JPH0752149A - Wafer manufacturing method - Google Patents
Wafer manufacturing methodInfo
- Publication number
- JPH0752149A JPH0752149A JP20521093A JP20521093A JPH0752149A JP H0752149 A JPH0752149 A JP H0752149A JP 20521093 A JP20521093 A JP 20521093A JP 20521093 A JP20521093 A JP 20521093A JP H0752149 A JPH0752149 A JP H0752149A
- Authority
- JP
- Japan
- Prior art keywords
- ingot
- cutting
- wafer
- wire
- feeding speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/04—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
- B28D5/045—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D57/00—Sawing machines or sawing devices not covered by one of the preceding groups B23D45/00 - B23D55/00
- B23D57/003—Sawing machines or sawing devices working with saw wires, characterised only by constructional features of particular parts
- B23D57/0046—Sawing machines or sawing devices working with saw wires, characterised only by constructional features of particular parts of devices for feeding, conveying or clamping work
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
(57)【要約】 (修正有)
【目的】本発明は、ワイヤーに対して機械的に送り込ま
れる半導体インゴットや合成石英インゴット等のインゴ
ットをワイヤソーにより切断して高精度の厚さを有する
ウエーハを製造する方法を提供する。
【構成】ワイヤソーにより丸形インゴットをその直径方
向に沿って切断してウエーハを製造する方法において、
該丸形インゴットの切り始め部分から直径上55〜70%の
位置の該インゴットの送り込み速度を最低送り込み速度
とし、切り始め部分および切り終り部分における該イン
ゴットの送り込み速度を夫々最低送り込み速度の2〜4
倍および 1.2〜2倍とし、かつ切断中は該インゴットの
送り込み速度の各変速点における送り込み速度の変化を
連続的に行うことを特徴とするウエーハの製造方法、及
びワイヤーソーにより丸形インゴットを切断してウエー
ハを製造する方法において、ワイヤー摩耗量を往復走行
の場合はワイヤー直径で10μm以下、並びに一方向走行
の場合は5μm以下となるように制御することを特徴と
するウエーハの製造方法。(57) [Summary] (Modified) [Objective] The present invention provides a wafer having a highly accurate thickness obtained by cutting an ingot such as a semiconductor ingot or a synthetic quartz ingot mechanically fed to a wire with a wire saw. A method of manufacturing is provided. [Composition] In a method for manufacturing a wafer by cutting a round ingot along its diameter direction with a wire saw,
The feed speed of the ingot at a position 55 to 70% in diameter from the cutting start portion of the round ingot is set as the minimum feeding speed, and the feeding speed of the ingot at the cutting start portion and the cutting end portion is 2 to the minimum feeding speed, respectively. Four
Double and 1.2 to 2 times, and during the cutting, the method for manufacturing a wafer is characterized in that the feeding speed of the ingot is continuously changed at each speed change point, and a round ingot is cut by a wire saw. In the method for producing a wafer, the amount of wire wear is controlled so that the wire diameter is 10 μm or less in the case of reciprocating traveling, and 5 μm or less in the case of traveling in one direction.
Description
【0001】[0001]
【産業上の利用分野】本発明は、ワイヤーに対して機械
的に送り込まれる半導体インゴットや合成石英インゴッ
ト等のインゴットをワイヤソーにより切断して高精度の
厚さを有するウエーハを製造する方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a wafer having a highly accurate thickness by cutting an ingot such as a semiconductor ingot or a synthetic quartz ingot mechanically fed to a wire with a wire saw. is there.
【0002】[0002]
【従来の技術】ワイヤソーでインゴットよりウエーハを
切り出す場合、一般にオイル或いは水に砥粒を懸濁させ
たスラリーをワイヤーにかけながらインゴットを機械的
に上昇または下降させてワイヤーに押し付けて切断する
方法が行われている。このインゴットの送り込み方法は
機械的に送り込む方法と油圧アクチュエーターにより送
り込む方法があるが、後者の場合、油温変化に伴い油圧
が微妙に変化して切断速度が変化する等の問題もあり、
温度に影響され難い前者の機械的に送り込む方法が採ら
れている。この際、切断後得られるウエーハの厚さ精度
が悪いと、次工程のラップ盤による研磨加工において様
々な問題が起こる。一つは切断直後のウエーハ間の厚さ
に大きなバラつきを生じたり、1ウエーハ内で厚さにバ
ラつきが大きくなると、ラップ工程でウエーハの厚さ精
度を出すことが困難となり、仕上がり精度が良くないと
いう問題である。またワイヤソーによるインゴットの切
断では1回の切断で数百枚のウエーハが連続的に製造さ
れる。このため切断後のウエーハ間の厚さの差が大きい
場合には、ラップ研磨加工後の仕上がり精度を良くする
ためにラップ研磨は厚さの似通ったウエーハを数枚づつ
をまとめてバッチ処理を行う必要があり、予め厚さが一
定範囲内に納まるように厚さを測定してバッチを作らな
ければならないという作業にかなりの労力を要するとい
う欠点があった。もう一つは厚さ精度の悪いウエーハは
ラップ研磨修正の場合、ウエーハの厚い部分がラップ定
盤と長時間接することとなるため定盤の摩耗が不均一と
なり、処理バッチ数と共に仕上がり精度の悪化が精度の
良いウエーハに比べて著しく早くなるという現象が起こ
り、ラップ研磨の精度維持のためにはラップ定盤の形状
修正を頻繁に行わなければならないと言う欠点がある。
そのためワイヤーソーで切断直後のウエーハの厚さのバ
ラつき精度を5μm以下とすることが必要である。2. Description of the Related Art When cutting a wafer from an ingot with a wire saw, generally, a method of mechanically raising or lowering the ingot while applying a slurry of abrasive grains suspended in oil or water to the wire and pressing it against the wire is used. It is being appreciated. There are two methods of feeding this ingot, one is mechanically feeding and the other is hydraulic actuator.However, in the latter case, there is a problem that the hydraulic pressure changes subtly with the oil temperature change and the cutting speed changes.
The former mechanical feeding method, which is not easily affected by temperature, is adopted. At this time, if the thickness accuracy of the wafer obtained after cutting is poor, various problems occur in the polishing process by the lapping machine in the next step. One is that if there is a large variation in the thickness between the wafers just after cutting or if there is a large variation in the thickness within one wafer, it becomes difficult to obtain the thickness accuracy of the wafer in the lapping process, and the finishing accuracy is poor. Is a problem. In the cutting of an ingot with a wire saw, several hundred wafers are continuously manufactured by one cutting. Therefore, if there is a large difference in the thickness between the cut wafers, the lap polishing is performed batchwise by grouping several wafers of similar thickness to improve the finishing accuracy after lapping. However, there is a drawback in that a considerable amount of labor is required for the work of measuring the thickness and making the batch so that the thickness falls within a certain range in advance. Another problem is that if a wafer with poor thickness accuracy is lap-polished, the thick part of the wafer will be in contact with the lapping plate for a long time, resulting in uneven wear of the plate and deterioration of the finishing accuracy with the number of processing batches. Occurs significantly faster than a wafer with high accuracy, and there is a drawback that the shape of the lapping plate must be frequently modified to maintain the accuracy of lapping.
Therefore, it is necessary to set the accuracy of variation in the thickness of the wafer immediately after cutting with a wire saw to 5 μm or less.
【0003】また、角形インゴットを切断する場合に
は、同一出願人の提案による特願平4-337965号のよう
に、切り始めの角形インゴットの送り込み速度を早めて
その後一定の送り込み速度で切断するという条件を設定
することでウエーハの厚さを精度良くを切断することが
できるが、丸形インゴットの場合はその方法で切断して
も充分な精度のものが得られなかった。In the case of cutting a square ingot, as in Japanese Patent Application No. 4-337965 proposed by the same applicant, the feed speed of the square ingot at the beginning of cutting is increased and thereafter the cut is made at a constant feed speed. By setting such conditions, it is possible to accurately cut the thickness of the wafer, but in the case of a round ingot, even if the method was used, sufficient accuracy could not be obtained.
【0004】[0004]
【発明が解決しようとする課題】本発明はかかる課題を
解決して、ワイヤソーによる切断方法により丸形インゴ
ットから厚さ精度の良いウエーハの製造方法を提供しよ
うとするものである。SUMMARY OF THE INVENTION The present invention is intended to solve the above problems and to provide a method of manufacturing a wafer having a high thickness accuracy from a round ingot by a cutting method using a wire saw.
【0005】[0005]
【課題を解決するための手段】本発明者等は上記課題を
解決するためにワイヤソーによる丸形インゴットの切断
条件を詳細に検討し、実験を重ねて本発明を完成したも
ので、その要旨は、第1の発明は、ワイヤソーにより丸
形インゴットをその直径方向に沿って切断してウエーハ
を製造する方法において、該丸形インゴットの切り始め
部分から直径上55〜70%の位置の該インゴットの送り込
み速度を最低送り込み速度とし、切り始め部分および切
り終り部分における該インゴットの送り込み速度を夫々
最低送り込み速度の2〜4倍および 1.2〜2倍とし、か
つ切断中は該インゴットの送り込み速度の各変速点にお
ける送り込み速度の変化を連続的に行うことを特徴とす
るウエーハの製造方法であり、第2の発明はワイヤーソ
ーにより丸形インゴットを切断してウエーハを製造する
方法において、ワイヤー摩耗量を往復走行の場合はワイ
ヤー直径で10μm以下、並びに一方向走行の場合は5μ
m以下となるように制御することを特徴とするウエーハ
の製造方法にある。Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have studied the conditions for cutting a round ingot with a wire saw in detail, and have conducted repeated experiments to complete the present invention. The first invention is a method for manufacturing a wafer by cutting a round ingot along a diametrical direction thereof with a wire saw, wherein the ingot at a position 55 to 70% in diameter from the cutting start portion of the round ingot is The feeding speed is set to the minimum feeding speed, the feeding speed of the ingot at the cutting start portion and the cutting end portion is set to 2 to 4 times and 1.2 to 2 times the minimum feeding speed, respectively, and each cutting speed of the ingot feeding speed is changed during cutting. A method for manufacturing a wafer, which is characterized in that the feeding speed at a point is continuously changed, and the second invention is a round ingot using a wire saw. A method of manufacturing a wafer by cutting the door, in the case of 10μm or less in the wire diameter in the case of round trip wire wear amount, and the one-way travel 5μ
A method for manufacturing a wafer is characterized in that the wafer is controlled so as to be not more than m.
【0006】以下、本発明を詳細に説明する。先ず、第
2発明について、ワイヤソーによる丸形インゴットの切
断で得られたウエーハ同士の厚さの差を5μm以下に抑
えるための検討を行った。ワイヤソーの場合、先ずワイ
ヤーの供給側と出口側でウエーハの厚さに差が生ずるこ
とに着目してその原因を解析した結果、ワイヤーがイン
ゴットの切断中摩耗して出口側で細くなることによるも
ので、ウエーハの切り終わり部分で厚さが厚く仕上がる
ことが判明した。このためラップ工程に影響が及ばない
程度のレベルでのワイヤーの摩耗量を検討して本発明を
完成した。The present invention will be described in detail below. First, with respect to the second invention, a study was conducted to suppress the difference in thickness between wafers obtained by cutting a round ingot with a wire saw to 5 μm or less. In the case of a wire saw, we first analyzed the cause by focusing on the difference in the thickness of the wafer between the wire supply side and the outlet side, and as a result, the wire was worn during cutting of the ingot and became thin on the outlet side. Then, it was found that the thickness was finished thick at the end of cutting of the wafer. For this reason, the present invention has been completed by examining the amount of wire wear at a level that does not affect the lapping process.
【0007】第1発明については、このワイヤー摩耗量
条件下でウエーハを製作した結果、ウエーハ間での厚さ
のバラつきはラップ工程に影響を及ばさないレベルにま
で精度が向上したが、未だ1枚のウエーハ内での厚さの
バラつきが大きいので更に検討を重ねた。その結果、切
り初めは薄く徐々に厚くなって行き、ウエーハの中心に
相当する部分で最も厚くなり、切り終わりにかけて薄く
なって行くという規則性を見出した。その原因を究明し
た結果、図1(a)に示すように切断開始前には真っ直
ぐに張られていたワイヤーが切断開始と同時に切断抵抗
増加により徐々に撓みが増加して行き、図1(b)のよ
うにウエーハ中心付近に相当する部分で最も撓み、図1
(c)のように切り終わりにかけて撓みが減少して行く
ことが解った。このため、ウエーハの各部分で実質切断
速度が変化しており、これは切り始めからウェハ中心部
分までは実質切断速度が遅くなり、中心から切り終わり
にかけては速くなることを意味している。この実質切断
速度が速いとウエーハは厚く、遅いと薄くなることより
ウエーハ内の厚さにバラつきの生じることが判明した。
従って、この実質切断速度が一定になるようにインゴッ
トの送り込み速度を制御すれば、ウエーハ内の厚さのバ
ラつきを解決出来ることを見出し、本発明を完成した。Regarding the first invention, as a result of manufacturing the wafer under the wire wear amount condition, the accuracy is improved to a level where the variation in the thickness between the wafers does not affect the lapping process, but it is still 1 Since there was a large variation in the thickness of each wafer, further studies were conducted. As a result, we have found a regularity in which the thickness gradually becomes thinner at the beginning of cutting, becomes thickest at the part corresponding to the center of the wafer, and becomes thinner at the end of cutting. As a result of investigating the cause, as shown in FIG. 1 (a), the wire stretched straight before the start of cutting gradually bends due to an increase in cutting resistance at the same time as the start of cutting, ), The portion corresponding to the vicinity of the center of the wafer is most bent, and
As shown in (c), it was found that the bending decreased toward the end of cutting. Therefore, the substantial cutting speed changes in each part of the wafer, which means that the substantial cutting speed decreases from the start of cutting to the central part of the wafer and increases from the center to the end of cutting. It was found that when the substantial cutting speed is high, the wafer becomes thick, and when the cutting speed is slow, the wafer becomes thin, so that the thickness in the wafer varies.
Therefore, it was found that if the feeding speed of the ingot is controlled so that the substantial cutting speed becomes constant, the variation in the thickness within the wafer can be solved, and the present invention has been completed.
【0008】以下、本発明を更に詳しく説明すると、第
2の発明については、切断に関与するワイヤソーは使用
時間に比例して摩耗するので線径が細くなり、それに連
れて切断厚さが設定値より厚くなる傾向にあるため、ワ
イヤーの可使限度をワイヤー摩耗量が予め被切断材料硬
度、インゴット送り速度、ワイヤソー送り出し速度、ワ
イヤソー硬度等との関係から求めた一定値である直径で
往復走行の場合で10μm以下、一方走行の場合で5μm
以下とし、これが10μm(往復)または5μm(一方)
を超過するとワイヤーが細くなり過ぎてウエーハの厚さ
精度が設定値をオーバーしてしまう。このようにワイヤ
ーの摩耗量を一定レベル以下に制御することでウエーハ
の厚さ精度が向上し、ウエーハ間の厚さの差を5μm以
下に減らすことが出来る。The present invention will be described in more detail below. In the second aspect of the invention, since the wire saw involved in cutting wears in proportion to the operating time, the wire diameter becomes thin, and the cutting thickness accordingly increases. Since the thickness tends to become thicker, the usable limit of the wire is reciprocated with a diameter that is a constant value that the wire wear amount is determined in advance from the relationship with the material hardness of the material to be cut, ingot feed speed, wire saw feed speed, wire saw hardness, etc. In case of 10μm or less, in case of traveling 5μm
Below, this is 10 μm (round trip) or 5 μm (one side)
If it exceeds, the wire becomes too thin and the wafer thickness accuracy exceeds the set value. By controlling the wear amount of the wire to a certain level or less in this manner, the thickness accuracy of the wafer is improved, and the difference in thickness between the wafers can be reduced to 5 μm or less.
【0009】ワイヤー摩耗量については次式 ワイヤー摩耗量(μm)=[(供給ワイヤーの直径)−
(使用済みワイヤーの直径)] で定義する。ワイヤーを往復走行させて丸形インゴット
を切断する場合にはワイヤー摩耗量は往復で10μm以
下、片方で5μm以下とすることが好ましい。10μm
(往復)、5μm(片方)を越える摩耗になるとワイヤ
ー供給側と出口側でのウエーハの厚さの差がかなりつい
てしまうため、ラップ研磨加工を行う際バッチ構成(厚
さの差がほほ等しいもの数枚を集めてラップ盤にかける
こと)を行う必要性がでてくる。ここでワイヤーの往復
走行とは、新ワイヤーを一方向に 500m供給しながら切
断し、次に逆回転させて 400m巻き戻しながら切断する
という操作を繰り返しながら切断する方法を言う。片方
の1方向のみにワイヤーを送って切断する場合にはワイ
ヤー摩耗量は5μm以下が好ましい。5μmを越えると
ラップ研磨加工を行う際バッチ構成する必要性がでてく
る。The wire wear amount is calculated by the following equation: wire wear amount (μm) = [(diameter of supply wire) −
(Diameter of used wire)]. When a round ingot is cut by reciprocating the wire, the amount of wire abrasion is preferably 10 μm or less for reciprocation and 5 μm or less for one side. 10 μm
(Reciprocation) If the wear exceeds 5 μm (one side), there will be a considerable difference in the thickness of the wafer between the wire supply side and the exit side. Therefore, when performing lap polishing, the batch configuration (those with almost the same thickness difference) It becomes necessary to collect several pieces and put them on a lap machine. Here, the reciprocal movement of the wire means a method in which a new wire is fed while being fed for 500 m in one direction, and then is cut backwards while being rewound for 400 m, which is repeated. When the wire is fed and cut in only one direction, the wire wear amount is preferably 5 μm or less. If it exceeds 5 μm, it becomes necessary to form a batch when lapping is performed.
【0010】第1の発明については、丸形インゴットの
切断位置と送り込み速度の関係を図1(a)、(b)、
(c)に基づいて説明する。 丸形インゴットの断面の下端3から切り始めて(図
1(a))切り始めの点より直径上55〜70%の位置(図
1(b)の5〜6)でのインゴットの送り込み速度を最
低に設定する(以下、最低送り込み速度と呼ぶ)。これ
はインゴットの送り込み量がインゴットの半径値(中
心)に達している場合でも、実際のワイヤーはワイヤー
自身の撓みのためインゴットの半径深さに達していない
ために考慮しなければならない項目である。ワイヤーの
撓みはワイヤーとインゴットの接触長さが最大になるま
で(インゴットの直径に相当する部分(中心)を切断す
るまで)大きくなるため、実質切断速度をこの部分で最
低にする必要がある。この位置でのインゴットの送り込
み量を最小に設定しない場合にはウエーハの厚さ精度が
悪化する。この厚さ精度に影響を及ぼさない範囲が、切
り始めの点より直径上55〜70%の位置に相当する。 切り初めの丸形インゴットの送り込み速度を最低送り
込み速度の2〜4倍とする(図1(a))。これが2倍
未満では切り始め部分は薄くなり、厚さ改善効果は少な
い。4倍を越えると切り初め部分での厚さが一定しなく
なる。これは切り始め部分で送り込み速度が速や過ぎる
ため、ワイヤーが丸形インゴットに切り込む前に横滑り
を起こし、本来の切り込み位置より僅かにずれるためで
はないかと推測される。In the first aspect of the invention, the relationship between the cutting position of the round ingot and the feeding speed is shown in FIGS. 1 (a), 1 (b),
A description will be given based on (c). Starting off from the lower end 3 of the section of the round ingot feeding speed of the ingot in (5-6 of FIG. 1 (b)) (FIG. 1 (a)) cutting diameter on 55 to 70% position from the point of beginning top
Set to low (hereinafter called minimum feed rate). This is an item that must be considered because the actual wire does not reach the radial depth of the ingot due to the bending of the wire itself even when the ingot feed amount reaches the ingot radius value (center). . Since the deflection of the wire increases until the contact length between the wire and the ingot becomes maximum (until the portion corresponding to the diameter of the ingot (the center) is cut), the substantial cutting speed must be minimized at this portion. If the feed amount of the ingot at this position is not set to the minimum, the accuracy of the wafer thickness will deteriorate. The range that does not affect the thickness accuracy corresponds to a position 55 to 70% in diameter from the starting point of cutting. The feeding speed of the round ingot at the beginning of cutting is set to 2 to 4 times the minimum feeding speed (Fig. 1 (a)). If this is less than double, the starting portion of cutting becomes thin and the effect of improving the thickness is small. If it exceeds 4 times, the thickness at the beginning of cutting becomes unstable. It is speculated that this is because the feeding speed is too fast at the start of cutting, and the wire slips before cutting into the round ingot, causing a slight deviation from the original cutting position.
【0011】切り終わり部分では最低送り込み速度の
1.2〜2倍の送り込み速度とする(図1(c))。この
範囲外では厚さ精度は厚くなったり薄くなったりしてラ
ップ研磨加工後のウェハ精度に悪影響を及ぼす。 以上の各点を結んで滑らかなインゴット送り込み速度
となるように制御する。また、更に好ましくは切り始
めより直径の1/6 ( 17%)に相当する深さでは、インゴ
ットの送り込み速度を最低送り込み速度の 1.5〜2倍と
する。1.5 倍未満では薄く仕上がり、2倍を越えると厚
く仕上がるため研磨加工後のウエーハの精度を考慮する
と好ましくない。At the end of cutting, the minimum feeding speed
The feed rate is 1.2 to 2 times higher (Fig. 1 (c)). Outside this range, the thickness accuracy becomes thicker or thinner, which adversely affects the wafer accuracy after lapping. The above points are connected so that the ingot is fed at a smooth speed. Further, more preferably, at a depth corresponding to 1/6 (17%) of the diameter from the start of cutting, the feed speed of the ingot is 1.5 to 2 times the minimum feed speed. If it is less than 1.5 times, it will be thin, and if it exceeds 2 times, it will be thick, which is not preferable in consideration of the accuracy of the wafer after polishing.
【0012】このような送り込み速度の変化を連続的に
行うためには、インゴットの直径方向の位置での送り込
み速度を予めコンピューターに記憶させて制御するのが
良い。図2に本発明の丸形インゴットの切断位置とイン
ゴット送り込み速度の関係の一例を示した。以上述べた
ように、丸形インゴットの実質切断速度がほぼ一定にな
るようにインゴットの送り込み速度を制御することで厚
さ精度の高いウエーハの製造が可能となった。In order to continuously change the feeding speed, it is preferable that the feeding speed at the diametrical position of the ingot be stored in a computer in advance and controlled. FIG. 2 shows an example of the relationship between the cutting position and the ingot feeding speed of the round ingot of the present invention. As described above, by controlling the feeding speed of the ingot so that the substantial cutting speed of the round ingot becomes substantially constant, it becomes possible to manufacture a wafer with high thickness accuracy.
【0013】[0013]
【作用】ワイヤソーによる丸形インゴットの切断により
得られるウエーハの厚さ精度は、本発明のワイヤー摩耗
量を設定すること、および丸形インゴットの送り込み速
度を特定切断位置で変速させることによって、ウエーハ
の厚み精度を5μm以下にすることができた。The thickness accuracy of the wafer obtained by cutting the round ingot with the wire saw is determined by setting the wire wear amount of the present invention and changing the feeding speed of the round ingot at a specific cutting position. The thickness accuracy could be 5 μm or less.
【0014】[0014]
【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1、2、比較例1、2)日平トヤマ (株) 製の
マルチワイヤソーを使用する。丸形インゴットとして合
成石英製の直径 150mmφ、長さ 250mmL の丸形インゴッ
トを使用した。切断後のウエーハ厚さは 1,000μmを目
標に切断した。 200μm径のワイヤーを使用し、ワイヤ
ー線速は最大 700m/minで片方及び往復走行とし新ワイ
ヤーを 500m送り込んで往復の場合 400m巻き戻す方法
を繰り返して切断した。この際ワイヤーの摩耗量を最大
で片方で5μmまたは8μm、往復で10μmまたは15μ
mとなるようワイヤー供給量を設定した。切断用スラリ
ーはオイルにGP#600(信濃電気精錬(株) 製商品名)の
SiC砥粒を懸濁させて使用した。EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Examples 1 and 2 and Comparative Examples 1 and 2) A multi-wire saw manufactured by Hihei Toyama Co., Ltd. is used. As the round ingot, a synthetic quartz round ingot with a diameter of 150 mmφ and a length of 250 mmL was used. The target wafer thickness after cutting was 1,000 μm. A wire with a diameter of 200 μm was used, the wire speed was 700 m / min at the maximum, and one-way and reciprocating running was performed. The new wire was fed 500 m and reciprocating 400 m in the case of reciprocating cutting was repeated. At this time, the maximum wear of the wire is 5 μm or 8 μm on one side and 10 μm or 15 μm on the back and forth.
The wire supply amount was set to be m. The slurry for cutting is oil of GP # 600 (trade name of Shinano Denki Smelting Co., Ltd.)
The SiC abrasive grains were suspended and used.
【0015】合成石英丸形インゴットの送り込み速度を
該インゴットの下端から切り始め、インゴットの下端か
ら切り込み深さが105mm (直径150mm の70%)の位置で
20mm/Hr に設定し、これを最低送り込み速度とした。切
り始め部のインゴットの送り込み速度を最低送り込み速
度の3倍 60mm/Hrとし、切り終わり部のインゴットの送
り込み速度を 1.5倍とし、各変速点で滑らかに速度変化
するよう送り込み速度を決定した。切断して得られた合
成石英ウエーハの厚さのバラつきを表1に示す。The feed rate of the synthetic quartz round ingot starts to be cut from the lower end of the ingot, and the cutting depth from the lower end of the ingot is 105 mm (70% of diameter 150 mm).
It was set to 20 mm / Hr and this was the minimum feed speed. The feed speed of the ingot at the start of cutting was set to 60 mm / Hr, which is 3 times the minimum feed speed, and the feed speed of the ingot at the end of cutting was set to 1.5 times, and the feed speed was determined so that the speed changed smoothly at each shift point. Table 1 shows the variation in thickness of the synthetic quartz wafer obtained by cutting.
【0016】[0016]
【表1】 [Table 1]
【0017】(実施例3、4、比較例3〜8)実施例1
においてインゴットの最低送り込み速度の設定位置、切
り始め部及び切り終わり部のインゴットの送り込み速度
を変えた以外は実施例1と同様の条件で切断した。その
結果を表2に示す。(Examples 3 and 4, Comparative Examples 3 to 8) Example 1
The cutting was performed under the same conditions as in Example 1 except that the setting position of the minimum feeding speed of the ingot and the feeding speed of the ingot at the cutting start portion and the cutting end portion were changed. The results are shown in Table 2.
【0018】[0018]
【表2】 [Table 2]
【0019】(比較例9)合成石英丸形インゴットの送
り込み速度をインゴット断面の全ての位置で一定にした
他は、実施例1と同一条件で切断した結果、ウエーハ内
の厚さのバラつきは14.5μmであった。(Comparative Example 9) As a result of cutting under the same conditions as in Example 1 except that the feeding speed of the synthetic quartz round ingot was made constant at all positions of the ingot cross section, the variation in the thickness in the wafer was 14.5. was μm.
【0020】(厚さ精度の測定方法) (1)ウエーハ間厚さのバラつきは切断されたウエーハ
全数につき電子マイクロメーターにより厚さをウエーハ
の直径線上10mm間隔で15点(両端は円周から1mm中心寄
りの位置)測定し、最大値の平均値と最小値の平均値を
求めその差を示した。 (2)1ウエーハ内厚さのバラつきは上記と同様に厚さ
を測定し、最大値と最小値の差をとりその平均値を求め
た。(Measurement method of thickness accuracy) (1) Variation in thickness between wafers is 15 points at an interval of 10 mm on the diameter line of the wafer with respect to the total number of cut wafers at an interval of 10 mm (both ends are 1 mm from the circumference). The position near the center) was measured, and the average value of the maximum values and the average value of the minimum values were obtained and the difference was shown. (2) For the variation in the thickness within one wafer, the thickness was measured in the same manner as described above, and the difference between the maximum value and the minimum value was calculated to obtain the average value.
【0021】[0021]
【発明の効果】ワイヤソーによる丸形インゴットの切断
条件を改善するすることにより製造されたウエーハの厚
さ精度(ウエーハ間のバラつき、1ウエーハ内のバラつ
き)を大幅に向上させることができ、後加工工程のラッ
プ、ポリッシュ工程加工後のウエーハ精度も向上し、同
時にラップ定盤精度維持のための定盤修正の回数減少に
も繋がり、高精度ウエーハの生産性を向上させることが
できる。また、ラップ時のバッチ構成のためにウエーハ
厚さを1枚1枚測定する労力も削減することができ、産
業上その利用価値は極めて高い。EFFECTS OF THE INVENTION By improving the cutting conditions of a round ingot with a wire saw, the thickness accuracy (variation between wafers, variation within a wafer) of a manufactured wafer can be significantly improved, and post processing The accuracy of the wafer after lapping and polishing in the process is improved, and at the same time, the number of surface plate modifications for maintaining the accuracy of the lapping surface plate is reduced, and the productivity of high-precision wafers can be improved. Further, the labor required to measure the wafer thickness one by one due to the batch configuration at the time of lapping can be reduced, and its industrial utility value is extremely high.
【図1】(a)切り始め部分、(b)直径上55〜70%切
り込んだ位置、(c)切り終わり部分:各図は本発明の
丸形インゴットの切断位置とワイヤーソーの状態を説明
する図である。FIG. 1 (a) Cutting start portion, (b) 55-70% diameter cut position, (c) Cutting end portion: each drawing illustrates the cutting position of the round ingot of the present invention and the state of the wire saw. FIG.
【図2】本発明の丸形インゴットの断面位置におけるイ
ンゴットの送り込み速度を示す説明図である。FIG. 2 is an explanatory diagram showing a feeding speed of an ingot at a cross-sectional position of the round ingot of the present invention.
1 丸形インゴット 2 ワイヤー、 3 切り始め部分 4 中心(半径
深さ) 5 直径上55%ライン 6 直径上70%
ライン 7 切り終り部分11 round ingot 2 wire, 3 starting point of cutting 4 center (radius depth) 5 55% on diameter line 6 70% on diameter
Line 7 Cutting end part 1
Claims (2)
径方向に沿って切断してウエーハを製造する方法におい
て、該丸形インゴットの切り始め部分から直径上55〜70
%の位置の該インゴットの送り込み速度を最低送り込み
速度とし、切り始め部分および切り終り部分における該
インゴットの送り込み速度を夫々最低送り込み速度の2
〜4倍および 1.2〜2倍とし、かつ切断中は該インゴッ
トの送り込み速度の各変速点における送り込み速度の変
化を連続的に行うことを特徴とするウエーハの製造方
法。1. A method for manufacturing a wafer by cutting a round ingot along a diametrical direction thereof with a wire saw, the diameter of which is 55 to 70 from a cutting start portion of the round ingot.
The minimum feeding speed is the feeding speed of the ingot at the position of%, and the feeding speed of the ingot at the cutting start portion and the cutting end portion is 2 times the minimum feeding speed.
.About.4 times and 1.2 to 2 times, and during the cutting, the feed speed of the ingot at each shift point is continuously changed, and the wafer manufacturing method is characterized.
してウエーハを製造する方法において、ワイヤー摩耗量
を往復走行の場合はワイヤー直径で10μm以下、並びに
一方向走行の場合は5μm以下となるように制御するこ
とを特徴とするウエーハの製造方法。2. A method for manufacturing a wafer by cutting a round ingot with a wire saw so that the amount of wire wear is 10 μm or less in the case of reciprocating traveling, and 5 μm or less in the case of traveling in one direction. A method for manufacturing a wafer, which is characterized by controlling.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20521093A JP3283113B2 (en) | 1993-08-19 | 1993-08-19 | Wafer manufacturing method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20521093A JP3283113B2 (en) | 1993-08-19 | 1993-08-19 | Wafer manufacturing method |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001205573A Division JP2002052456A (en) | 2001-07-06 | 2001-07-06 | Wafer manufacturing method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0752149A true JPH0752149A (en) | 1995-02-28 |
| JP3283113B2 JP3283113B2 (en) | 2002-05-20 |
Family
ID=16503228
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP20521093A Expired - Lifetime JP3283113B2 (en) | 1993-08-19 | 1993-08-19 | Wafer manufacturing method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3283113B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0798090A3 (en) * | 1996-03-27 | 1998-04-01 | Shin-Etsu Handotai Company Limited | Method of cutting a workpiece with a wire saw |
| US6006738A (en) * | 1996-08-13 | 1999-12-28 | Memc Japan, Ltd. | Method and apparatus for cutting an ingot |
| US6109253A (en) * | 1995-07-31 | 2000-08-29 | Sharp Kabushiki Kaisha | Method using a wire feeding device for a multi-wire saw |
| EP0798091B1 (en) * | 1996-03-26 | 2003-05-14 | Shin-Etsu Handotai Company Limited | Wire saw and method of slicing a cylindrical workpiece, e.g. an ingot |
| JP2009283897A (en) * | 2008-04-24 | 2009-12-03 | Kyocera Corp | Method for manufacturing substrate |
| CN103434030A (en) * | 2011-12-31 | 2013-12-11 | 英利能源(中国)有限公司 | Method for cutting silicon ingot by squaring machine |
| JP2015020235A (en) * | 2013-07-18 | 2015-02-02 | 信越半導体株式会社 | Cutting method for work piece and wire saw |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7914711B2 (en) * | 2002-01-24 | 2011-03-29 | Dphi Acquisitions, Inc. | Use of mother stamper for optical disk molding |
| DE102012209974B4 (en) | 2012-06-14 | 2018-02-15 | Siltronic Ag | A method of simultaneously separating a plurality of slices from a cylindrical workpiece |
-
1993
- 1993-08-19 JP JP20521093A patent/JP3283113B2/en not_active Expired - Lifetime
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6109253A (en) * | 1995-07-31 | 2000-08-29 | Sharp Kabushiki Kaisha | Method using a wire feeding device for a multi-wire saw |
| EP0798091B1 (en) * | 1996-03-26 | 2003-05-14 | Shin-Etsu Handotai Company Limited | Wire saw and method of slicing a cylindrical workpiece, e.g. an ingot |
| EP0798090A3 (en) * | 1996-03-27 | 1998-04-01 | Shin-Etsu Handotai Company Limited | Method of cutting a workpiece with a wire saw |
| US5931147A (en) * | 1996-03-27 | 1999-08-03 | Shin-Etsu Handotai Co., Ltd. | Method of cutting a workpiece with a wire saw |
| US6006738A (en) * | 1996-08-13 | 1999-12-28 | Memc Japan, Ltd. | Method and apparatus for cutting an ingot |
| JP2009283897A (en) * | 2008-04-24 | 2009-12-03 | Kyocera Corp | Method for manufacturing substrate |
| CN103434030A (en) * | 2011-12-31 | 2013-12-11 | 英利能源(中国)有限公司 | Method for cutting silicon ingot by squaring machine |
| JP2015020235A (en) * | 2013-07-18 | 2015-02-02 | 信越半導体株式会社 | Cutting method for work piece and wire saw |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3283113B2 (en) | 2002-05-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101670132B1 (en) | Method for simultaneously cutting a multiplicity of wafers from a workpiece | |
| US11878359B2 (en) | Wire saw, wire guide roll and method for simultaneously cutting a multiplicity of wafers from an ingot | |
| CN108687981B (en) | Saw wire and cutting device | |
| JPH0752149A (en) | Wafer manufacturing method | |
| JP2957571B1 (en) | Wire for saw wire | |
| JP2008114318A (en) | Saw wire and wire saw | |
| CN110466085B (en) | Method for cutting silicon rod | |
| TW202039149A (en) | Workpiece cutting method and work piece cutting device | |
| KR101764529B1 (en) | Corrugated monowire for cutting | |
| KR101693065B1 (en) | METHOD FOR PRODUCING METAL WIRE | |
| JP2002052456A (en) | Wafer manufacturing method | |
| US5226403A (en) | Method of using an id saw slicing machine for slicing a single crystal ingot and an apparatus for carrying out the method | |
| EP4029670A1 (en) | Device and method for cutting a solid substrate | |
| TWI817164B (en) | Method and apparatus for simultaneously slicing a multiplicity of slices from a workpiece | |
| CN115091640A (en) | A kind of crystal rod cutting adjustment method and device | |
| JP2000328188A (en) | Steel wire for wire saw | |
| KR100426059B1 (en) | Saw wire making superior slicing surfaces | |
| JPH0970747A (en) | Wire saw | |
| JPH09254142A (en) | Wire saw and cylindrical work-cutting method | |
| KR101736657B1 (en) | Corrugated monowire for cutting | |
| JPH06155278A (en) | Wire saw cutting method | |
| JP7753336B2 (en) | Method and apparatus for simultaneously slicing multiple slices from a workpiece - Patent Application 20070122997 | |
| JP6204166B2 (en) | Saw wire manufacturing method and manufacturing apparatus | |
| JPH0839416A (en) | Wire for wire saw | |
| JP2001293719A (en) | Method for manufacturing base plate by wire saw |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20080301 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110301 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110301 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120301 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120301 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20130301 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140301 Year of fee payment: 12 |
|
| EXPY | Cancellation because of completion of term |