは、30〔Å〕以上必
要である。
In the second in-plane magnetic film magnetic layer 3 made of NiO, the room temperature to the nail temperature (10 in this example).
In the temperature range up to 0 ° C., the direction of magnetization exists in the plane. As the laser light transmittance of the second in-plane magnetized magnetic film layer 3, the laser light incident from the substrate 1 side is at least the first in-plane magnetized magnetic film layer of the exchange coupling magnetic layer. The transmittance is required to be reflected by the (reproduction layer) 4, returned to the substrate 1, and detected by a photodetector (not shown) in the subsequent stage. On the other hand, in the second in-plane magnetized film magnetic layer 3,
It is required to fulfill the function of aligning the magnetization direction of the first in-plane magnetized film magnetic layer (reproducing layer) 4 in the in-plane state in the initial state (when the temperature is not raised). Under these circumstances, the thickness of the second in-plane magnetized magnetic film layer 3 made of NiO should be 30 [Å] or more.

【0011】本実施例の光磁気記録メディアと、従来の
光磁気記録メディア(図2に示す構造の光磁気記録メデ
ィア;図1で第2の面内磁化膜磁性層3が無い構造)に
ついて、各々再生信号のCNRを測定したところ、本実
施例の光磁気記録メディアのCNRは従来の光磁気記録
メディアのCNRよりも3〔dB〕良好であった。その
理由は、磁化の方向が無秩序であることに起因するノイ
ズや、レ−ザスポットの周辺部まで読み出してしまうこ
とに起因するクロスト−クノイズが低減されたためであ
ると考えられる。また、本実施例の光磁気記録メディア
と従来の光磁気記録メディアについて各々のカ−回転角
を測定したところ、図3のように、室温から略100℃
程度までの低温部に於いて、本実施例の光磁気記録メデ
ィアのカ−回転角は従来よりも充分に小さい値であっ
た。即ち、低温部に於いて記録層の磁化の状態が読み出
されてしまうことが有効に防止されていた。
Regarding the magneto-optical recording medium of this embodiment and the conventional magneto-optical recording medium (the magneto-optical recording medium having the structure shown in FIG. 2; the structure without the second in-plane magnetic film magnetic layer 3 in FIG. 1), When the CNR of each reproduction signal was measured, the CNR of the magneto-optical recording medium of this example was 3 [dB] better than the CNR of the conventional magneto-optical recording medium. It is considered that the reason is that the noise due to the disordered magnetization direction and the crosstalk noise due to reading out even to the peripheral portion of the laser spot are reduced. Further, when the curl rotation angles of the magneto-optical recording medium of this example and the conventional magneto-optical recording medium were measured, as shown in FIG.
In the low temperature part up to a certain extent, the curve rotation angle of the magneto-optical recording medium of this example was a value sufficiently smaller than that of the conventional one. That is, it was effectively prevented that the magnetization state of the recording layer was read in the low temperature portion.

【0012】上記実施例では、第2の面内磁化膜磁性層
3としてNiOを用いているが、これに代えて、例え
ば、CoNiO,CoO,MnFe,FeCr,FeN
i,MnNiPtCo,PdCo等を用いた場合も、N
iOの場合と同様の効果を得ることができる。
In the above embodiment, NiO is used as the second in-plane magnetized magnetic layer 3, but instead of this, for example, CoNiO, CoO, MnFe, FeCr, FeN.
Even when i, MnNiPtCo, PdCo, etc. are used, N
The same effect as in the case of iO can be obtained.

【0013】[0013]

【発明の効果】以上、請求項1の発明では、初期状態で
の第1の面内磁化膜磁性層(再生層)の磁化の方向は、
記録層の影響にもかかわらず面内方向に揃っている。こ
のため、情報の再生時には、無秩序な磁化の方向に起因
するノイズや、レ−ザスポットの周辺部を読み出すこと
に起因するクロスト−クノイズが低減されて、再生信号
のCNRが向上する。また、請求項2の発明では、情報
の再生時には第2の面内磁化膜磁性層の磁化が消失す
る。このため、より一層CNRの良好な再生信号が得ら
れる。また、請求項3の発明により、第2の面内磁化膜
磁性層の好適な材料と好適な厚さの例が与えられる。
As described above, according to the first aspect of the invention, the magnetization direction of the first in-plane magnetic film magnetic layer (reproducing layer) in the initial state is as follows.
They are aligned in the in-plane direction despite the influence of the recording layer. Therefore, at the time of reproducing information, noise caused by the disordered magnetization direction and crosstalk noise caused by reading the peripheral portion of the laser spot are reduced, and the CNR of the reproduced signal is improved. According to the second aspect of the invention, the magnetization of the second in-plane magnetized film magnetic layer disappears when the information is reproduced. Therefore, a reproduction signal having a better CNR can be obtained. Further, the invention of claim 3 provides an example of a suitable material and a suitable thickness of the second in-plane magnetized film magnetic layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の光磁気記録メディアの模式的断面図。FIG. 1 is a schematic sectional view of a magneto-optical recording medium of an example.

【図2】従来の光磁気記録メディアの模式的断面図。FIG. 2 is a schematic sectional view of a conventional magneto-optical recording medium.

【図3】実施例と従来例のカ−回転角を各温度について
測定した特性図。
FIG. 3 is a characteristic diagram in which the car rotation angles of the example and the conventional example are measured at each temperature.

【符号の説明】[Explanation of symbols]

1 透明基板(ポリカ−ボネ−ト) 2 高屈折率層(SiN) 3 第2の面内磁化膜磁性層(NiO) 4 第1の面内磁化膜磁性層(再生層:GdFeCo) 5 記録層(TbFeCo) 6 酸化防止層(SiN) 7 保護層(紫外線硬化樹脂) 1 Transparent Substrate (Polycarbonate) 2 High Refractive Index Layer (SiN) 3 Second In-Plane Magnetization Film Magnetic Layer (NiO) 4 First In-Plane Magnetization Film Magnetic Layer (Reproducing Layer: GdFeCo) 5 Recording Layer (TbFeCo) 6 Antioxidant layer (SiN) 7 Protective layer (UV curable resin)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 垂直磁化膜である記録層と、所定の転写
温度まで昇温されることで前記記録層の磁化の方向を転
写される第1の面内磁化膜磁性層と、から成る交換結合
磁性層を有する光磁気記録メディアに於いて、 前記第1の面内磁化膜磁性層上に、光を透過する第2の
面内磁化膜磁性層を設けたことを特徴とする光磁気記録
メディア。
1. An exchange comprising a recording layer which is a perpendicular magnetization film, and a first in-plane magnetization film magnetic layer which is transferred to a magnetization direction of the recording layer by being heated to a predetermined transfer temperature. A magneto-optical recording medium having a coupling magnetic layer, wherein a second in-plane magnetic film magnetic layer that transmits light is provided on the first in-plane magnetic film magnetic layer. media.
【請求項2】 請求項1に於いて、 前記第2の面内磁化膜磁性層のキュリ−温度又はネ−ル
温度は、前記転写温度より低い温度であることを特徴と
する光磁気記録メディア。
2. The magneto-optical recording medium according to claim 1, wherein the Curie temperature or the Neel temperature of the second in-plane magnetic film magnetic layer is lower than the transfer temperature. .
【請求項3】 請求項2に於いて、 前記第2の面内磁化膜磁性層は、30Å以上のNiO膜
であることを特徴とする光磁気記録メディア。
3. The magneto-optical recording medium according to claim 2, wherein the second in-plane magnetized film magnetic layer is a NiO film having a thickness of 30 Å or more.
JP13811794A 1994-05-26 1994-05-26 Magneto-optical recording medium Pending JPH07320319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13811794A JPH07320319A (en) 1994-05-26 1994-05-26 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13811794A JPH07320319A (en) 1994-05-26 1994-05-26 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH07320319A true JPH07320319A (en) 1995-12-08

Family

ID=15214365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13811794A Pending JPH07320319A (en) 1994-05-26 1994-05-26 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH07320319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810594A3 (en) * 1996-05-27 1998-07-22 Sharp Kabushiki Kaisha Magneto-optical recording medium
EP0833318A3 (en) * 1996-09-26 2000-08-30 Sharp Kabushiki Kaisha Magneto-optical recording medium, magneto-optical recording method, and magneto-optical recording apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810594A3 (en) * 1996-05-27 1998-07-22 Sharp Kabushiki Kaisha Magneto-optical recording medium
EP0833318A3 (en) * 1996-09-26 2000-08-30 Sharp Kabushiki Kaisha Magneto-optical recording medium, magneto-optical recording method, and magneto-optical recording apparatus

Similar Documents

Publication Publication Date Title
KR950011815B1 (en) Overwriteable magneto-optical recording media
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
JPH0684212A (en) Magneto-optical memory element
US5237548A (en) Magneto-optic recording structure and method
US5663935A (en) Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase
JPH0512731A (en) Magneto-optical recording medium
KR100308857B1 (en) Magneto-optical recording medium, magneto-optical recording method, and magneto-optical recording apparatus
JP3585671B2 (en) Magneto-optical recording medium and reproducing method thereof
JPH07320319A (en) Magneto-optical recording medium
JP3108397B2 (en) Magneto-optical recording medium
CN1758354B (en) Magneto-optical recording medium and layer structure
JP2809100B2 (en) Magneto-optical recording medium
JPH04219642A (en) Magneto-optical recording medium and method thereof
JP3172708B2 (en) Recording and playback device
JP2778526B2 (en) Magneto-optical recording medium and its recording / reproducing method
JP3454955B2 (en) Magneto-optical recording medium and magneto-optical recording medium reproducing apparatus
KR100447159B1 (en) magneto-optical recording medium
JP2613885B2 (en) Magneto-optical multilayer media
JP3446297B2 (en) Magneto-optical recording medium
JP3443410B2 (en) Magneto-optical recording medium and reproducing method thereof
JPS6316440A (en) Magneto-optical recording medium
JPH0341644A (en) magneto-optical recording medium
JPH0453047A (en) optical memory element
JPH08315436A (en) Magneto-optical recording medium and information recording / reproducing method using the medium
JPH04179104A (en) Structure of magneto-optical recording film