JPH07321261A - Heat sink for semiconductor - Google Patents
Heat sink for semiconductorInfo
- Publication number
- JPH07321261A JPH07321261A JP11556994A JP11556994A JPH07321261A JP H07321261 A JPH07321261 A JP H07321261A JP 11556994 A JP11556994 A JP 11556994A JP 11556994 A JP11556994 A JP 11556994A JP H07321261 A JPH07321261 A JP H07321261A
- Authority
- JP
- Japan
- Prior art keywords
- heat sink
- semiconductor
- heat dissipation
- cylinder
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 11
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 11
- 238000005245 sintering Methods 0.000 claims description 7
- 229910001080 W alloy Inorganic materials 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 238000001746 injection moulding Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 230000017525 heat dissipation Effects 0.000 abstract description 24
- 230000000694 effects Effects 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 4
- 238000005094 computer simulation Methods 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 229910018054 Ni-Cu Inorganic materials 0.000 description 2
- 229910018481 Ni—Cu Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910017816 Cu—Co Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000009700 powder processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
(57)【要約】
【目的】本発明は、中消費電力用半導体用ヒートシンク
の放熱特性の向上を図ること、また、半導体とヒートシ
ンクの熱膨張率を近似させることによる長期信頼性を向
上させるほか、安価に市場へ提供することにある。
【構成】本発明は、W合金のMIM法により放熱面の複
雑、微細な形状を有する半導体用ヒートシンク。
【効果】長期信頼性の高い半導体用ヒートシンクを安価
に提供できる。
(57) [Summary] [Object] The present invention aims to improve the heat dissipation characteristics of a heat sink for semiconductors for medium power consumption, and to improve long-term reliability by approximating the thermal expansion coefficients of the semiconductor and the heat sink. , To provide to the market at low cost. The present invention is a heat sink for a semiconductor having a complicated and fine shape of a heat dissipation surface by the WIM MIM method. [Effect] It is possible to provide a semiconductor heat sink having high long-term reliability at low cost.
Description
【0001】[0001]
【産業上の利用分野】本発明は、中消費電力を主とした
半導体用ヒートシンクに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink for semiconductors mainly for medium power consumption.
【0002】[0002]
【従来の技術】近年、半導体用ヒートシンクに関して
は、多数の発明、考案がある。表1に主なヒートシンク
の材質と熱伝導率および熱膨張率、また、ヒートシンク
に固着する半導体Siの熱膨張率を参考に示した。2. Description of the Related Art In recent years, there have been many inventions and ideas regarding heat sinks for semiconductors. Table 1 shows the materials of main heat sinks, thermal conductivity and thermal expansion coefficient, and the thermal expansion coefficient of semiconductor Si adhered to the heat sink for reference.
【0003】[0003]
【表1】 [Table 1]
【0004】低から中消費電力用ヒートシンクについて
は、材質的にはCuが中心であり、高い熱伝導率(0.9×
Cal/cm・sec・℃)と切削、プレス、鍛造を含めた機械加
工もしくはフォトエッチング等の比較的加工が容易なこ
とを活かしている。Regarding the heat sink for low to medium power consumption, the material is mainly Cu, and the high heat conductivity (0.9 ×
Cal / cm / sec / ° C) and machining, including pressing, forging, and relatively easy processing such as photo etching are utilized.
【0005】しかし、Cuの熱膨張率(17×10-6℃
-1)は、半導体Siの熱膨張率(4.2×10-6℃-1)と差が
大きく、作動時の半導体の発熱によるCuヒートシンク
のソリのため、半導体固着面2よりの半導体の剥離、割
れ、クラックの発生の恐れがあり、信頼性に問題がある
ため、中から高消費電力用ヒートシンクの材質としては
Siと熱膨張率が近いW合金(6.0〜7.0×10-6℃-1)とA
lN(4.0〜8.0×10-6℃-1)が用いられてい
る。しかし、これらの材質は、粉体加工がベースのため
比較的単純な形状(放熱面1に粗密度のフィン、円筒)
に限定されるため放熱に課題を残し、熱伝導率が小さい
(W合金:0.5〜0.6×Cal/cm・sec)こともあり、ヒート
シンクとしての汎用化を阻害していた。However, the coefficient of thermal expansion of Cu (17 × 10 −6 ° C.)
-1 ) has a large difference from the coefficient of thermal expansion of semiconductor Si (4.2 × 10 -6 ° C -1 ), and due to the heat sink of the Cu heat sink during operation, the semiconductor peels from the semiconductor fixed surface 2, Since there is a risk of cracks and cracks, and there is a problem with reliability, a W alloy with a thermal expansion coefficient close to that of Si (6.0 to 7.0 × 10 -6 ° C -1 ) is used as the material for the heat sink for medium to high power consumption. And A
1N (4.0 to 8.0 × 10 −6 ° C. −1 ) is used. However, since these materials are based on powder processing, they have a relatively simple shape (roughly dense fins and cylinders on the heat dissipation surface 1).
Since it is limited to, the heat dissipation remains a problem and the thermal conductivity is small (W alloy: 0.5 to 0.6 × Cal / cm · sec), which hinders its general use as a heat sink.
【0006】このことは、特開平3−226542号公
報のW−Ni−Cu合金によるヒートシンクにおいて
も、粉末冶金法によるため、形状限定の欠点は解消され
ていない。熱伝導率を高めたW−Cu−Coについて
は、J.Wittenaver and T.G Nieh(TheMinerals, Met
als & Materials Society, 1991, p21〜26)およ
びJ.L.Jo-hnson and R.M. German (Advance in P
owder Metallurgy, 1991,Vol 6 p391)等による文献
で詳述されているが、これも粉末冶金法によるため、依
然として形状限定の制約は残されていた。形状変更によ
る放熱性の向上のため、特開平2−291154公報お
よび実開平5−33539号のように放熱面1に円筒形
状はあるが、加工性の問題から高価になる欠点は解消で
きない。This is because the heat sink made of W-Ni-Cu alloy disclosed in Japanese Patent Laid-Open No. 3-226542 uses the powder metallurgy method, and therefore the drawback of the shape limitation has not been solved. Regarding W-Cu-Co with enhanced thermal conductivity, see J. Wittenaver and TG Nieh (The Minerals, Met
als & Materials Society, 1991, p21-26) and JL Jo-hnson and RM German (Advance in P
owder Metallurgy, 1991, Vol 6 p391) and the like, but this is also due to the powder metallurgy method, and the limitation of shape limitation still remains. In order to improve heat dissipation by changing the shape, the heat dissipation surface 1 has a cylindrical shape as in JP-A-2-291154 and Japanese Utility Model Application Laid-Open No. 5-33539, but the disadvantage of being expensive due to the problem of workability cannot be eliminated.
【0007】高消費電力用としては、前述のAlNのほ
か、液冷式(特開昭63−252452号公報)および
空冷式は高価のため、一部の実用範囲にとどまってい
る。For high power consumption, the liquid cooling type (Japanese Patent Laid-Open No. 63-252452) and the air cooling type are expensive in addition to the above-mentioned AlN, so that they are within a practical range.
【0008】以上述べたように、低価格化するために
は、放熱面の複雑形状をいかに安価に生産するかにあ
る。As described above, in order to reduce the price, it is necessary to inexpensively produce the complicated shape of the heat radiation surface.
【0009】[0009]
【発明が解決しようとする課題】そこで、本願発明の目
的は、ヒートシンクとして汎用性を高めるためには、ま
ず、Siとの熱膨張率を近似させ、割れ、クラック等を
防ぐことにより信頼性を向上すること、および放熱性を
高め、さらに安価に提供することにある。Therefore, in order to improve the versatility as a heat sink, the object of the present invention is to improve the reliability by first approximating the coefficient of thermal expansion with Si and preventing cracks and cracks. It is to improve the heat dissipation, and to provide the heat dissipation more inexpensively.
【0010】[0010]
【課題を解決するための手段】上記の課題を解決するた
め、Siの熱膨張率に近似のWをベースとした合金を選
定し、複雑形状に対してニアネットシェイプの特徴を有
する近年開発されたMIM法により、放熱面1の形状作
成を容易とした。しかし、W合金は、1,000℃以上の焼結
工程があり、ヒートシンクの工程中での変形、特にソリ
とCuの飛散防止のためセッター面とヒートシンクの接
触面を減少させることを意図して、半導体固着面2に台
座3をヒートシンクと一体成形した。In order to solve the above problems, an alloy based on W, which is close to the coefficient of thermal expansion of Si, is selected, and it has been developed in recent years that has a characteristic of near net shape for complicated shapes. By the MIM method, the shape of the heat dissipation surface 1 can be easily created. However, the W alloy has a sintering process of 1,000 ° C or higher, and it is intended to reduce the contact surface between the setter surface and the heat sink in order to prevent deformation during the heat sink process, especially the scattering of warp and Cu. The pedestal 3 was integrally molded with the heat sink on the fixing surface 2.
【0011】[0011]
【作用】ニアネットシェイプのMIM法によれば、放熱
面1の複雑形状に関し、焼結以降の二次加工は殆ど解消
できる。また、W合金の採用により、半導体に近似の熱
膨張率(6.0〜7.0×10-6℃-1)が容易に求めら
れるほか、台座3の採用によるソリ防止と熱伝導率の向
上のためのCuの焼結時の飛散が最小限になる。また、
半導体固着のための平坦度を出す研磨加工により、上記
台座3も同時に除去され、ヒートシンクの低価格化に容
易に結びつけられる特徴を有する。According to the near net shape MIM method, with respect to the complicated shape of the heat dissipation surface 1, the secondary processing after sintering can be almost eliminated. Moreover, by adopting the W alloy, it is possible to easily obtain a thermal expansion coefficient (6.0 to 7.0 × 10 -6 ° C -1 ) similar to that of a semiconductor, and by adopting the pedestal 3 to prevent warpage and to improve the thermal conductivity. Scattering during sintering of Cu for improvement is minimized. Also,
The pedestal 3 is also removed at the same time by the polishing process for obtaining the flatness for fixing the semiconductor, which has a feature that the cost of the heat sink can be easily reduced.
【0012】[0012]
【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
【0013】〔実施例1〕本発明図2は、放熱面1を
1.25mmφ×0.7mmの均等な円柱6とモールド枠4
および台座3より構成されている。なお、モールド枠4
は、半導体の保護のため、熱硬化性樹脂により露出する
放熱面への樹脂漏洩を防止するためのものである。ま
た、放熱は、円柱6を含め露出した放熱面から行われ
る。[Embodiment 1] FIG. 2 of the present invention shows that the heat dissipation surface 1 has a uniform cylinder 6 of 1.25 mmφ × 0.7 mm and a mold frame 4.
And a pedestal 3. The mold frame 4
Is for protecting the semiconductor and preventing resin leakage to the heat radiation surface exposed by the thermosetting resin. Further, heat dissipation is performed from the exposed heat dissipation surface including the cylinder 6.
【0014】MIM法の製造フローは、次の通りであ
る。The manufacturing flow of the MIM method is as follows.
【0015】[0015]
【表2】 [Table 2]
【0016】[0016]
【表3】 [Table 3]
【0017】ヒートシンクは台座3を有するものを本発
明としてセッター上へ、比較例は台座3なしを、セッタ
ー上に半導体側2と放熱面1をセットした。The heat sink having the pedestal 3 was set on the setter as the present invention, the pedestal 3 was not set in the comparative example, and the semiconductor side 2 and the heat radiation surface 1 were set on the setter.
【0018】(2)結果(2) Result
【0019】[0019]
【表4】 [Table 4]
【0020】表4について説明する。Table 4 will be described.
【0021】Cuの飛散量は、金属粉末配合時のCu2
0重量%と焼結後Cuの重量%との差について、1重量
%以下を○、〜3重量%を△、3重量%以上を×とし
た。また、ソリは、放熱面1を下部としヒートシンクの
中央部と最外周部をダイヤルゲージにて測定した。The amount of scattered Cu is Cu2 when the metal powder is blended.
Regarding the difference between 0% by weight and the weight% of Cu after sintering, 1% by weight or less was ◯, ˜3% by weight was Δ, and 3% by weight or more was ×. Further, the sled was measured with a dial gauge, with the heat radiating surface 1 as the lower part and the central part and the outermost peripheral part of the heat sink.
【0022】比較例1、2、本発明とも最外周は、小さ
い傾向にあったが、中央部と最外周の差を0.05mm以
下を○とし、〜0.5mmまでを△、0.5mm以上を×と
した。In each of Comparative Examples 1 and 2 and the present invention, the outermost circumference tended to be small, but the difference between the central portion and the outermost circumference was ◯ when the difference was 0.05 mm or less, and Δ and 0.5 mm when up to 0.5 mm. The above is marked with x.
【0023】Cu飛散については、EPMA30KVに
より測定した。比較例1において、セッター面側は顕微
鏡による組織でも、W粒子の拡散が主であることよりセ
ッターへの浸込みによるものと想定された。また、放熱
面1のセッター上への置き方では、枠4の外周のダレ量
が増加しており、台座3も均等な高さが要求されること
が判明した。The Cu scattering was measured by EPMA 30KV. In Comparative Example 1, even though the microstructure on the setter surface side was mainly due to the diffusion of W particles, it was assumed that the setter surface penetrated into the setter. Further, it was found that when placing the heat dissipation surface 1 on the setter, the amount of sagging on the outer periphery of the frame 4 was increased, and the pedestal 3 was also required to have a uniform height.
【0024】図4は、材質をWー20Cuー0.5Co
で固定した時の放熱面1の形状を図1、2、3にした時
の放熱についてのコンピューターシミュレーション結果
である。図1は、比較例とし放熱面1をフラットとし、
図2は、円柱(1.25mmφ×0.7mm)の本発明、図
3は、円筒(外径1.25mm、内径0.75mm ×0.7mm)の
本発明である。横軸は、ヒートシンクの中央から水平方
向のズレ量を示し、縦軸は、ヒートシンク中央部に一定
エネルギーを照射したときの温度をグラフ化した。In FIG. 4, the material is W-20Cu-0.5Co.
It is a computer simulation result about the heat dissipation when the shape of the heat dissipation surface 1 when fixed by FIG. In FIG. 1, the heat dissipation surface 1 is flat as a comparative example,
FIG. 2 shows the invention of a cylinder (1.25 mmφ × 0.7 mm), and FIG. 3 shows the invention of a cylinder (outer diameter 1.25 mm, inner diameter 0.75 mm × 0.7 mm). The horizontal axis represents the amount of horizontal displacement from the center of the heat sink, and the vertical axis represents the temperature when a constant energy is applied to the center of the heat sink.
【0025】コンピューターシミュレーションは、カラ
ーグラフィックで表示されているが、これを数値変換し
た。従来例を図1の放熱面1をフラット形状として、C
uとAlNのヒートシンクの中心からのズレ量と温度分
布をプロットしたもので、温度が低い方が放熱性が良い
ことを示している。従って、CuよりAlNが優れてい
る。また、本発明の図2円柱と図3円筒は、さらに図1
のAlNより良い。円柱と円筒ではわずかに円筒が良
い。The computer simulation, which is displayed as a color graphic, was numerically converted. In the conventional example, the heat dissipation surface 1 of FIG.
A plot of the amount of deviation between u and AlN from the center of the heat sink and the temperature distribution indicates that the lower the temperature, the better the heat dissipation. Therefore, AlN is superior to Cu. In addition, FIG. 2 cylinder and FIG. 3 cylinder of the present invention are further shown in FIG.
Better than AlN. Cylinders and cylinders are slightly better.
【0026】ここでは、円柱と円筒を述べたが、角柱、
角筒および各形状が複合されたものにも適用できる。Although a cylinder and a cylinder are described here, a prism,
It can also be applied to a prism and a composite of each shape.
【0027】〔実施例2〕実施例1と製造条件を異にす
るのは、 金属粉末 ・W平均粒径4μm・・96重量% ・Ni還元粉・・・・2.4重量% ・Cu電解粉・・・・1.6重量% バインダー・・・・5重量% である。[Example 2] The manufacturing conditions are different from those of Example 1 except that the metal powder has a W average particle size of 4 μm, 96 wt%, the Ni reduced powder has a 2.4 wt%, and the Cu electrolysis. Powder: 1.6% by weight Binder: 5% by weight.
【0028】結果は、 ・熱伝導率・・・0.5Cal/cm・sec・℃ ・熱膨張係数 ・・4.8×10-6℃-1 ・比重・・・・・17.8 であり、高密度で、実施例1より変形を少なくすること
が可能であった。また、多少のソリがあってもW−Cu
合金よりは塑性加工が容易に施せること、さらにCu飛
散が殆どないため、特性のコントロールがコンパウンド
作成時に可能となる長所を有している。The result is an & thermal conductivity ··· 0.5Cal / cm · sec · ℃ · thermal expansion coefficient ·· 4.8 × 10 -6 ℃ -1 · gravity ..... 17.8 With high density, it was possible to reduce deformation less than in Example 1. In addition, even if there is some warp, W-Cu
It has the advantage that it can be plastically processed more easily than alloys, and that it has almost no Cu scattering, so that its properties can be controlled during compound formation.
【0029】[0029]
【発明の効果】以上述べたように本発明によれば、半導
体基材のSiと熱膨張率を近似させることが、Wをベー
スとする合金により可能となる。また、Co、Cu、F
e、Niの1種もしくは2種以上の配合比により熱膨張
率の調整も任意に行える効果を有している。As described above, according to the present invention, it is possible to approximate the coefficient of thermal expansion of Si of the semiconductor substrate with that of the alloy based on W. In addition, Co, Cu, F
The coefficient of thermal expansion can be arbitrarily adjusted by mixing one or more of e and Ni.
【0030】さらに、放熱効果を向上させるために、放
熱面の表面積を増加するために、円柱、円筒、角柱、ま
たは角筒の各種形状もニアネットシェイプのMIM法に
より対応できる。Further, in order to improve the heat dissipation effect and increase the surface area of the heat dissipation surface, various shapes such as a cylinder, a cylinder, a prism, or a prism can be dealt with by the near net shape MIM method.
【0031】ソリ変形防止用の台座3は、半導体固着に
必要な平坦度が得られれば高さは少ないほど良い。この
高さは、2mm以下が加工費削減から望ましい。The pedestal 3 for preventing the warp deformation is preferably as small as possible if the flatness required for fixing the semiconductor is obtained. This height is preferably 2 mm or less in order to reduce processing costs.
【0032】焼結後の寸法精度は、Ni5重量%以下、
Cu2.5重量%以下のW−Ni−Cu合金が優れてい
るが、放熱特性を向上するためには、Cu10重量%〜
20重量%が良い。Cu20重量%以上では、Cuの焼
結中の飛散防止が困難になる。The dimensional accuracy after sintering is Ni 5% by weight or less,
A W-Ni-Cu alloy having a Cu content of 2.5% by weight or less is excellent, but in order to improve heat dissipation characteristics, a Cu content of 10% by weight to
20% by weight is good. If the Cu content is 20% by weight or more, it becomes difficult to prevent scattering of Cu during sintering.
【0033】また、円柱の径は、安定した射出成形を行
うために1mm以上が望ましく、最大径は通常の半導体チ
ップが10mm□のため、放熱面1の表面積を増加するた
め、円柱の本数を増すことが必要となることから、5mm
以下となる。また、円柱の高さは、0.5mm以下では粉
末冶金法でも量産的に可能であり、最高の高さは前述の
径との関係から20mmが限界である。The diameter of the cylinder is preferably 1 mm or more in order to perform stable injection molding, and the maximum diameter is 10 mm □ for an ordinary semiconductor chip. Therefore, the surface area of the heat radiating surface 1 is increased. 5mm because it is necessary to increase
It becomes the following. Further, if the height of the cylinder is 0.5 mm or less, it can be mass-produced by the powder metallurgy method, and the maximum height is 20 mm due to the above-mentioned diameter.
【0034】以上から本発明によれば、中消費電力用の
ヒートシンクの範囲を拡大することが期待できるため、
価格の低下に貢献することは大である。As described above, according to the present invention, it is expected that the range of the heat sink for medium power consumption can be expanded.
Contribution to price reduction is great.
【図1】比較形状のヒートシンク平面図および側面図。FIG. 1 is a plan view and a side view of a heat sink of a comparative shape.
【図2】本発明による円柱形状のヒートシンクの平面図
および側面図。FIG. 2 is a plan view and a side view of a cylindrical heat sink according to the present invention.
【図3】本発明による円筒形状のヒートシンクの平面図
および側面図。FIG. 3 is a plan view and a side view of a cylindrical heat sink according to the present invention.
【図4】コンピューターシミュレーションによる比較例
および本発明ヒートシンクの放熱状況の図。FIG. 4 is a diagram of a heat dissipation state of a heat sink of the present invention and a comparative example by computer simulation.
1・・・・・放熱面(側) 2・・・・・半導体固着面(側) 3・・・・・台座 4・・・・・モールド枠 5・・・・・モールド穴 6・・・・・円柱 7・・・・・円筒 1 ... Heat dissipation surface (side) 2 ... Semiconductor fixing surface (side) 3 ... Pedestal 4 ... Mold frame 5 ... Mold hole 6 ... ..Cylinders 7 ... Cylinders
Claims (6)
るW合金で、放熱面側に円柱、円筒、角柱もしくは角筒
としたことを特徴とする半導体用ヒートシンク。1. A heat sink for semiconductors, which is a W alloy produced by a metal injection molding (hereinafter referred to as MIM) method and has a columnar shape, a cylindrical shape, a prismatic shape or a rectangular cylinder on the heat radiation surface side.
が2種以上から構成されたことを特徴とする半導体用ヒ
ートシンク。2. A heat sink for a semiconductor, wherein the cylinder, the cylinder, the prism, or the prism of claim 1 is composed of two or more kinds.
Fe、Niの1種もしくは2種以上としたことを特徴と
する半導体用ヒートシンク。3. The composition of the W alloy according to claim 1, wherein Co, Cu,
A heat sink for a semiconductor, which is made of one or more of Fe and Ni.
形防止のため、半導体固着側に、突起台座を具備したこ
とを特徴とする半導体用ヒートシンク。4. The heat sink for a semiconductor according to claim 1, wherein a protrusion pedestal is provided on the semiconductor fixing side for preventing sintering deformation.
とを特徴とする半導体用ヒートシンク。5. A heat sink for a semiconductor according to claim 4, wherein the pedestal has a height of 2 mm or less.
を0.5mm〜20mmとしたことを特徴とする半導体用ヒ
ートシンク。6. A heat sink for semiconductors, wherein the cylinder of claim 5 has a diameter of 1 mm to 5 mm and a height of 0.5 mm to 20 mm.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11556994A JP3473106B2 (en) | 1994-05-27 | 1994-05-27 | Heat sink for semiconductor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11556994A JP3473106B2 (en) | 1994-05-27 | 1994-05-27 | Heat sink for semiconductor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07321261A true JPH07321261A (en) | 1995-12-08 |
| JP3473106B2 JP3473106B2 (en) | 2003-12-02 |
Family
ID=14665812
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11556994A Expired - Lifetime JP3473106B2 (en) | 1994-05-27 | 1994-05-27 | Heat sink for semiconductor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3473106B2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002060669A1 (en) * | 2000-12-27 | 2002-08-08 | Intel Corporation | Injection molded heat dissipation device |
| EP1296370A2 (en) | 2001-08-27 | 2003-03-26 | Advanced Materials Technologies, Pte Ltd. | Enclosure for a semiconductor device |
| JP2007047816A (en) * | 2006-10-10 | 2007-02-22 | Yamaha Corp | Package for semiconductor laser module |
-
1994
- 1994-05-27 JP JP11556994A patent/JP3473106B2/en not_active Expired - Lifetime
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002060669A1 (en) * | 2000-12-27 | 2002-08-08 | Intel Corporation | Injection molded heat dissipation device |
| US6585925B2 (en) | 2000-12-27 | 2003-07-01 | Intel Corporation | Process for forming molded heat dissipation devices |
| US6787247B2 (en) | 2000-12-27 | 2004-09-07 | Intel Corporation | Injection molded heat dissipation device |
| EP1296370A2 (en) | 2001-08-27 | 2003-03-26 | Advanced Materials Technologies, Pte Ltd. | Enclosure for a semiconductor device |
| US6569380B2 (en) | 2001-08-27 | 2003-05-27 | Advanced Materials Technologies Pte, Ltd. | Enclosure for a semiconductor device |
| JP2007047816A (en) * | 2006-10-10 | 2007-02-22 | Yamaha Corp | Package for semiconductor laser module |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3473106B2 (en) | 2003-12-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6114048A (en) | Functionally graded metal substrates and process for making same | |
| US5366688A (en) | Heat sink and method of fabricating | |
| EP2428590A3 (en) | Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it | |
| CN100436616C (en) | Preparation method of near fully densificated high W or Mo content W-Cu or Mo-Cu composite material | |
| EP1296370A2 (en) | Enclosure for a semiconductor device | |
| JP5531329B2 (en) | Package based on semiconductor heat dissipation parts | |
| CN101163810B (en) | Alloy component for heat dissipation of semiconductor device and manufacturing method thereof | |
| JP3473106B2 (en) | Heat sink for semiconductor | |
| JP3818102B2 (en) | Heat dissipation substrate, method for manufacturing the same, and semiconductor device | |
| US6876075B2 (en) | Aluminum-silicon carbide semiconductor substrate and method for producing the same | |
| JPH11307701A (en) | Heat sink and manufacture therefor | |
| JP2000297301A (en) | Silicon carbide-based composite material, powder thereof, and production method thereof | |
| JP4615312B2 (en) | COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND MEMBER USING THE SAME | |
| JP3451979B2 (en) | Semiconductor device | |
| US6597574B2 (en) | Radiator plate and process for manufacturing the same | |
| WO2002077304A1 (en) | Heat dissipation member for electronic apparatus and method for producing the same | |
| JP3160696B2 (en) | Metal composite material, method of manufacturing the same, and package having the same | |
| JP2810873B2 (en) | Method of manufacturing Cu-W alloy substrate for heat sink of semiconductor element | |
| JPH06334074A (en) | Board for semiconductor device | |
| JP2002121639A (en) | Heat dissipation board and high power high frequency transistor package using it | |
| JPH108164A (en) | Production of aluminum composite with low thermal expansion and high thermal conductivity, and its composite | |
| JP2003234445A (en) | Substrate material for mounting semiconductor device and method for manufacturing the same | |
| JPH1017959A (en) | Composite material and method for producing the same | |
| JP3626695B2 (en) | Manufacturing method of heat dissipation member for electronic equipment | |
| TWM671629U (en) | Heat dissipation device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20100919 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20110919 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 10 |
|
| EXPY | Cancellation because of completion of term |