JPH0742737A - Superconductive magnetic bearing device - Google Patents
Superconductive magnetic bearing deviceInfo
- Publication number
- JPH0742737A JPH0742737A JP5190322A JP19032293A JPH0742737A JP H0742737 A JPH0742737 A JP H0742737A JP 5190322 A JP5190322 A JP 5190322A JP 19032293 A JP19032293 A JP 19032293A JP H0742737 A JPH0742737 A JP H0742737A
- Authority
- JP
- Japan
- Prior art keywords
- superconductor
- permanent magnet
- magnetic bearing
- bearing device
- attached
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002887 superconductor Substances 0.000 claims description 60
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 7
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/0436—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
- F16C32/0438—Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、超電導磁気軸受装置
に関し、特に、非接触で超電導体と永久磁石とを対向さ
せることにより回転主軸を支持するような超電導磁気軸
受装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic bearing device, and more particularly to a superconducting magnetic bearing device that supports a rotating main shaft by making a superconductor and a permanent magnet face each other in a non-contact manner.
【0002】[0002]
【従来の技術】超電導体は、臨界温度以下において、マ
イスナー効果およびピン止め効果を有する。マイスナー
効果とは、超電導体の示す完全反磁性のことを称し、ピ
ン止め効果とは、超電導体内の磁界を固定をする力を言
う。この2つの効果を有する超電導体と永久磁石を対向
させることにより、回転主軸を非接触保持する超電導磁
気軸受装置が開発されている。2. Description of the Related Art Superconductors have a Meissner effect and a pinning effect below a critical temperature. The Meissner effect refers to perfect diamagnetism of a superconductor, and the pinning effect refers to a force that fixes a magnetic field in the superconductor. A superconducting magnetic bearing device has been developed which holds a rotating main shaft in a non-contact manner by making a superconductor having these two effects and a permanent magnet face each other.
【0003】以下、超電導体として酸化物系高温超電導
体を用いた従来の超電導磁気軸受装置について説明す
る。A conventional superconducting magnetic bearing device using an oxide high temperature superconductor as the superconductor will be described below.
【0004】図4は、第1の従来の超電導磁気軸受装置
の軸方向断面図であり、図5は、第2の従来の超電導磁
気軸受装置の軸方向断面図である。FIG. 4 is an axial sectional view of a first conventional superconducting magnetic bearing device, and FIG. 5 is an axial sectional view of a second conventional superconducting magnetic bearing device.
【0005】図4を参照して、装置を囲っているハウジ
ング11内部に格納された回転主軸5の軸方向両端部に
は、円板状の永久磁石3a,3bが取付けられる。この
取付けられた永久磁石3a,3bに対向するようにハウ
ジング11の上部下部内面には、円盤状の超電導体1
a,1bが取付けられる。また、回転主軸5の外径側面
には、モータロータ7が取付けられ、モータロータ7と
対向するようにハウジング11内面に、モータステータ
9が取付けられる。Referring to FIG. 4, disk-shaped permanent magnets 3a and 3b are attached to both axial ends of a rotary spindle 5 housed inside a housing 11 surrounding the apparatus. The disc-shaped superconductor 1 is formed on the inner surface of the upper and lower parts of the housing 11 so as to face the attached permanent magnets 3a and 3b.
a and 1b are attached. A motor rotor 7 is attached to the outer diameter side surface of the rotating main shaft 5, and a motor stator 9 is attached to the inner surface of the housing 11 so as to face the motor rotor 7.
【0006】次に装置の動作について説明する。まず、
超電導体1a,1bを冷媒等を用いて臨界温度以下に冷
却することで、超電導体1a,1bのマイスナー効果お
よびピン止め効果により、回転主軸5は非接触保持され
る。さらに、ハウジング11に取付けられたモータステ
ータ9を駆動することにより、回転主軸5に取付けられ
たモータロータ7が回転駆動するため、回転主軸5を回
転させることができる。Next, the operation of the apparatus will be described. First,
By cooling the superconductors 1a and 1b to a critical temperature or lower using a refrigerant or the like, the rotating spindle 5 is held in a non-contact state by the Meissner effect and the pinning effect of the superconductors 1a and 1b. Further, by driving the motor stator 9 mounted on the housing 11, the motor rotor 7 mounted on the rotary main shaft 5 is rotationally driven, so that the rotary main shaft 5 can be rotated.
【0007】このように、円盤状の超電導体1a,1b
と円板状の永久磁石3a,3bとの平板対向による超電
導磁気軸受装置は、構造上シンプルである。しかし、回
転主軸5を回転させたときには、超電導磁気軸受のラジ
アル剛性が小さいため、回転主軸5の持つアンバランス
またはモータ等の外部から加わる外乱により、回転主軸
5は大きく振れ回る。そこで、超電導磁気軸受のラジア
ル剛性を高めるために、図5に示すようにラジアル方向
にも超電導体と永久磁石によるラジアル軸受を持つ超電
導磁気軸受装置が提案されている。Thus, the disk-shaped superconductors 1a and 1b
The superconducting magnetic bearing device in which the and the disk-shaped permanent magnets 3a and 3b face each other on a flat plate is structurally simple. However, when the rotating main shaft 5 is rotated, since the radial rigidity of the superconducting magnetic bearing is small, the rotating main shaft 5 swings largely due to unbalance of the rotating main shaft 5 or external disturbance such as a motor. Therefore, in order to increase the radial rigidity of the superconducting magnetic bearing, there has been proposed a superconducting magnetic bearing device having a radial bearing composed of a superconductor and a permanent magnet in the radial direction as shown in FIG.
【0008】図5を参照して、ハウジング11の上部お
よび下部内面には、リング状の超電導体21a,21b
が取付けられる。この取付けられた超電導体21a,2
1bに対して軸方向で対向するように回転主軸5にリン
グ状の永久磁石23a,23bが取付けられる。また、
超電導体21a,21bに対し、径方向で対向するよう
に回転主軸5に円筒状の永久磁石24a,24bが取付
けられる。さらに、図4に示した第1の従来の装置と同
様に、回転主軸5の中心部外径側面にはモータロータ7
が取付けられ、モータロータ7と対向するようにハウジ
ング11内面にはモータステータ9が取付けられる。し
たがって、モータステータ9を駆動させることにより、
モータロータ7を回転駆動させることができ、モータロ
ータ7が取付けられた回転主軸5を回転させることがで
きる。Referring to FIG. 5, ring-shaped superconductors 21a and 21b are provided on the inner surfaces of the upper and lower portions of the housing 11.
Is installed. This attached superconductor 21a, 2
Ring-shaped permanent magnets 23a and 23b are attached to the rotary main shaft 5 so as to face the shaft 1b in the axial direction. Also,
Cylindrical permanent magnets 24a and 24b are attached to the rotating main shaft 5 so as to face the superconductors 21a and 21b in the radial direction. Further, similarly to the first conventional device shown in FIG. 4, the motor rotor 7 is attached to the outer diameter side surface of the central portion of the rotary spindle 5.
The motor stator 9 is attached to the inner surface of the housing 11 so as to face the motor rotor 7. Therefore, by driving the motor stator 9,
The motor rotor 7 can be driven to rotate, and the rotating main shaft 5 to which the motor rotor 7 is attached can be rotated.
【0009】[0009]
【発明が解決しようとする課題】上記のような図5に示
した第2の従来の超電導磁気軸受装置では、超電導体2
1a,21bの厚さ方向と回転主軸の軸方向が一致して
いること、すなわち、超電導体21a,21bが回転主
軸の軸方向にc軸配向されていることにより、c軸と直
交するab面内で電流が流れやすい。そのため、回転主
軸の軸方向に超電導体21a,21bおよび第1永久磁
石23a,23bとで形成されるアキシアル軸受のアキ
シアル剛性に比べて、回転主軸の軸方向に超電導体21
a,21bおよび第2永久磁石24a,24bとで形成
されるラジアル軸受のラジアル剛性は小さい。In the second conventional superconducting magnetic bearing device shown in FIG. 5 as described above, the superconductor 2
The thickness direction of 1a and 21b and the axial direction of the main axis of rotation are the same, that is, the superconductors 21a and 21b are c-axis oriented in the axial direction of the main axis of rotation. Electric current easily flows inside. Therefore, compared with the axial rigidity of the axial bearing formed by the superconductors 21a and 21b and the first permanent magnets 23a and 23b in the axial direction of the rotating main shaft, the superconductor 21 in the axial direction of the rotating main shaft can be compared.
The radial rigidity of the radial bearing formed by a, 21b and the second permanent magnets 24a, 24b is small.
【0010】ゆえに、この発明は、上記のようなラジア
ル軸受のラジアル剛性を高めることができるような超電
導磁気軸受装置を提供することである。Therefore, the present invention is to provide a superconducting magnetic bearing device capable of increasing the radial rigidity of the above radial bearing.
【0011】[0011]
【課題を解決するための手段】請求項1に係る発明は、
固定部材と、固定部材に対して回転可能に設けられた回
転部材と、回転部材に取付けられた第1の永久磁石また
は第1の超電導体と、第1の永久磁石または第1の超電
導体に予め定める間隔で対向するように固定部材に取付
けられた第1の超電導体または第1の永久磁石と、回転
部材を駆動する駆動手段とを備えた超電導磁気軸受装置
において、回転部材の回転径方向と配向性の方向が一致
する第2の超電導体を、回転部材に取りつけた第2の永
久磁石に対向するように固定部材に取付けることで構成
される。The invention according to claim 1 is
A fixed member, a rotating member rotatably provided with respect to the fixed member, a first permanent magnet or a first superconductor attached to the rotating member, and a first permanent magnet or a first superconductor. In a superconducting magnetic bearing device including a first superconductor or a first permanent magnet attached to a fixed member so as to face each other at a predetermined interval, and a drive means for driving a rotating member, in a radial direction of rotation of the rotating member. The second superconductor having the same orientation direction as is attached to the fixed member so as to face the second permanent magnet attached to the rotating member.
【0012】[0012]
【作用】請求項1の発明に係る超電導磁気軸受装置は、
超電導体の持つ配向性の方向とラジアル方向を一致させ
ることにより、超電導体と永久磁石により形成されるラ
ジアル軸受のラジアル剛性を高めることができ、回転部
材のラジアル方向の振れを抑えることができる。The superconducting magnetic bearing device according to the invention of claim 1
By matching the orientation direction of the superconductor and the radial direction, the radial rigidity of the radial bearing formed by the superconductor and the permanent magnet can be increased, and the radial runout of the rotating member can be suppressed.
【0013】[0013]
【実施例】図1は、この発明の一実施例の超電導磁気軸
受装置の軸方向断面図であり、図2は、図1のII−I
Iラインに沿う拡大断面図である。1 is an axial sectional view of a superconducting magnetic bearing device according to an embodiment of the present invention, and FIG. 2 is a line II-I in FIG.
It is an expanded sectional view which follows the I line.
【0014】図1を参照して、この実施例の超電導磁気
軸受装置は、回転主軸5の軸端部には、それぞれ円筒状
の第2永久磁石34a,34bが取付けられる。さら
に、これらの第2永久磁石34a,34bに対向するよ
うにハウジング11の内面には、図2に示すように、ブ
ロック形状の第2超電導体32a,32bがc軸配向性
の方向と回転主軸5の径方向を一致させ、4個ずつ取付
けられる。また、それ以外の装置構成は、図4の従来例
と同じである。Referring to FIG. 1, in the superconducting magnetic bearing device of this embodiment, cylindrical second permanent magnets 34a and 34b are attached to the shaft ends of the rotary main shaft 5, respectively. Further, as shown in FIG. 2, on the inner surface of the housing 11 so as to face the second permanent magnets 34a, 34b, the block-shaped second superconductors 32a, 32b are arranged in the direction of the c-axis orientation and the rotation main shaft. 5 are aligned in the radial direction, and four are attached each. The other device configurations are the same as those of the conventional example of FIG.
【0015】これにより、第2超電導体32a,32b
と第2永久磁石34a,34bとで構成されるラジアル
軸受のラジアル剛性は、超電導体21a,21bと第1
永久磁石23a,23bとで構成されるアキシアル軸受
のアキシアル剛性と同様に大きくなる。As a result, the second superconductors 32a, 32b
And the second permanent magnets 34a, 34b, the radial rigidity of the radial bearing is the same as that of the superconductors 21a, 21b.
The axial rigidity is increased similarly to the axial bearing composed of the permanent magnets 23a and 23b.
【0016】ゆえに、図1から図2に示したこの発明の
実施例の超電導磁気軸受装置の駆動時において、回転主
軸の持つアンバランスまたはモータ等の外部からの外乱
による回転主軸の振れまわりを抑えることができる。Therefore, when the superconducting magnetic bearing device according to the embodiment of the present invention shown in FIGS. 1 and 2 is driven, whirling of the rotary spindle due to unbalance of the rotary spindle or external disturbance such as a motor is suppressed. be able to.
【0017】図3は、この発明の他の実施例の超電導磁
気軸受装置の軸方向断面図である。図3を参照して、下
端が固定された固定部材41が設けられる。固定部材4
1を囲むように回転主軸42が設けられる。回転主軸4
2の内面上部に円盤状の第3永久磁石45が設けられ、
内面下部にリング状の第4永久磁石46が設けられ、さ
らに側面上部に円筒状の第5永久磁石47が設けられ、
側面下部に円筒状の第6永久磁石48が設けられる。FIG. 3 is an axial sectional view of a superconducting magnetic bearing device according to another embodiment of the present invention. With reference to FIG. 3, a fixing member 41 having a fixed lower end is provided. Fixing member 4
A rotary spindle 42 is provided so as to surround 1. Spindle 4
A disk-shaped third permanent magnet 45 is provided on the upper part of the inner surface of 2.
A ring-shaped fourth permanent magnet 46 is provided on the lower part of the inner surface, and a cylindrical fifth permanent magnet 47 is provided on the upper part of the side surface.
A cylindrical sixth permanent magnet 48 is provided on the lower portion of the side surface.
【0018】固定部材41の上端部には、第3永久磁石
45に対向するように円板状の第3超電導体49が設け
られ、第5永久磁石47に対向するようにブロック状の
第5超電導体51が設けられる。また固定部材41に
は、第4永久磁石46に対向するようにリング状の第4
超電導体50が設けられ、第6永久磁石48に対向する
ようにブロック状の第6超電導体52が設けられる。こ
こで、超電導体51,52はそのc軸配向軸が回転主軸
42の径方向と一致するブロック状超電導体である。A disk-shaped third superconductor 49 is provided at the upper end of the fixing member 41 so as to face the third permanent magnet 45, and a block-shaped fifth superconductor 49 faces the fifth permanent magnet 47. A superconductor 51 is provided. Further, the ring-shaped fourth member is provided on the fixing member 41 so as to face the fourth permanent magnet 46.
A superconductor 50 is provided, and a block-shaped sixth superconductor 52 is provided so as to face the sixth permanent magnet 48. Here, the superconductors 51 and 52 are block-shaped superconductors whose c-axis orientation axes coincide with the radial direction of the rotation main shaft 42.
【0019】さらに、固定部材41にはモータステータ
53が取付けられ、そのモータステータ53に対向する
ように回転主軸42にはモータロータ54が取付けられ
る。Further, a motor stator 53 is attached to the fixed member 41, and a motor rotor 54 is attached to the rotating main shaft 42 so as to face the motor stator 53.
【0020】これにより、この実施例においても、第5
永久磁石47と第5超電導体51、第6永久磁石48と
第6超電導体52とで構成されるラジアル軸受のラジア
ル剛性は、第3永久磁石45と第3超電導体49、第4
永久磁石46と第4超電導体50とで構成されるアキシ
アル軸受のアキシアル剛性と同様に大きくなる。As a result, also in this embodiment, the fifth
The radial rigidity of the radial bearing composed of the permanent magnet 47 and the fifth superconductor 51 and the sixth permanent magnet 48 and the sixth superconductor 52 is the same as the third permanent magnet 45, the third superconductor 49, and the fourth superconductor.
It becomes as large as the axial rigidity of the axial bearing composed of the permanent magnet 46 and the fourth superconductor 50.
【0021】なお、この発明の図1および図2に示した
実施例において、ラジアル軸受を構成する超電導体をハ
ウジング上部下部に4個ずつ設けたが、超電導体の個数
は限定されるものではない。In the embodiment shown in FIGS. 1 and 2 of the present invention, four superconductors forming the radial bearing are provided in the upper and lower parts of the housing, but the number of superconductors is not limited. .
【0022】さらに、固定側に取付けられた超電導体に
イットリウム系高温超電導体等を用いることにより超電
導磁気軸受を構成してもよい。Further, the superconducting magnetic bearing may be constructed by using a yttrium-based high temperature superconductor or the like for the superconductor attached to the fixed side.
【0023】[0023]
【発明の効果】以上のように請求項1の発明によれば、
超電導体の配向性の方向と回転部材のラジアル方向を一
致させたラジアル軸受を構成することでラジアル剛性が
大きくなることから回転部材の振れ回りを抑えることが
でき、さらに、回転部材の振れ回りによる装置の損傷等
を防止することができる。As described above, according to the invention of claim 1,
By configuring a radial bearing in which the direction of orientation of the superconductor and the radial direction of the rotating member are matched, the radial rigidity is increased, and whirling of the rotating member can be suppressed. It is possible to prevent damage to the device.
【図1】この発明の一実施例の超電導磁気軸受装置の軸
方向断面図である。FIG. 1 is an axial sectional view of a superconducting magnetic bearing device according to an embodiment of the present invention.
【図2】図1のII−IIラインに沿う拡大断面図であ
る。FIG. 2 is an enlarged sectional view taken along line II-II of FIG.
【図3】この発明の他の実施例の超電導磁気軸受装置の
軸方向断面図である。FIG. 3 is an axial sectional view of a superconducting magnetic bearing device according to another embodiment of the present invention.
【図4】第1の従来の超電導磁気軸受装置の軸方向断面
図である。FIG. 4 is an axial sectional view of a first conventional superconducting magnetic bearing device.
【図5】第2の従来の超電導磁気軸受装置の軸方向断面
図である。FIG. 5 is an axial sectional view of a second conventional superconducting magnetic bearing device.
1a,1b,21a,21b 超電導体 3a,3b 永久磁石 5,42 回転主軸 11 ハウジング 23a,23b 第1永久磁石 24a,24b,34a,34b 第2永久磁石 32a,32b 第2超電導体 41 固定部材 45 第3永久磁石 46 第4永久磁石 47 第5永久磁石 48 第6永久磁石 49 第3超電導体 50 第4超電導体 51 第5超電導体 52 第6超電導体 1a, 1b, 21a, 21b Superconductor 3a, 3b Permanent magnet 5, 42 Rotating main shaft 11 Housing 23a, 23b First permanent magnet 24a, 24b, 34a, 34b Second permanent magnet 32a, 32b Second superconductor 41 Fixing member 45 Third permanent magnet 46 Fourth permanent magnet 47 Fifth permanent magnet 48 Sixth permanent magnet 49 Third superconductor 50 Fourth superconductor 51 Fifth superconductor 52 Sixth superconductor
Claims (2)
可能に設けられた回転部材と、前記回転部材に取付けら
れた第1の永久磁石または第1の超電導体と、前記第1
の永久磁石または第1の超電導体に予め定める間隔で対
向するように前記固定部材に取付けられた第1の超電導
体または第1の永久磁石と、前記回転部材を駆動する駆
動手段とを備えた超電導磁気軸受装置において、 前記回転部材の回転径方向と配向性の方向が一致する第
2の超電導体を、前記回転部材に取りつけた第2の永久
磁石に対向するように前記固定部材に取付けることを特
徴とする、超電導磁気軸受装置。1. A fixed member, a rotating member rotatably provided with respect to the fixed member, a first permanent magnet or a first superconductor attached to the rotating member, and the first member.
Of the permanent magnet or the first superconductor, the first superconductor or the first permanent magnet attached to the fixed member so as to face the permanent magnet or the first superconductor at a predetermined interval, and a driving means for driving the rotating member. In the superconducting magnetic bearing device, a second superconductor whose orientation of orientation coincides with a rotational radial direction of the rotating member is attached to the fixed member so as to face a second permanent magnet attached to the rotating member. A superconducting magnetic bearing device.
状の超電導体を含み、かつ前記第1および第2の超電導
体はイットリウム系高温超電導体を含む、請求項1記載
の超電導磁気軸受装置。2. The superconducting magnetic bearing device according to claim 1, wherein the second superconductor includes at least two plate-shaped superconductors, and the first and second superconductors include yttrium-based high-temperature superconductors. .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5190322A JPH0742737A (en) | 1993-07-30 | 1993-07-30 | Superconductive magnetic bearing device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP5190322A JPH0742737A (en) | 1993-07-30 | 1993-07-30 | Superconductive magnetic bearing device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0742737A true JPH0742737A (en) | 1995-02-10 |
Family
ID=16256254
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP5190322A Withdrawn JPH0742737A (en) | 1993-07-30 | 1993-07-30 | Superconductive magnetic bearing device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0742737A (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19636548A1 (en) * | 1996-03-14 | 1997-10-16 | Gutt Hans Joachim | Electrical machine using high-temperature superconductor |
| JP2006234124A (en) * | 2005-02-28 | 2006-09-07 | Kyushu Institute Of Technology | Non-contact bearing device using superconducting bearing |
| JP2009047314A (en) * | 2008-11-04 | 2009-03-05 | Nippon Steel Corp | Superconducting bearing |
| CN101788012A (en) * | 2010-03-17 | 2010-07-28 | 上海大学 | Rotor system of permanent-magnetic high-temperature super-conduction magnetic bearing |
| WO2015117628A1 (en) * | 2014-02-07 | 2015-08-13 | Festo Ag & Co. Kg | Shaft assembly |
| US9205870B2 (en) | 2012-06-04 | 2015-12-08 | Nippon Steel & Sumitomo Metal Corporation | Vehicle frame member structure with excellent impact resistance performance |
| CN105782242A (en) * | 2016-05-20 | 2016-07-20 | 国网冀北电力有限公司承德供电公司 | Flywheel energy storage system and five-degree-of-freedom magnetic suspension supporting structure |
| CN108869543A (en) * | 2018-06-08 | 2018-11-23 | 中国科学院电工研究所 | A kind of hybrid superconducting magnetic bearing system of flywheel energy storage |
| WO2019019244A1 (en) * | 2017-07-27 | 2019-01-31 | 江苏大学 | Vehicle-mounted flywheel battery using five-degree-of-freedom hybrid magnetic bearing |
| CN111188836A (en) * | 2020-02-17 | 2020-05-22 | 南京航空航天大学 | Back-winding type permanent magnet biased axial-radial magnetic suspension bearing |
-
1993
- 1993-07-30 JP JP5190322A patent/JPH0742737A/en not_active Withdrawn
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19636548A1 (en) * | 1996-03-14 | 1997-10-16 | Gutt Hans Joachim | Electrical machine using high-temperature superconductor |
| JP2006234124A (en) * | 2005-02-28 | 2006-09-07 | Kyushu Institute Of Technology | Non-contact bearing device using superconducting bearing |
| JP2009047314A (en) * | 2008-11-04 | 2009-03-05 | Nippon Steel Corp | Superconducting bearing |
| CN101788012A (en) * | 2010-03-17 | 2010-07-28 | 上海大学 | Rotor system of permanent-magnetic high-temperature super-conduction magnetic bearing |
| US9205870B2 (en) | 2012-06-04 | 2015-12-08 | Nippon Steel & Sumitomo Metal Corporation | Vehicle frame member structure with excellent impact resistance performance |
| WO2015117628A1 (en) * | 2014-02-07 | 2015-08-13 | Festo Ag & Co. Kg | Shaft assembly |
| CN106133353A (en) * | 2014-02-07 | 2016-11-16 | 费斯托股份有限两合公司 | Shaft device |
| CN105782242A (en) * | 2016-05-20 | 2016-07-20 | 国网冀北电力有限公司承德供电公司 | Flywheel energy storage system and five-degree-of-freedom magnetic suspension supporting structure |
| WO2019019244A1 (en) * | 2017-07-27 | 2019-01-31 | 江苏大学 | Vehicle-mounted flywheel battery using five-degree-of-freedom hybrid magnetic bearing |
| CN108869543A (en) * | 2018-06-08 | 2018-11-23 | 中国科学院电工研究所 | A kind of hybrid superconducting magnetic bearing system of flywheel energy storage |
| CN111188836A (en) * | 2020-02-17 | 2020-05-22 | 南京航空航天大学 | Back-winding type permanent magnet biased axial-radial magnetic suspension bearing |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3961032B2 (en) | Magnetic bearing device for rotor shaft | |
| US7315103B2 (en) | Superconducting rotating machines with stationary field coils | |
| JPH0742737A (en) | Superconductive magnetic bearing device | |
| US6703737B2 (en) | Super conductive bearing | |
| JP3554054B2 (en) | Superconducting bearing device | |
| WO2006093033A1 (en) | Non-contact bearing device using superconducting bearing | |
| JPH07312885A (en) | Superconducting actuator | |
| JP3236925B2 (en) | Superconducting bearing device | |
| JPH0791447A (en) | Superconductive magnetic bearing device | |
| JP3577559B2 (en) | Flywheel equipment | |
| JPH0735139A (en) | Superconductive magnetic bearing unit | |
| JPH0681845A (en) | Supercondctive bearing device | |
| JP3663472B2 (en) | Permanent magnet bearing device and permanent magnet rotating device | |
| JP2002173838A (en) | Spindle device in covering machine | |
| JP3177847B2 (en) | Superconducting bearing device | |
| JPH0798016A (en) | Magnetic bearing device | |
| JPH05172145A (en) | Super-conductive magnetic bearing device | |
| JPH01177496A (en) | Air current generating device | |
| JPH04165119A (en) | Superconductive bearing device | |
| JPS63148846A (en) | Bearing mechanism for motor | |
| JPH0742736A (en) | Superconductive magnetic bearing device | |
| JPH0798017A (en) | Magnetic bearing device | |
| JP3233812B2 (en) | Radial bearing device | |
| JPS61210290A (en) | Magnetic bearing device for turbo molecular pump | |
| JP3215882B2 (en) | Bearing device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20001003 |