[go: up one dir, main page]

JPH0733596A - Needle single crystal composite - Google Patents

Needle single crystal composite

Info

Publication number
JPH0733596A
JPH0733596A JP18504893A JP18504893A JPH0733596A JP H0733596 A JPH0733596 A JP H0733596A JP 18504893 A JP18504893 A JP 18504893A JP 18504893 A JP18504893 A JP 18504893A JP H0733596 A JPH0733596 A JP H0733596A
Authority
JP
Japan
Prior art keywords
single crystal
needle
shaped single
crystal body
embedding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18504893A
Other languages
Japanese (ja)
Inventor
Masaru Amamiya
勝 雨宮
Kazuo Kato
和男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP18504893A priority Critical patent/JPH0733596A/en
Publication of JPH0733596A publication Critical patent/JPH0733596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To increase the buckling load and stiffness of a needle single crystal by coating a side face of the needle single crystal formed by the VLS growth method with an electro-conductive layer and embedding it in an embedding material. CONSTITUTION:A needle single crystal (A) of an element or a compound such as Si, LaB6 formed on an insulating base 1 such as Si single crystal by the VLS process (3 is a needle single crystal; 5 is alloy on the top end) is coated with a metal of high electroconductivity of 1 to 10mum thickness on its side face and, when needed, its top flat part by metallizing, plating or dipping to give an electroconductive single crystal (B) of 5 to 300mum diameter and 1 to 500 aspect ratio. The single crystal (B) is embedded with a thermosetting containing an inorganic filler or a thermoplastic resin or a glass softening at a low temperature in a thickness of 1-2mm, 300 to 500 deg.C so that the positioning accuracy of the single crystal (B) is kept in the range of 0 to 10mum and the needle crystals project from the surface of the embedding material 7 by 10 to 500mum to give the objective needle single crystal composite (E).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路の電気
特性測定用プローブピン、微小真空デバイスや電子銃、
或いは走査型トンネル顕微鏡や原子間力顕微鏡をはじめ
とする走査型プローブ顕微鏡のプローブ等に使用でき
る、座屈荷重が大きく、剛性に優れた針状単結晶体複合
品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe pin for measuring electric characteristics of a semiconductor integrated circuit, a micro vacuum device, an electron gun,
Alternatively, the present invention relates to a needle-shaped single crystal composite product having a large buckling load and excellent rigidity, which can be used as a probe of a scanning probe microscope such as a scanning tunnel microscope or an atomic force microscope.

【0002】[0002]

【従来の技術】半導体集積回路は、製造段階において不
良品除去のため何度か電気的特性を測定する必要があ
る。例えばLSIの場合、ウエハ内に回路素子を製造し
た段階で、各チップを構成する回路素子の動作をテスト
するための測定が行われ、この後、ウエハから切り取ら
れたチップをパッケージに収容したり、TABテープに
実装した状態で、再度動作テストするための測定が行わ
れる。このうち、前者は、通常タングステン等の金属に
よって構成されたプローブピンを有するプローブカード
が使用される。また、後者は、アウターリードが挿入さ
れるソケットを使用することが多いが、TABの場合
は、プローブカードが使用されることがある。ところ
で、近年、LSIの高密度化に伴い、電気的特性測定の
ための端子(パッド)数が増加し、単位面積あたり多数
のプローブピンを設けることが必要になっている。この
ため微細化、高精度化されたプローブピンが求められて
いるが、従来のタングステン等のプローブピンではこれ
に対応できなくなりつつある。
2. Description of the Related Art In a semiconductor integrated circuit, it is necessary to measure the electrical characteristics of the semiconductor integrated circuit several times in order to remove defective products. For example, in the case of an LSI, at the stage of manufacturing circuit elements in a wafer, measurement is performed to test the operation of the circuit elements that make up each chip, and then the chips cut from the wafer are placed in a package. , The TAB tape is mounted and the measurement for performing the operation test is performed again. Of these, the former usually uses a probe card having a probe pin made of a metal such as tungsten. The latter often uses a socket into which outer leads are inserted, but in the case of TAB, a probe card may be used. By the way, in recent years, the number of terminals (pads) for measuring electrical characteristics has increased with the increase in density of LSIs, and it has become necessary to provide a large number of probe pins per unit area. For this reason, miniaturized and highly accurate probe pins are required, but conventional probe pins made of tungsten or the like are becoming unable to cope with this.

【0003】[0003]

【発明が解決しようとする課題】本発明は、半導体集積
回路の電気特性測定用プローブピン等に使用される座屈
荷重が大きく、剛性に優れた針状単結晶体複合品を提供
することを目的とするものである。本発明者等は、半導
体集積回路の電気特性測定用プローブピン等に使用され
る座屈荷重が大きく、剛性に優れた針状単結晶体複合品
につき鋭意研究を行った結果、基板上に、VLS成長法
にて針状単結晶体を形成し、該針状単結晶体の少なくと
も側面を導電性膜で被覆した後、該導電性針状単結晶体
が樹脂又は低融点ガラス面から10〜500μm突出す
るように樹脂又は低融点ガラスで包埋した針状単結晶体
複合品に到達し、本発明を完成するに至った。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a needle-shaped single crystal composite article having a large buckling load and excellent rigidity, which is used for a probe pin for measuring electric characteristics of a semiconductor integrated circuit. It is intended. The inventors of the present invention have conducted a diligent study on a needle-shaped single crystal composite product having a large buckling load used for a probe pin or the like for measuring electrical characteristics of a semiconductor integrated circuit, and having excellent rigidity. After forming a needle-shaped single crystal body by the VLS growth method and covering at least the side surface of the needle-shaped single crystal body with a conductive film, the conductive needle-shaped single crystal body is coated with a resin or a low melting point glass surface from 10 to 10. The present invention was completed by reaching a needle-shaped single crystal composite article embedded with resin or low melting point glass so as to project 500 μm.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、基
板上に、VLS成長法にて針状単結晶体を形成し、該針
状単結晶体の少なくとも側面を0.1〜10μm厚みの
導電性膜で被覆し導電性針状単結晶体を得た後、該導電
性針状単結晶体を樹脂又は低融点ガラスからなる包埋材
料で包埋してなる針状単結晶体複合品で、該導電性針状
単結晶体が、その包埋材料の表面から10〜500μm
突出するように包埋されたことを特徴とする針状単結晶
体複合品及びそれを用いた電気特性測定用組立物であ
る。
That is, according to the present invention, a needle-shaped single crystal body is formed on a substrate by a VLS growth method, and at least a side surface of the needle-shaped single crystal body has a thickness of 0.1 to 10 μm. A needle-shaped single crystal composite article obtained by coating a conductive film to obtain a conductive acicular single crystal, and then embedding the conductive acicular single crystal in an embedding material made of resin or low melting point glass. And the conductive needle-shaped single crystal is 10 to 500 μm from the surface of the embedding material.
It is a needle-shaped single crystal composite article characterized by being embedded so as to project, and an assembly for measuring electrical characteristics using the same.

【0005】以下、本発明を詳細に説明する。本発明で
用いられる針状単結晶体は、基板上にVLS成長法にて
形成される。この方法は、( R. S. Wagner and W. C. E
llis:Appl. Phys Letters4(1964)89 )に開示されて
いるものである。図1はかかる針状結晶体の形成方法を
説明するための図である。図1(a)に示すように、表
面が(111)面であるシリコン単結晶基板1の所定の
位置に金粒子2を載置する。これをSiH4、SiCl4 などの
シリコンを含むガスの雰囲気の中でSi−Au合金の融点以
上に加熱する。Si−Au合金はその融点が低いため、金粒
子2が載置された部分にこの合金の液滴が出来る。この
時、ガスの熱分解により、シリコンが雰囲気中より取り
込まれるが、液状体は他の固体状態に比べてシリコン原
子を取り込み易く、Si−Au合金の液滴中には次第にシリ
コンが過剰になる。この過剰シリコンはシリコン基板1
上にエピタキシャル成長し同図(b)に示すように<1
11>軸方向に沿って、頂部にSi-Au 合金液滴5を有し
つつ、針状結晶体3が成長する。また、針状結晶体3は
単結晶であり、基板1の結晶方位と同一方位を有する。
また、針状結晶体3の直径は液滴の直径とほぼ同一であ
る。尚、以上の結晶成長機構はVLS(Vapor−liquid
−Solid )成長法と呼ばれており、以下VLS成長法と
記す。
The present invention will be described in detail below. The needle-shaped single crystal used in the present invention is formed on the substrate by the VLS growth method. This method is described in (RS Wagner and WC E
llis: Appl. Phys Letters 4 (1964) 89). FIG. 1 is a diagram for explaining a method of forming such needle-shaped crystal bodies. As shown in FIG. 1A, a gold particle 2 is placed at a predetermined position on a silicon single crystal substrate 1 whose surface is a (111) plane. It is heated to SiH 4, SiCl 4 above the melting point of Si-Au alloy in an atmosphere of a gas containing silicon, such as. Since the melting point of the Si-Au alloy is low, droplets of this alloy are formed on the portion where the gold particles 2 are placed. At this time, silicon is taken in from the atmosphere due to thermal decomposition of the gas, but the liquid substance easily takes in silicon atoms compared to other solid states, and silicon is gradually excessive in the droplets of the Si-Au alloy. . This excess silicon is the silicon substrate 1
Epitaxially grown on top and <1 as shown in FIG.
11> The acicular crystal body 3 grows along the axial direction while having the Si-Au alloy droplet 5 on the top. The needle-shaped crystal body 3 is a single crystal and has the same crystal orientation as that of the substrate 1.
Further, the diameter of the needle-shaped crystal body 3 is almost the same as the diameter of the droplet. The above crystal growth mechanism is based on VLS (Vapor-liquid).
-Solid) growth method, which is hereinafter referred to as VLS growth method.

【0006】この方法はシリコン単結晶の場合に限ら
ず、他の単結晶の育成にも応用されている。たとえば、
LaB6単結晶の育成はその融点が2530℃と高温で蒸発速度
も大きく、また反応性も高く必ずしも融液成長には適し
ていない。このような観点から、より低温で結晶成長が
可能なVLS成長が試みられている(Journal of Cryst
al Growth 51(1981)190-194 )。ところで、Au粒子を
置く替わりにフォトリソグラフ法、メッキ法、蒸着法、
エッチング法などを組み合わせることによりシリコン基
板上にAuを島状にパターン化しVLS成長を行えば、基
板上の所望の位置に1個以上の針状単結晶体を形成する
ことができ、電気特性測定用プローブピン等に使用する
ことができる。
This method is applied not only to the case of a silicon single crystal, but also to the growth of other single crystals. For example,
The growth of LaB 6 single crystal is not suitable for melt growth because it has a high melting point of 2530 ° C and a high evaporation rate and high reactivity. From such a viewpoint, VLS growth capable of crystal growth at lower temperatures has been attempted (Journal of Cryst
al Growth 51 (1981) 190-194). By the way, instead of placing Au particles, photolithography, plating, vapor deposition,
If Au is patterned in an island shape on a silicon substrate by combining etching methods and VLS growth is performed, one or more needle-shaped single crystal bodies can be formed at desired positions on the substrate, and electrical characteristics can be measured. It can be used as a probe pin or the like.

【0007】本発明の針状単結晶体を構成するものとし
ては、Si、LaB6 、GaAs、GaP,WO2 、S
iC等であり、特に好ましくは、Si、LaB6 であ
る。これら元素又は化合物と合金をつくるものとして
は、Au、Pt、Ag、Cu、Pd、及びGaであり、
特に好ましくはAu及びPtである。本発明の針状単結
晶体は基板上にVLS成長法にて形成されるが、針状単
結晶体の基板に対する角度は、特に制限はないが、プロ
ーブの寿命等を考えると、基板に対する角度が90度に
近いことが好ましい。本発明によって用いられる針状単
結晶体の形状は、座屈荷重及び剛性を考慮すると円柱状
又はそれに近いものが好ましく、その直径は5〜300
μmの範囲である。そのアスペクト比(高さ/直径)は
1〜500、特に好ましくは5〜100である。アスペ
クト比が1以下では、実用的に使用できず、500以上
では、折れ曲がりやブランチの無い針状単結晶体が得ら
れない。
The needle-like single crystal body of the present invention comprises Si, LaB 6 , GaAs, GaP, WO 2 and S.
iC and the like, and particularly preferably Si and LaB 6 . Alloys with these elements or compounds are Au, Pt, Ag, Cu, Pd, and Ga,
Particularly preferred are Au and Pt. The needle-shaped single crystal body of the present invention is formed on the substrate by the VLS growth method. The angle of the needle-shaped single crystal body with respect to the substrate is not particularly limited. Is preferably close to 90 degrees. The needle-shaped single crystal used in the present invention preferably has a columnar shape or a shape close to it in consideration of buckling load and rigidity, and has a diameter of 5 to 300.
It is in the range of μm. Its aspect ratio (height / diameter) is 1 to 500, particularly preferably 5 to 100. If the aspect ratio is 1 or less, it cannot be practically used, and if it is 500 or more, a needle-shaped single crystal body having no bending or branching cannot be obtained.

【0008】本発明の導電性針状単結晶体は少なくとも
側面が、0.1μm〜10μm厚みの導電性膜で被覆さ
れているものである。導電性膜の厚みが0.1μm以下
では導電性膜の破れ、摩擦による剥がれ等が起こり、1
0μm以上では、膜の均一性が得られなく、コストも高
くなる。この導電性膜の被覆は、針状単結晶体を蒸着
法、メッキ法、及びデイ ツプ法等で被覆して行われる。
具体的には、針状単結晶体にNiーP又はCr等の下地
メッキをし、次にAu、Au合金、Rh等の表層メッキ
をする方法がある。表層メッキは導電性の優れた金属を
使用することが好ましい。導電性針状単結晶体の直径は
5〜300μmの範囲である。そのアスペクト比(高さ
/直径)は1〜500、特に好ましくは5〜100であ
る。
The conductive acicular single crystal body of the present invention has at least its side surface covered with a conductive film having a thickness of 0.1 μm to 10 μm. When the thickness of the conductive film is 0.1 μm or less, the conductive film may be torn or peeled off due to friction.
If it is 0 μm or more, the uniformity of the film cannot be obtained and the cost becomes high. The coating of the conductive film is performed by coating a needle-shaped single crystal body by a vapor deposition method, a plating method, a dipping method, or the like.
Specifically, there is a method in which an acicular single crystal body is plated with Ni--P or Cr as an underlayer, and then surface-plated with Au, Au alloy, Rh, or the like. For the surface layer plating, it is preferable to use a metal having excellent conductivity. The diameter of the conductive needle-shaped single crystal body is in the range of 5 to 300 μm. Its aspect ratio (height / diameter) is 1 to 500, particularly preferably 5 to 100.

【0009】この導電性膜は針状単結晶体の少なくとも
側面を覆っていることが必要であるが、針状単結晶体の
先端平面部が被覆されていてもよい。さらに、電気特性
測定用プローブピンとして使用する場合は、半導体集積
回路の端子(パッド)と接触する針状単結晶体の先端平
面部が導電性膜で被覆されていることが好ましい。
It is necessary that this conductive film covers at least the side surface of the needle-shaped single crystal body, but the tip flat portion of the needle-shaped single crystal body may be covered. Further, when used as a probe pin for measuring electrical characteristics, it is preferable that the tip flat portion of the needle-shaped single crystal body that comes into contact with the terminal (pad) of the semiconductor integrated circuit is covered with a conductive film.

【0010】本発明において包埋材料用の樹脂として
は、熱硬化性樹脂及び熱可塑性樹脂がある。熱硬化性樹
脂としては、エポキシ系樹脂、アクリル系樹脂、シリコ
ン系樹脂、ポリイミド系樹脂等があり、熱可塑性樹脂と
しては、オレフィン系樹脂、スチレン系樹脂等がある。
特に好ましくは、エポキシ樹脂である。これらの樹脂に
無機フィラーを添加することができる。無機フィラーと
しては、SiO2 、Al 2 3 等が用いられる。本発明
において包埋材料用の低融点ガラスは、PbO、B2
3 、ZnOなどを含んだ低融点ガラス(ハンダガラス)
であり、軟化点が300〜500℃で、金属・セラミッ
クス・ガラス等の接着に適しており電子管のシール等に
用いられているものである。樹脂又は低融点ガラスによ
る包埋は、その厚み等に特に制限はないが、強度等を考
慮すると、好ましくは、0.1〜2mmの厚さである。
導電性針状単結晶体の位置精度は、0〜10μmに保つ
ことが好ましい。又、半導体集積回路の端子との接触の
ために、導電性針状単結晶体が樹脂又は低融点ガラス面
から10〜500μm突出していることが必要である。
As a resin for embedding material in the present invention
Are thermosetting resins and thermoplastic resins. Thermosetting tree
As the fat, epoxy resin, acrylic resin, silicone
Resin, polyimide resin, etc.
Then, there are olefin resins, styrene resins and the like.
An epoxy resin is particularly preferable. To these resins
Inorganic fillers can be added. With inorganic filler
Then SiO2, Al 2O3Etc. are used. The present invention
The low melting point glass for the embedding material is PbO, B2O
3-Melting glass containing Al, ZnO, etc. (solder glass)
And has a softening point of 300 to 500 ° C.
Suitable for bonding glass, glass, etc., and for sealing electron tubes, etc.
It is used. With resin or low melting glass
There is no particular limitation on the thickness etc. of the embedding, but considering the strength etc.
Considering the above, the thickness is preferably 0.1 to 2 mm.
The position accuracy of the conductive needle-shaped single crystal body is maintained at 0 to 10 μm.
It is preferable. In addition, contact with the terminals of the semiconductor integrated circuit
In order to ensure that the conductive needle-shaped single crystal is made of resin or a low-melting glass surface
It is necessary to project from 10 to 500 μm.

【0011】また、VLS成長法にて形成された針状単
結晶体は、必然的に先端合金部を有するが、半導体集積
回路の電気特性測定用プローブピン等に使用する場合、
先端合金部が存在すると座屈荷重が小さく、これを除去
したものを使用することが好ましい。先端合金部の除去
は、工程の任意の段階で行うことができる。例えば、
(1)VLS成長法にて針状単結晶体を形成した後、
(2)導電性膜の被覆後、(3)樹脂包埋後等である。
また、先端合金部を除去するときに、高さを揃える等の
ために、針状単結晶体の一部を除去してもよい。
Further, the needle-shaped single crystal body formed by the VLS growth method necessarily has a tip alloy portion, but when it is used as a probe pin for measuring electrical characteristics of a semiconductor integrated circuit,
If the tip alloy portion is present, the buckling load is small, and it is preferable to use the one without the buckling load. The removal of the tip alloy portion can be performed at any stage of the process. For example,
(1) After forming a needle-shaped single crystal by the VLS growth method,
(2) After coating with the conductive film, (3) after embedding with resin, etc.
Further, when removing the tip alloy portion, a part of the needle-shaped single crystal body may be removed in order to make the heights uniform.

【0012】図2にて、針状単結晶体複合品の一般的な
製造工程を説明する。(A)はVLS成長法にて形成さ
れた針状単結晶体であり、1は単結晶基板、3は針状単
結晶、5は先端合金部を示す。(B)は針状単結晶体の
側面に導電性膜を被覆した状態を示す。(C)は先端合
金部を除去した後の状態を示す。(D)は先端平面に導
電性膜を被覆した状態を示す。(E)は針状単結晶体を
樹脂で包埋した状態を示す。
A general manufacturing process of a needle-shaped single crystal composite product will be described with reference to FIG. (A) is a needle-shaped single crystal body formed by the VLS growth method, 1 is a single crystal substrate, 3 is a needle-shaped single crystal, and 5 is a tip alloy portion. (B) shows a state in which the side surface of the needle-shaped single crystal body is covered with a conductive film. (C) shows a state after the tip alloy portion is removed. (D) shows a state in which the tip plane is covered with a conductive film. (E) shows a state in which a needle-shaped single crystal body is embedded in a resin.

【0013】図3は、針状単結晶体複合品を用いた電気
特性測定用組立物を示す。(A)は支持基板に針状単結
晶体複合品を取付け、配線した状態を上方より見た図を
示す。(B)はプローブピン、支持基板及び半導体集積
回路基板の位置関係を示す断面図である。以上、説明し
たとおり、本発明により得られる針状単結晶体複合品
は、基板上にVLS成長法により形成した針状単結晶体
に導電性膜を被覆し、これを樹脂で包埋することによっ
て得られるもので、座屈荷重が大きく、剛性に優れたも
のであり、電気特性測定用プローブピン等に使用可能な
ものである。
FIG. 3 shows an assembly for measuring electrical characteristics using a needle-shaped single crystal composite. (A) shows a view in which a needle-shaped single crystal composite article is attached to a support substrate and wiring is performed from above. (B) is a sectional view showing a positional relationship between the probe pin, the support substrate, and the semiconductor integrated circuit substrate. As described above, in the needle-shaped single crystal composite article obtained by the present invention, the needle-shaped single crystal formed on the substrate by the VLS growth method is coated with a conductive film and embedded in a resin. It has a large buckling load and excellent rigidity, and can be used as a probe pin for measuring electrical characteristics.

【0014】[0014]

【実施例】以下実施例により本発明を詳細に説明する。 実施例1 厚さ500μmのSiO2 絶縁基板を反応管内で100
0℃に加熱し、モノシランと水素の混合ガスを流し、S
iO2 絶縁基板上に厚さ50μmのシリコン単結晶膜を
形成する。この基板上にフォトリソグラフ法、エッチン
グ法及びメッキ法などの方法でAuパターンを形成し
た。VLS成長法により、基板上に直径25μm、高さ
600μmのシリコン針状単結晶体を形成した。この針
状単結晶体の基部に連続して下地シリコン単結晶膜をエ
ッチングして配線パターンを作った。前記、針状単結晶
体及び配線パターン部に、NiーP化学メッキを施し、
ついで電気メッキにより1μmのAuメッキをつけた。
次に、研磨用ワックスで針状単結晶体を包埋し、つい
で、#4000ラッピングシートを用い、湿式研磨によ
り針状単結晶体先端合金部を除去すると同時に高さを5
00μmに揃えた。
The present invention will be described in detail with reference to the following examples. Example 1 A SiO 2 insulating substrate having a thickness of 500 μm was placed in a reaction tube at 100
The mixture is heated to 0 ° C., a mixed gas of monosilane and hydrogen is caused to flow, and S
A silicon single crystal film having a thickness of 50 μm is formed on an iO 2 insulating substrate. An Au pattern was formed on this substrate by a method such as a photolithography method, an etching method and a plating method. By the VLS growth method, a silicon needle single crystal having a diameter of 25 μm and a height of 600 μm was formed on the substrate. The underlying silicon single crystal film was continuously etched on the base of the needle-shaped single crystal to form a wiring pattern. Ni-P chemical plating is applied to the needle-shaped single crystal body and the wiring pattern portion,
Then, 1 μm Au plating was applied by electroplating.
Next, the needle-shaped single crystal body was embedded with a polishing wax, and then the tip alloy portion of the needle-shaped single crystal body was removed by wet polishing using a # 4000 lapping sheet, and at the same time, the height was increased to 5
Aligned to 00 μm.

【0015】研磨用ワックスをアセトンで溶解した後、
針状単結晶体先端平面に金蒸着膜を付け、さらに、針状
単結晶体全体に1μmのRhメッキを施した。メッキ処
理した針状単結晶体の上方部100μmを残し、絶縁基
板表面、配線、導電性針状単結晶体の下方部を硬化型エ
ポキシ樹脂で400μmの厚さに包埋した。前記複合品
につき、座屈荷重及び剛性の試験を行った。結果を表1
に示す。また、前記包埋品の配線端部にリード線を取付
け、半導体集積回路の電気特性測定用プローブピンとし
て評価した。1ピンあたり40gの荷重で、Au端子に
接触させ電気抵抗を測定したところ、ピンの折れもな
く、接触抵抗も1オーム以下であり、実用的に使用可能
なレベルであった。
After dissolving the polishing wax with acetone,
A gold vapor-deposited film was attached to the tip end flat surface of the needle-shaped single crystal body, and further, the entire needle-shaped single crystal body was plated with 1 μm of Rh. The insulating substrate surface, the wiring, and the lower part of the conductive needle-shaped single crystal body were embedded in a thickness of 400 μm with a curable epoxy resin, leaving 100 μm above the plated needle-shaped single crystal body. Buckling load and rigidity tests were conducted on the composite article. The results are shown in Table 1.
Shown in. In addition, a lead wire was attached to the wiring end of the embedded product and evaluated as a probe pin for measuring electrical characteristics of a semiconductor integrated circuit. When the electrical resistance was measured by contacting the Au terminal with a load of 40 g per pin, the pin was not broken and the contact resistance was 1 ohm or less, which was at a practically usable level.

【0016】実施例2 実施例1の包埋材料において、硬化型エポキシ樹脂を用
いる代わりに、低融点ガラス(軟化温度400℃、熱膨
張率3.5×10-6)粉末を溶融後の厚みが200μm
となる様に塗布し、真空加熱炉中で、加熱軟化させ、包
埋した以外は同様に行った。前記複合品につき、座屈荷
重及び剛性の試験を行った。結果を表1に示す。また、
前記包埋品の配線端部にリード線を取付け、半導体集積
回路の電気特性測定用プローブピンとして評価した。1
ピンあたり40gの荷重で、Au端子に接触させ電気抵
抗を測定したところ、ピンの折れもなく、接触抵抗も1
オーム以下であり、実用的に使用可能なレベルであっ
た。 比較例1 実施例1に於いて、熱硬化性エポキシ樹脂で包埋をしな
い以外は同様に行った。表1に座屈荷重及び剛性の試験
結果を示す。また、前記包埋品の配線端部にリード線を
取付け、半導体集積回路の電気特性測定用プローブピン
として使用した。すぐにプローブピンがおれて、実用的
に使用不可能であった。
Example 2 In the embedding material of Example 1, a low melting point glass (softening temperature 400 ° C., coefficient of thermal expansion 3.5 × 10 −6 ) powder was melted, instead of using a curable epoxy resin. Is 200 μm
It was applied in the same manner as described above except that it was softened by heating in a vacuum heating furnace and embedded. Buckling load and rigidity tests were conducted on the composite article. The results are shown in Table 1. Also,
A lead wire was attached to the wiring end of the embedded product, and the probe was evaluated as a probe pin for measuring electrical characteristics of a semiconductor integrated circuit. 1
When the electrical resistance was measured by contacting the Au terminal with a load of 40 g per pin, the pin did not break and the contact resistance was 1
It was less than or equal to ohms, and was at a practically usable level. Comparative Example 1 Example 1 was repeated except that the thermosetting epoxy resin was not used for embedding. Table 1 shows the test results of buckling load and rigidity. A lead wire was attached to the wiring end of the embedded product and used as a probe pin for measuring electrical characteristics of a semiconductor integrated circuit. Immediately the probe pin fell off and it was not practically usable.

【0017】尚、測定は下記の方法で行った。 (座屈荷重)許容荷重1Kg、精度±1gの圧縮強度試
験機を用い、載荷速度1μm/secで行った。 (剛性)50g載荷時に載荷方向と直角に荷重を移動さ
せた時、プローブピンに反発作用を生じた時の荷重の移
動距離で表し、10μm以下を良と判定する。
The measurement was carried out by the following method. (Buckling load) It was carried out at a loading speed of 1 μm / sec using a compressive strength tester with an allowable load of 1 kg and an accuracy of ± 1 g. (Rigidity) When the load is moved at a right angle to the loading direction when 50 g is loaded, it is expressed by the moving distance of the load when the probe pin repels, and 10 μm or less is judged to be good.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
半導体集積回路の電気特性測定用プローブピン等に使用
できる、座屈荷重が大きく、剛性に優れた針状単結晶体
複合品及びその組立物を得ることができる。
As described above, according to the present invention,
It is possible to obtain a needle-shaped single crystal composite product having a large buckling load and excellent rigidity and an assembly thereof which can be used as a probe pin or the like for measuring electrical characteristics of a semiconductor integrated circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】針状単結晶体の形成方法を説明する図である。FIG. 1 is a diagram illustrating a method of forming a needle-shaped single crystal body.

【図2】本発明の針状単結晶体複合品の一般的な製造工
程を示す図である。
FIG. 2 is a diagram showing a general manufacturing process of the needle-shaped single crystal composite product of the present invention.

【図3】本発明の針状単結晶体複合品を用いた電気特性
測定用組立物である。
FIG. 3 is an assembly for measuring electrical characteristics using the needle-shaped single crystal composite product of the present invention.

【符号の説明】[Explanation of symbols]

1 単結晶層を備えた絶縁基板 2 金粒子 3 針状単結晶体 4 導電性膜 5 先端合金部(Au−Si合金) 6 先端部の導電性膜 7 包埋用樹脂又は低融点ガラス 8 絶縁基板 9 配線 10 支持基板 11 リード線 12 半導体集積回路基板 13 プローブピン DESCRIPTION OF SYMBOLS 1 Insulating substrate provided with a single crystal layer 2 Gold particles 3 Needle-shaped single crystal 4 Conductive film 5 Tip alloy part (Au-Si alloy) 6 Conductive film at tip 7 Embedding resin or low melting point glass 8 Insulation Substrate 9 Wiring 10 Supporting substrate 11 Lead wire 12 Semiconductor integrated circuit substrate 13 Probe pin

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/66 B 7630−4M Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/66 B 7630-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、VLS成長法にて針状単結晶
体を形成し、該針状単結晶体の少なくとも側面を0.1
〜10μm厚みの導電性膜で被覆し導電性針状単結晶体
を得た後、該導電性針状単結晶体を樹脂又は低融点ガラ
スからなる包埋材料で包埋してなる針状単結晶体複合品
で、該導電性針状単結晶体が、その包埋材料の表面から
10〜500μm突出するように包埋されたことを特徴
とする針状単結晶体複合品。
1. A needle-shaped single crystal body is formed on a substrate by a VLS growth method, and at least a side surface of the needle-shaped single crystal body is 0.1.
A needle-shaped single crystal obtained by coating with a conductive film having a thickness of -10 μm to obtain a conductive acicular single crystal, and then embedding the conductive acicular single crystal with an embedding material made of resin or low melting point glass. A crystalline composite article, wherein the conductive needle-shaped single crystal body is embedded so as to protrude from the surface of the embedding material by 10 to 500 μm.
【請求項2】 請求項1記載の針状単結晶体複合品を用
いてなる電気特性測定用組立物。
2. An assembly for measuring electrical properties, which is obtained by using the needle-shaped single crystal composite article according to claim 1.
JP18504893A 1993-07-27 1993-07-27 Needle single crystal composite Pending JPH0733596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18504893A JPH0733596A (en) 1993-07-27 1993-07-27 Needle single crystal composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18504893A JPH0733596A (en) 1993-07-27 1993-07-27 Needle single crystal composite

Publications (1)

Publication Number Publication Date
JPH0733596A true JPH0733596A (en) 1995-02-03

Family

ID=16163889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18504893A Pending JPH0733596A (en) 1993-07-27 1993-07-27 Needle single crystal composite

Country Status (1)

Country Link
JP (1) JPH0733596A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216325A (en) * 2006-02-15 2007-08-30 Toyohashi Univ Of Technology Hollow tube manufacturing method, hollow tube and apparatus using hollow tube
KR101408550B1 (en) * 2011-10-21 2014-06-17 도쿄엘렉트론가부시키가이샤 Contact terminal for a probe card, and the probe card

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216325A (en) * 2006-02-15 2007-08-30 Toyohashi Univ Of Technology Hollow tube manufacturing method, hollow tube and apparatus using hollow tube
KR101408550B1 (en) * 2011-10-21 2014-06-17 도쿄엘렉트론가부시키가이샤 Contact terminal for a probe card, and the probe card

Similar Documents

Publication Publication Date Title
US7671612B2 (en) Integrated compound nano probe card and method of making same
US7032307B2 (en) Method for fabricating a probe pin for testing electrical characteristics of an apparatus
US7547850B2 (en) Semiconductor device assemblies with compliant spring contact structures
JP3222179B2 (en) Circuit measuring terminal and method of manufacturing the same
JP3550157B2 (en) Manufacturing method of circuit measurement terminals
US5903161A (en) Electrically conductive rod-shaped single crystal product and assembly for measuring electrical properties employing such product, as well as processes for their production
US20080136018A1 (en) Function Element and Manufacturing Method Thereof, and Function Element Mounting Structure
US20060022690A1 (en) Method and apparatus for producing co-planar bonding pads on a substrate
JPH0733596A (en) Needle single crystal composite
JP3456541B2 (en) Conductive needle-shaped single crystals and embedded objects
JPH07106334A (en) Method for attaching optical semiconductor device to optical substrate
JPH08105915A (en) Conductive needle structure, and assembly using it
US20080054456A1 (en) Semiconductor package including silver bump and method for fabricating the same
JPH05215774A (en) Circuit measuring terminal and manufacturing method thereof
JP3156874B2 (en) Circuit measuring terminal and method of manufacturing the same
JP3456542B2 (en) Manufacturing method of processed product of needle-like single crystal
KR100233698B1 (en) Electrically conductive rod-shaped monocrystals, assemblies for measuring electrical properties using the monocrystals, and methods of manufacturing the same
JPH02221881A (en) Integrated circuit device test probe
JPH08304456A (en) Conductive rod-like single crystalline worked body and assembly for measuring electric characteristic using the body
JP4100772B2 (en) Circuit board and manufacturing method thereof
JPH1027832A (en) Circuit board and manufacture thereof
JP3599485B2 (en) Contactor and manufacturing method thereof
JPH11271358A (en) Circuit board and its manufacture, and probe card
JPH08122363A (en) Probe pin structural body and its manufacture
JP3589436B2 (en) Circuit board, method for manufacturing the same, and probe card using the same