JPH0743285A - Material for chemical gas sensor and chemical gas sensor - Google Patents
Material for chemical gas sensor and chemical gas sensorInfo
- Publication number
- JPH0743285A JPH0743285A JP20370693A JP20370693A JPH0743285A JP H0743285 A JPH0743285 A JP H0743285A JP 20370693 A JP20370693 A JP 20370693A JP 20370693 A JP20370693 A JP 20370693A JP H0743285 A JPH0743285 A JP H0743285A
- Authority
- JP
- Japan
- Prior art keywords
- gas sensor
- chemical gas
- chemical
- sensor
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
(57)【要約】
【目的】 化学物質の検出を高速かつ高感度で行える化
学ガスセンサ用材料、及びそれを用いた化学ガスセンサ
を提供する。
【構成】 一般式(化1):
【化1】
(Mは2H、金属、ハロゲン化金属、又は金属酸化物、
k、l、m、nは同一又は異なり、0〜5の整数)で表
される化合物を含有する化学ガスセンサ用材料。該材料
が、水晶振動子又は微細電極基板上に薄膜状に形成され
た化学ガスセンサ。(57) [Abstract] [Purpose] To provide a chemical gas sensor material capable of detecting a chemical substance at high speed and with high sensitivity, and a chemical gas sensor using the same. [Structure] General formula (Formula 1): (M is 2H, metal, metal halide, or metal oxide,
k, 1, m, and n are the same or different, and are chemical gas sensor materials containing a compound represented by 0-5. A chemical gas sensor in which the material is formed into a thin film on a crystal oscillator or a fine electrode substrate.
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガスを感知する化学セ
ンサ用材料、及びそれを用いて作製した化学ガスセンサ
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical sensor material for sensing gas, and a chemical gas sensor produced by using the material.
【0002】[0002]
【従来の技術】化学センサの分野では、化学物質の検出
を高速かつ高感度で行えるセンサヘッドの開発が重要な
課題となっている。化学物質を検出するセンサの代表例
として、脂質二分子膜や高分子膜を水晶振動子や平行電
極上に形成したものがある。この場合、化学物質濃度の
測定は、膜物質に吸着する化学物質の重量変化や、吸着
による膜物質の抵抗変化を検出することにより行う。し
かし、従来のセンサでは膜物質の吸着能力が小さいこと
が多く、十分な信号強度を得ようとすると膜厚を厚くす
る必要があった。センサの応答速度は、薄膜内への化学
物質の拡散速度と密接な関係にあり、膜厚が厚くなるに
つれて応答速度が遅くなる。例えば、前出の脂質二分子
膜を使用したセンサでは、応答時間が約5分程度の大き
な値となっている。すなわち、センサの感度と応答速度
は相反する特性であり、両者を満足できるセンサヘッド
の開発が望まれている。2. Description of the Related Art In the field of chemical sensors, the development of sensor heads capable of detecting chemical substances at high speed and with high sensitivity has become an important issue. As a typical example of a sensor for detecting a chemical substance, there is a sensor in which a lipid bilayer membrane or a polymer membrane is formed on a crystal oscillator or a parallel electrode. In this case, the concentration of the chemical substance is measured by detecting the weight change of the chemical substance adsorbed on the membrane substance and the resistance change of the membrane substance due to the adsorption. However, the conventional sensor often has a small ability to adsorb a film substance, and thus it is necessary to increase the film thickness in order to obtain sufficient signal intensity. The response speed of the sensor is closely related to the diffusion speed of the chemical substance in the thin film, and the response speed becomes slower as the film thickness increases. For example, the sensor using the lipid bilayer membrane described above has a large response time of about 5 minutes. That is, the sensitivity and the response speed of the sensor are contradictory characteristics, and it is desired to develop a sensor head that can satisfy both of them.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、化学
物質の検出を高速かつ高感度で行える化学ガスセンサ用
材料、及びそれを用いた化学ガスセンサを提供すること
にある。SUMMARY OF THE INVENTION An object of the present invention is to provide a chemical gas sensor material capable of detecting a chemical substance at high speed and with high sensitivity, and a chemical gas sensor using the same.
【0004】[0004]
【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は化学ガスセンサ用材料に関する発明
であって、下記一般式(化1):The present invention will be summarized. The first invention of the present invention relates to a material for a chemical gas sensor, which is represented by the following general formula (Formula 1):
【0005】[0005]
【化1】 [Chemical 1]
【0006】(式中Mは2H、金属、ハロゲン化金属、
又は金属酸化物を示し、k、l、m、nは同一又は異な
り、0〜5の整数を示す)で表されるクラウンエーテル
縮合フタロシアニン系化合物を含有することを特徴とす
る。また本発明の第2の発明は化学ガスセンサに関する
発明であって、上記本発明の第1の発明の化学ガスセン
サ用材料が、水晶振動子上に薄膜状に形成されてなるこ
とを特徴とする。更に、本発明の第3の発明は、他の化
学ガスセンサに関する発明であって、前記本発明の第1
の発明の化学ガスセンサ用材料が、微細電極基板上に薄
膜状に形成されてなることを特徴とする。(Where M is 2H, metal, metal halide,
Or a metal oxide, and k, l, m, and n are the same or different and each represents an integer of 0 to 5). A second invention of the present invention is an invention relating to a chemical gas sensor, characterized in that the chemical gas sensor material of the first invention of the present invention is formed in a thin film shape on a quartz oscillator. Furthermore, a third invention of the present invention relates to another chemical gas sensor, which is the first invention of the present invention.
The chemical gas sensor material according to the invention is formed on a fine electrode substrate in a thin film form.
【0007】本発明者らは、気体状の化学物質を迅速に
吸着し、かつ、飽和吸着時の吸着量が大きな材料につい
て種々探索を行った。その結果、クラウンエーテル縮合
フタロシアニン系化合物をセンサ用材料として使用する
ことにより、気体状の化学物質の検出を高速かつ高感度
で行える化学センサ用材料、及びそれを用いた化学ガス
センサを開発できることを見いだし、本発明に到達し
た。The present inventors have conducted various searches for materials that rapidly adsorb gaseous chemical substances and have a large adsorption amount at the time of saturated adsorption. As a result, by using a crown ether condensed phthalocyanine compound as a sensor material, it was found that a chemical sensor material capable of detecting a gaseous chemical substance at high speed and high sensitivity, and a chemical gas sensor using the same can be developed. Has reached the present invention.
【0008】センサ用材料として前記一般式(化1)で
表されるクラウンエーテル縮合フタロシアニンを使用す
ることにより、NO2 やSO2 等の気体状の化学物質の
吸着能力が上昇し、検出感度が向上した。また、検出感
度が向上したことにより、同一感度を得るための膜厚を
薄くすることが可能となったため、センサの応答速度を
速くすることができた。By using the crown ether-condensed phthalocyanine represented by the general formula (Formula 1) as a sensor material, the adsorption ability of gaseous chemical substances such as NO 2 and SO 2 is increased, and the detection sensitivity is increased. Improved. Further, since the detection sensitivity is improved, it is possible to reduce the film thickness for obtaining the same sensitivity, so that the response speed of the sensor can be increased.
【0009】本発明の化学センサの信号検出方法として
は、電気的検出、光学的検出、化学的検出、電気化学的
検出等の方法が適用できるが、簡便さと感度の双方に優
れるという点で抵抗変化を利用した電気的検出が最も有
利である。この場合、本発明の化学ガスセンサ用材料を
薄膜形成させる電極基板としては、1組以上の対向電極
を有する絶縁基板が使用できる。また、電気的に検出す
る化学センサでは、電極間隔を小さくすることにより信
号強度を大きくできるため、電極の微細化により薄膜の
膜厚を小さくできる。その結果、感度、応答速度ともに
更に改善できるという特徴も有する。特に、対向する電
極間距離が10μm以下の場合に感度、応答速度の改善
効果が大きい。As the signal detection method of the chemical sensor of the present invention, methods such as electrical detection, optical detection, chemical detection, and electrochemical detection can be applied, but the resistance is excellent because of its simplicity and sensitivity. Electrical detection using changes is the most advantageous. In this case, as the electrode substrate for forming the thin film of the chemical gas sensor material of the present invention, an insulating substrate having one or more pairs of counter electrodes can be used. Further, in a chemical sensor that electrically detects, since the signal intensity can be increased by reducing the electrode interval, the film thickness of the thin film can be reduced by miniaturizing the electrodes. As a result, the sensitivity and response speed can be further improved. In particular, when the distance between the opposing electrodes is 10 μm or less, the effect of improving the sensitivity and response speed is great.
【0010】なお、くし形微細電極上や水晶振動子上へ
のクラウンエーテル縮合フタロシアニンの薄膜作製は、
LB膜法、塗布法、スピンコート法、蒸着法等で行うこ
とが可能である。塗布法やスピンコート法により成膜を
する場合には、クラウンエーテル縮合フタロシアニンに
高分子材料を混合して使用すると更に成膜が容易になる
場合がある。この場合に使用できる高分子材料として
は、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、ポリ
アミド樹脂、ポリイミド樹脂、ポリビニルアルコール樹
脂等が使用できる。溶媒としては、クロロホルム、テト
ラヒドロフラン等が好適に使用できる。The thin film of crown ether-condensed phthalocyanine on a comb-shaped fine electrode or a crystal oscillator is prepared as follows.
It can be performed by an LB film method, a coating method, a spin coating method, a vapor deposition method, or the like. When a film is formed by a coating method or a spin coating method, the film formation may be further facilitated by mixing a crown ether-condensed phthalocyanine with a polymer material. As a polymer material that can be used in this case, an epoxy resin, a urethane resin, an acrylic resin, a polyamide resin, a polyimide resin, a polyvinyl alcohol resin, or the like can be used. Chloroform, tetrahydrofuran and the like can be preferably used as the solvent.
【0011】本発明のクラウンエーテル縮合フタロシア
ニンに含まれるMとしては、2H、金属、ハロゲン化金
属、及び金属酸化物が好適に使用できる。なかでも、M
=2H、又はCu、Co、Zn、Fe、Ni、Pb、A
lCl、AlF、TiO、VOは検出能力が高い材料で
ある。As M contained in the crown ether condensed phthalocyanine of the present invention, 2H, a metal, a metal halide, and a metal oxide can be preferably used. Among them, M
= 2H, or Cu, Co, Zn, Fe, Ni, Pb, A
lCl, AlF, TiO, and VO are materials with high detection ability.
【0012】[0012]
【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はこれら実施例に限定されない。EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.
【0013】実施例1 原発振周波数が5.000MHzの水晶振動子上に、厚
さ0.2μmのクラウンエーテル縮合フタロシアニン
(以下、TCRPcと略す)薄膜を塗布法で作製した。
使用したTCRPcは、中心金属Mが2H、Cu、VO
の3種(以下、H2 TCRPc、CuTCRPc、VO
TCRPcと略す)で、いずれも式(化1)中のk、
l、m、n=1(すべて大日精化工業製)である。薄膜
作製用の溶媒にはクロロホルムを使用した。作製したセ
ンサヘッドを種々のNO2 濃度条件下に放置した場合の
発振周波数変化を周波数カウンタで観測することによ
り、NO2 センサとしての特性を評価した。NO2 濃度
は、乾燥窒素とNO2 の流量を変化させることにより制
御した。NO2 濃度の時間変化と、観測した周波数変化
をH2 TCRPcを用いた場合について図1に示す。図
1において、縦軸は、NO2 濃度(ppm)と、周波数
変化(102 Hz)を、横軸は時間(分)を示す。作製
したセンサヘッドの周波数変化量はNO2 の濃度にほぼ
比例しており、直線性が優れていることがわかる。ま
た、NO2 の濃度が1ppmの場合にも十分な感度を有
していることがわかる。濃度変化に対する応答時間は約
1分と、高速応答が可能であることがわかった。なお、
センサ材料をCuTCRPc、VOTCRPcに変更し
て同様の実験を行った場合にも、本実施例と同様の結果
が得られた。Example 1 A 0.2 μm thick crown ether condensed phthalocyanine (hereinafter abbreviated as TCRPc) thin film was formed on a quartz oscillator having an original oscillation frequency of 5.000 MHz by a coating method.
The TCRPc used has a central metal M of 2H, Cu, and VO.
3 types (hereinafter, H 2 TCRPc, CuTCRPc, VO
(Abbreviated as TCRPc), k in the formula (Formula 1),
l, m and n = 1 (all manufactured by Dainichi Seika Kogyo Co., Ltd.). Chloroform was used as the solvent for forming the thin film. The characteristics of the NO 2 sensor were evaluated by observing changes in the oscillation frequency with a frequency counter when the manufactured sensor head was left under various NO 2 concentration conditions. The NO 2 concentration was controlled by changing the flow rates of dry nitrogen and NO 2 . FIG. 1 shows the time variation of NO 2 concentration and the observed frequency variation in the case of using H 2 TCRPc. In FIG. 1, the vertical axis represents NO 2 concentration (ppm) and frequency change (10 2 Hz), and the horizontal axis represents time (minutes). The frequency change amount of the manufactured sensor head is almost proportional to the concentration of NO 2 , and it can be seen that the linearity is excellent. Further, it can be seen that it has sufficient sensitivity even when the concentration of NO 2 is 1 ppm. It was found that the response time to a change in concentration was about 1 minute, and high-speed response was possible. In addition,
Even when the sensor material was changed to CuTCRPc or VOTCRPc and the same experiment was performed, the same results as in the present example were obtained.
【0014】実施例2 図2に示した構造〔d=10μm、L=3mm、X=5
mm(125対)〕のくし形電極上に厚さ0.05μm
のH2 TCRPc、CuTCRPc、VOTCRPc
(k、l、m、n=0、いずれも大日精化工業製)薄膜
を塗布法で作製した。薄膜作製用の溶媒にはクロロホル
ムを使用した。図2は、センサ作製用に用いたくし形電
極の構造を示す模式図である。また図3は、図2中の丸
で囲んだ箇所の部分拡大図である。作製したセンサヘッ
ドを種々のSO2 濃度条件下に放置した場合の導電率変
化を観測することにより、SO2 センサとしての特性を
評価した。なお、作製した薄膜の導電率は非常に小さか
ったため、実際には印加電圧を変化させて、電流量が1
0-10 〜10-8Aの範囲になるように調整し、吸脱着に
よる電流変化を微小電流計を用いて測定した。SO2 濃
度は、乾燥窒素とSO2 の流量を変化させることにより
制御した。SO2 濃度の時間変化と、観測した電流変化
をCuTCRPcを用いた場合について図4に示す。図
4において、縦軸は、SO2 濃度(ppm)と、電流
(10-9A)を、横軸は時間(分)を示す。作製したセ
ンサヘッドの周波数変化量はSO2 の濃度にほぼ比例し
ており、直線性が優れていることがわかる。また、SO
2 濃度が1ppmの場合にも十分な感度を有している。
濃度変化に対する応答時間は1分以内であり、高感度か
つ高速な応答が可能であることがわかった。なお、セン
サ材料をH2 TCRPc、VOTCRPcに変更して同
様の実験を行った場合にも、本実施例と同様の結果が得
られた。Example 2 The structure shown in FIG. 2 [d = 10 μm, L = 3 mm, X = 5
mm (125 pairs)] with a thickness of 0.05 μm on a comb-shaped electrode
H 2 TCRPc, CuTCRPc, VOTCRPc
(K, l, m, n = 0, all made by Dainichiseika Kogyo Co., Ltd.) A thin film was prepared by a coating method. Chloroform was used as the solvent for forming the thin film. FIG. 2 is a schematic view showing the structure of a comb-shaped electrode used for manufacturing a sensor. Further, FIG. 3 is a partially enlarged view of a portion surrounded by a circle in FIG. The characteristics of the SO 2 sensor were evaluated by observing the change in conductivity when the manufactured sensor head was left under various SO 2 concentration conditions. The conductivity of the prepared thin film was very small. Therefore, the applied voltage was changed so that the current amount was 1%.
Adjustment was made within the range of 0 -10 to 10 -8 A, and the change in current due to adsorption / desorption was measured using a micro ammeter. The SO 2 concentration was controlled by changing the flow rates of dry nitrogen and SO 2 . FIG. 4 shows the time variation of the SO 2 concentration and the observed current variation in the case of using CuTCRPc. In FIG. 4, the vertical axis represents SO 2 concentration (ppm) and current (10 −9 A), and the horizontal axis represents time (minutes). The frequency change amount of the manufactured sensor head is almost proportional to the concentration of SO 2 , and it can be seen that the linearity is excellent. Also, SO
2 It has sufficient sensitivity even when the concentration is 1 ppm.
It was found that the response time to the change in concentration was within 1 minute, and high sensitivity and high speed response were possible. Even when the same experiment was carried out by changing the sensor material to H 2 TCRPc or VOTCRPc, the same results as in this example were obtained.
【0015】実施例3 図2におけるくし形電極の電極間距離dのみを種々変化
させて(L=3mm、X=5mm)センサヘッドを作製
し、1ppmのNO2 ガスをパルス状に印加した場合の
電流値を測定した。電極上に塗布法で作製したH2 TC
RPc、CuTCRPc、VOTCRPc(k、l、
m、n=2、いずれも大日精化工業製)薄膜の厚さは
0.04μmで、薄膜作製用の溶媒にはクロロホルムを
使用した。VOTCRPcを用いた場合の電流値を電極
間距離dに対してプロットしたのが図5である。図5に
おいて、縦軸は電流変化(10-9A)を、横軸は電極間
距離(μm)を示す。作製したセンサヘッドは、電極間
距離dが10μm以下になると感度が急激に向上するこ
とがわかる。次に、電極間距離が2μmと20μmの試
料を用いて応答速度を測定した結果を図6に示す。図6
において、縦軸は電流(10-9A)を、横軸は時間
(分)を示す。電極間距離が2μmの試料で高い応答速
度が得られることが明らかである。しかし、電極間距離
が20μm程度になると応答が遅くなり、1分間隔のN
O2 ガスのon−offではベースラインが徐々に上昇
してしまうことがわかる。以上の結果より、電極間距離
dが小さいくし形電極を使用することにより、感度、応
答速度が特に優れるセンサヘッドが得られることがわか
った。なお、センサ用材料をH2 TCRPc、CuTC
RPcに変更して同様の実験を行った場合にも、本実施
例と同様の結果が得られた。Example 3 In the case where a sensor head was manufactured by varying only the interelectrode distance d of the comb-shaped electrodes in FIG. 2 (L = 3 mm, X = 5 mm) and applying 1 ppm of NO 2 gas in a pulse form. Was measured. H 2 TC prepared by coating method on the electrode
RPc, CuTCRPc, VOTCRPc (k, l,
m and n = 2, both manufactured by Dainichi Seika Kogyo Co., Ltd.) The thickness of the thin film was 0.04 μm, and chloroform was used as a solvent for forming the thin film. FIG. 5 is a graph in which the current value when VOTCRPc is used is plotted against the interelectrode distance d. In FIG. 5, the vertical axis represents current change (10 −9 A) and the horizontal axis represents interelectrode distance (μm). It can be seen that the manufactured sensor head has a drastic improvement in sensitivity when the inter-electrode distance d is 10 μm or less. Next, FIG. 6 shows the result of measuring the response speed using the samples having the interelectrode distance of 2 μm and 20 μm. Figure 6
In, the vertical axis represents current (10 −9 A) and the horizontal axis represents time (minutes). It is clear that a high response speed can be obtained with a sample having an electrode distance of 2 μm. However, when the distance between the electrodes is about 20 μm, the response becomes slow and the N
It can be seen that the baseline gradually rises when the O 2 gas is on-off. From the above results, it was found that by using a comb-shaped electrode having a small inter-electrode distance d, a sensor head having particularly excellent sensitivity and response speed can be obtained. The sensor material is H 2 TCRPc, CuTC.
Even when the same experiment was performed by changing to RPc, the same result as this example was obtained.
【0016】[0016]
【発明の効果】以上説明したように、本発明によれば、
化学物質の検出を高速かつ高感度で行える化学ガスセン
サ用材料、及びそれを用いた化学ガスセンサを提供でき
ることは明らかである。As described above, according to the present invention,
It is obvious that a chemical gas sensor material capable of detecting a chemical substance at high speed and high sensitivity, and a chemical gas sensor using the same can be provided.
【図1】NO2 濃度の時間変化と、センサの周波数変化
の関係を示すグラフである。FIG. 1 is a graph showing the relationship between changes in NO 2 concentration with time and changes in sensor frequency.
【図2】センサ作製用に用いたくし形電極の構造を示す
模式図である。FIG. 2 is a schematic view showing a structure of a comb-shaped electrode used for manufacturing a sensor.
【図3】図2中の丸で囲んだ箇所の部分拡大図である。FIG. 3 is a partially enlarged view of a portion surrounded by a circle in FIG.
【図4】SO2 濃度の時間変化と、くし形電極に流れる
電流の時間変化の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the time change of the SO 2 concentration and the time change of the current flowing through the comb electrode.
【図5】一定のSO2 濃度及び印加電圧条件下におけ
る、くし形電極に流れる電流値を電極間距離dに対して
プロットしたグラフである。FIG. 5 is a graph in which the current values flowing in the comb electrodes are plotted against the interelectrode distance d under the conditions of constant SO 2 concentration and applied voltage.
【図6】電極間距離が2μmと20μmのくし形電極上
にH2 TCRPc薄膜を形成し、応答速度を測定した結
果を示すグラフである。FIG. 6 is a graph showing a result of measuring a response speed by forming a H 2 TCRPc thin film on a comb-shaped electrode having a distance between electrodes of 2 μm and 20 μm.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 修 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 森田 雅夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Niwa 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Masao Morita 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation
Claims (3)
物を示し、k、l、m、nは同一又は異なり、0〜5の
整数を示す)で表されるクラウンエーテル縮合フタロシ
アニン系化合物を含有することを特徴とする化学ガスセ
ンサ用材料。1. The following general formula (Formula 1): (Wherein M represents 2H, a metal, a metal halide, or a metal oxide, and k, l, m, and n are the same or different, and each represents an integer of 0 to 5). A chemical gas sensor material containing:
が、水晶振動子上に薄膜状に形成されてなることを特徴
とする化学ガスセンサ。2. A chemical gas sensor in which the chemical gas sensor material according to claim 1 is formed in a thin film shape on a quartz oscillator.
が、微細電極基板上に薄膜状に形成されてなることを特
徴とする化学ガスセンサ。3. A chemical gas sensor, wherein the chemical gas sensor material according to claim 1 is formed in a thin film shape on a fine electrode substrate.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20370693A JPH0743285A (en) | 1993-07-27 | 1993-07-27 | Material for chemical gas sensor and chemical gas sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20370693A JPH0743285A (en) | 1993-07-27 | 1993-07-27 | Material for chemical gas sensor and chemical gas sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0743285A true JPH0743285A (en) | 1995-02-14 |
Family
ID=16478509
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP20370693A Pending JPH0743285A (en) | 1993-07-27 | 1993-07-27 | Material for chemical gas sensor and chemical gas sensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0743285A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7843570B2 (en) | 2004-10-04 | 2010-11-30 | Niigata University | Crystal oscillator sensor and substance adsorption detection method using the sensor |
| CN109828003A (en) * | 2019-02-18 | 2019-05-31 | 中国石油大学(华东) | It is a kind of based on cadmium sulfide to the inorganic doping method of modifying of the Phthalocyanine semiconductor material containing crown ether |
-
1993
- 1993-07-27 JP JP20370693A patent/JPH0743285A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7843570B2 (en) | 2004-10-04 | 2010-11-30 | Niigata University | Crystal oscillator sensor and substance adsorption detection method using the sensor |
| CN109828003A (en) * | 2019-02-18 | 2019-05-31 | 中国石油大学(华东) | It is a kind of based on cadmium sulfide to the inorganic doping method of modifying of the Phthalocyanine semiconductor material containing crown ether |
| CN109828003B (en) * | 2019-02-18 | 2021-07-23 | 中国石油大学(华东) | A method for inorganic doping modification of phthalocyanine molecular semiconductor materials containing crown ethers based on cadmium sulfide |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| King | Piezoelectric sorption detector. | |
| Bartlett et al. | Conducting polymer gas sensors part I: fabrication and characterization | |
| Barker et al. | Pulse polarography | |
| Endres et al. | Optimization of the geometry of gas-sensitive interdigital capacitors | |
| US4496454A (en) | Self cleaning electrochemical detector and cell for flowing stream analysis | |
| US5304294A (en) | Method and apparatus for sensing nox | |
| US3164004A (en) | Coated piezoelectric analyzers | |
| GB2077437A (en) | Ammonia gas sensors | |
| EP0299780A3 (en) | Surface type microelectronic gas and vapor sensor | |
| Jones et al. | Piezoelectric transducer for determination of metals at the micromolar level | |
| JPH11502922A (en) | Sensitive substances and devices for detecting organic components and solvent vapors in air | |
| US4783250A (en) | Immobilized electrochemical cell devices and methods of manufacture | |
| Barker et al. | The Double-Layer Capacity of Mercury in contact with concentrated Electrolyte Solutions | |
| Robertson | The capacity of polarized platinum electrodes in hydrochloric acid | |
| Pan et al. | Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device | |
| JPH0743285A (en) | Material for chemical gas sensor and chemical gas sensor | |
| Olthuis et al. | A new probe for measuring electrolytic conductance | |
| JP3698760B2 (en) | Electron capture detector with guard electrode | |
| Wang et al. | Stripping voltammetry of trace metals in resistive solutions with mercury microelectrodes | |
| Seo et al. | A combined piezoelectric and EQCM study of underpotential deposition of silver on gold electrodes | |
| JPH08261979A (en) | Electrode for sensor | |
| JP3447210B2 (en) | Quartz resonator for chemical substance measurement and chemical substance detection device using the same | |
| CN205920087U (en) | Piezo electric crystal gas sensor with two mode | |
| WO1988006729A1 (en) | Improved electrochemical sensor | |
| Bachtin | A very short response time electronic system for the measurement of surface potential changes by means of a static capacitor method |