[go: up one dir, main page]

JPH0753287B2 - Method for cold rolling metastable austenitic stainless steel - Google Patents

Method for cold rolling metastable austenitic stainless steel

Info

Publication number
JPH0753287B2
JPH0753287B2 JP61041464A JP4146486A JPH0753287B2 JP H0753287 B2 JPH0753287 B2 JP H0753287B2 JP 61041464 A JP61041464 A JP 61041464A JP 4146486 A JP4146486 A JP 4146486A JP H0753287 B2 JPH0753287 B2 JP H0753287B2
Authority
JP
Japan
Prior art keywords
rolling
pass
amount
target
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61041464A
Other languages
Japanese (ja)
Other versions
JPS62199214A (en
Inventor
和夫 星野
照夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP61041464A priority Critical patent/JPH0753287B2/en
Publication of JPS62199214A publication Critical patent/JPS62199214A/en
Publication of JPH0753287B2 publication Critical patent/JPH0753287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,圧延製品の硬さのバラツキを低減させ且つそ
の機械的性質を,目標板厚のもとで,目標値に的中させ
る準安定オーステナイト系ステンレス鋼の冷間圧延法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is intended to reduce variations in hardness of rolled products and to make the mechanical properties of the rolled products match a target value under a target plate thickness. The present invention relates to a cold rolling method for stable austenitic stainless steel.

〔従来の技術〕 SUS304やSUS301などに代表される準安定オーステナイト
系ステンレス鋼は焼鈍後に冷間圧延を施すことによって
高強度材を得る場合が多い。すなわち,かような準安定
オーステナイト系ステンレス鋼は冷間圧延によって一部
のオーステナイト相が硬質なマルテンサイト相に変態す
るので,オーステナイト相が加工硬化されると共に硬質
なマルテンサイト相の誘起によって(この加工誘起マル
テンサイトを以後α′と記す),硬さ,耐力,引張強さ
などの強度特性を著しく上昇させることができる。ま
た,これらの高強度材は高強度特性に加えて耐食性,耐
熱性にも優れていることから,ばね材として幅広く使用
されると共にスチールベルト用材および車両用材として
も広く用いられている。
[Prior art] Metastable austenitic stainless steels such as SUS304 and SUS301 are often obtained by annealing and then cold rolling to obtain high strength materials. That is, in such a metastable austenitic stainless steel, a part of the austenite phase is transformed into a hard martensite phase by cold rolling, so that the austenite phase is work hardened and the hard martensite phase is induced (this (Processing-induced martensite is hereinafter referred to as α '), and strength properties such as hardness, proof stress, and tensile strength can be significantly increased. Moreover, since these high-strength materials have excellent corrosion resistance and heat resistance in addition to high-strength characteristics, they are widely used as spring materials and steel belts and vehicle materials.

かような準安定オーステナイト系ステンレス鋼の高強度
冷延材の製造にさいしては,製造機会が異なっても同一
用途向材ではその機械的性質が安定して一定の値をもつ
ことが必要であり,また各種用途向に必要とされる目標
値に合致した機械的性質が冷間圧延の適切な制御によっ
て得られることが望ましい。ところが,この冷延材の機
械的性質に大きな影響を与えるα′量は成分,圧下率,
圧延温度などによって大きく影響されるので,目標とす
る機械的性質を得るに必要なα′量に制御することが困
難である。とくに,冷延材製品は板厚が設定されること
が多く,この設定板厚を満足させた状態で目標α′量に
制御することには多くの困難を伴う。従来の準安定オー
ステナイト系ステンレス鋼の冷延技術において,目標と
する機械的性質に的中させるように冷延材中のα′量を
制御する技術はまだ確立されているとは言えない。
In the production of such high-strength cold-rolled materials of metastable austenitic stainless steel, it is necessary for the materials for the same application to have stable and constant mechanical properties even if the production opportunities are different. It is desirable that mechanical properties that meet the target values required for various applications be obtained by appropriate control of cold rolling. However, the amount of α ′ that has a great effect on the mechanical properties of this cold rolled material is
Since it is greatly affected by the rolling temperature and other factors, it is difficult to control the α'value required to obtain the desired mechanical properties. In particular, the thickness of cold-rolled products is often set, and it is difficult to control the target amount of α'when the set thickness is satisfied. In the conventional cold-rolling technology for metastable austenitic stainless steel, it cannot be said that the technology for controlling the amount of α'in the cold-rolled material so as to hit the target mechanical properties has been established.

例えばこの種の材料の冷間圧延法においては鋼の強化法
に関する技術が殆んどであり(例えば,特開昭48−4062
4号公報,特開昭49−115929号公報,特公昭49−16011号
公報および特開昭54−120223〜120225号公報など),冷
延材の機械的性質を目標値に安定して的中させることに
関連した圧延法に関する技術はほとんど認められず,僅
かに,特開昭55−61303号公報に提案された圧延時の圧
延油の温度を制御する方法,さらには,特開昭54−8112
0号公報に提案されたように圧延油温度の制御を行いな
がら且つMs点と冷延率との相関,Ms点と圧延速度の相関
とから材料の成分組成,冷延率および圧延速度を定めて
冷間圧延する方法が認められるにすぎない。
For example, in the cold rolling method of this kind of material, most of the technologies related to the strengthening method of steel (for example, JP-A-48-4062).
No. 4, JP-A-49-115929, JP-B-49-16011, JP-A-54-120223 to 120225, etc.), the mechanical properties of cold-rolled material are stably hit with target values. Almost no technology related to the rolling method has been recognized, and the method of controlling the temperature of rolling oil during rolling proposed in JP-A-55-61303, and further, JP-A-54- 8112
While controlling the rolling oil temperature as proposed in Japanese Patent No. 0, the composition of the material, the cold rolling rate and the rolling rate were determined from the correlation between the Ms point and the cold rolling rate and the correlation between the Ms point and the rolling rate. Only the method of cold rolling is recognized.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は従来の準安定オーステナイト系ステンレス鋼の
冷延技術では達成しえなかった課題,すなわち,冷間圧
延時に誘起するマルテンサイト量の調整を図りながら圧
延し,得られる冷延材最終製品の機械的性質を目標とす
る機械的性質に的中させることを課題とするものであ
り,このために従来では未解決であった次のような問題
点を解決しようとするものである。
The present invention has a problem that cannot be achieved by the conventional cold-rolling technology for metastable austenitic stainless steels. That is, the final product of cold-rolled material obtained by rolling while adjusting the amount of martensite induced during cold rolling is obtained. The challenge is to match the mechanical properties with the target mechanical properties, and for this reason, the following problems that have not been solved in the past are solved.

既述のようにSUS304やSUS301などの準安定オーステナイ
ト系ステンレス鋼を高強度材として使用する場合には,
冷間圧延によって高強度を保有させることが必要である
が,その強度にはオーステナイト相の加工硬化に加えて
加工誘起マルテンサイト(α′)相の存在が大きく関与
し,硬さは固溶強化元素であるCおよびN量,圧延率,
α′量によって実質上決まる。CおよびN量は製鋼時に
決まる変動値であり,圧延率は圧延前の板厚と製造品板
厚(設定値)にて決まる変動値である。またα′量は成
分(γ安定度)および圧延率(および各パス当りの圧延
配分)に加えて各パス圧延時の材料温度に著しく影響さ
れる。この材料温度は圧延時の大気温度,ロール温度,
圧延油温度などの要因のほかに,圧延速度やパス当りの
圧下量などのその時の圧延条件によっても変動する。し
たがって,このような多数の変動要因のすべてを目標
α′量が得られるように,ひいては目標硬さが得られる
ように個別に制御することはお互いの要因が相互に関与
し合うことからも,非常に困難な問題を含んでいる。
As mentioned above, when using metastable austenitic stainless steels such as SUS304 and SUS301 as high-strength materials,
It is necessary to maintain a high strength by cold rolling, but the strength is strongly affected by the presence of work-induced martensite (α ') phase in addition to the work hardening of the austenite phase, and the hardness is solid solution strengthened. C and N content of elements, rolling rate,
It is substantially determined by the amount of α '. The amounts of C and N are fluctuation values determined at the time of steel making, and the rolling ratio is a fluctuation value determined by the plate thickness before rolling and the product plate thickness (set value). Further, the amount of α'is significantly influenced by the material temperature during each pass rolling in addition to the component (γ stability) and the rolling rate (and the rolling distribution per each pass). The material temperature is the atmospheric temperature during rolling, the roll temperature,
In addition to factors such as rolling oil temperature, it also varies depending on the current rolling conditions such as rolling speed and amount of reduction per pass. Therefore, in order to obtain the target α ′ amount and thus to obtain the target hardness, it is necessary to control all of these numerous factors of variation individually, because the factors of each other interact with each other. It contains a very difficult problem.

例えば特開昭55−61303号公報のように圧延油の温度だ
けを制御してみても目標硬さを得るに必要なα′量に的
中させることはできない。また特開昭54−81120号公報
に開示されている方法ではα′の生成量に直接関与する
材料温度が考慮されていないので正確に目標α′量に的
中させることは難しい。圧延前の材料温度を制御するこ
とも考えられるが,単に圧延前の材料温度を制御して
も,圧延速度,各パス当りの圧下量,圧延速度などによ
って各パス圧延時に発生する変形熱(この変形熱は変形
量と材料強度に関連すると共にα′量の発生量とも関連
する)を考慮したことにはならず,したがって,この材
料温度の制御だけを行っても目的とする硬さを正確に的
中させることは実質上困難であり,また機械的性質の安
定化を図ることも困難である。
For example, as in Japanese Patent Laid-Open No. 55-61303, it is not possible to hit the amount of α'necessary to obtain the target hardness by controlling only the temperature of the rolling oil. In the method disclosed in JP-A-54-81120, it is difficult to accurately hit the target amount of α ', since the material temperature directly related to the amount of α'formed is not taken into consideration. It is possible to control the material temperature before rolling, but even if the material temperature before rolling is simply controlled, the deformation heat generated during each pass rolling (depending on the rolling speed, the amount of reduction per pass, the rolling speed, etc.) Deformation heat is not related to the amount of deformation and material strength, and is also related to the amount of α'generation.) Therefore, even if only the material temperature is controlled, the target hardness can be accurately determined. It is practically difficult to hit the target, and it is also difficult to stabilize the mechanical properties.

本発明はこのような多数の要因によって影響を受ける冷
延時のα′量を目標α′量となるようにひいては目標硬
さの冷延材となるように制御する技術の確立を目的とす
るものである。
An object of the present invention is to establish a technique for controlling the amount of α'during cold rolling which is influenced by such a number of factors so as to reach a target amount of α'and thus a cold rolled material having a target hardness. Is.

〔問題点を解決する手段〕[Means for solving problems]

本発明によれば,前記の目的を達成する冷間圧延方法と
して,準安定オーステナイト系ステンレス鋼の焼鈍まま
の鋼帯を多パス冷延によって目標板厚にまで冷間圧延す
るさいに,圧延機を通過する鋼帯の各パスでの圧延速度
と圧下量とを操作因子として設定された目標硬さおよび
目標板厚を有する冷延材製品を製造する方法であって,
冷延材製品の目標硬さに対応する加工誘起マルテンサイ
ト量(α′量)と圧延率との予め求めておいた相関を制
御目標パターンとして使用すること, 各パスにおける入側と出側でのα′量,板厚および材料
温度を計測して得た計測情報,並びに各パスにおける圧
延速度,圧下量および圧延油温度の圧延情報をコンピュ
ーターに入力すること, 該コンピューターにおいて該入力情報を演算したうえ前
記の目標パターン値と比較して目標パターン値に近似さ
せるに必要な次パス圧延での圧延速度と圧下量を算出す
ること, この算出信号に基づいて次パス圧延における圧延速度と
圧下量を制御し,そしてこの制御を最終パスまで繰り返
して目標硬さおよび目標板厚の冷延材を得ること, を特徴とする準安定オーステナイト系ステンレス鋼の冷
間圧延方法を提供する。
According to the present invention, as a cold rolling method for achieving the above object, a rolling mill is used when cold rolling an as-annealed steel strip of metastable austenitic stainless steel to a target plate thickness by multi-pass cold rolling. A method for producing a cold-rolled product having a target hardness and a target plate thickness that are set with the rolling speed and the amount of reduction in each pass of the steel strip passing through
Use the previously determined correlation between the amount of work-induced martensite (α ') corresponding to the target hardness of the cold rolled product and the rolling rate as the control target pattern. Of the α'amount, sheet thickness and material temperature, and the rolling information of rolling speed, reduction amount and rolling oil temperature in each pass, are input to a computer, and the input information is calculated by the computer. In addition, the rolling speed and the reduction amount in the next pass rolling necessary to approximate the target pattern value to the above target pattern value are calculated, and the rolling speed and the reduction amount in the next pass rolling are calculated based on this calculation signal. Cold-rolled material of target hardness and target thickness by repeating this control until the final pass to obtain cold-rolled material of metastable austenitic stainless steel. To provide a method.

本発明の実施に際しては,準安定オーステナイト系ステ
ンレス鋼冷延材製品の機械的性質に及ぼす成分の影響,
冷延率の影響およびα′量の影響を定量的に把握してお
くこと,各パス圧延時に生成するα′量に及ぼす成分
(γ安定度)の影響,そのパス迄の累積圧下率の影響,
そのパスの圧延条件(圧延時の材料温度,圧延速度およ
び圧下量/パス)の影響を定量的に把握しておくこと,
そして,冷延過程中の鋼帯のα′量を圧延機入側と出側
で連続測定し且つα′相の生成量に直接関与する材料温
度についても圧延機入側と出側で連続測定することが少
なくとも必要である。
In carrying out the present invention, the influence of the components on the mechanical properties of the metastable austenitic stainless steel cold rolled product,
Quantitative understanding of the effect of cold rolling rate and the effect of α ′ amount, the effect of the component (γ stability) on the α ′ amount produced during each pass rolling, the effect of the cumulative rolling reduction up to that pass ,
Quantitatively grasp the influence of the rolling conditions (material temperature during rolling, rolling speed and rolling amount / pass) of that pass,
Then, the α'amount of the steel strip during the cold rolling process is continuously measured on the inlet side and the outlet side of the rolling mill, and the material temperature directly related to the production amount of α'phase is also continuously measured on the inlet side and the outlet side of the rolling mill. It is necessary to do at least.

以下にこれらの事項について説明する。なお,第4図に
本発明法を実施する場合の制御フローの一例を示した。
These items will be described below. Note that FIG. 4 shows an example of a control flow when the method of the present invention is carried out.

下記の(1)式は,本発明者らがC量とN量およびγ安
定度の異なるSUS301を用いて,硬さ(Hv)に及ぼす成
分,圧延率およびα′量の影響をX線回折による微視的
組織の調査により調べた結果を数式化したものである。
また,第1図はこの調査の一例として圧延率を変えた場
合のα′量と硬さとの関係を示したものである。この第
1図の関係はほぼ(1)式にて示される。
The following formula (1) shows that the inventors of the present invention use the SUS301 having different amounts of C and N and γ stability to determine the influence of the component, rolling rate and α ′ amount on the hardness (Hv) by X-ray diffraction. It is a mathematical expression of the results of the examination by the investigation of the microscopic organization.
As an example of this investigation, Fig. 1 shows the relationship between the amount of α'and the hardness when the rolling rate is changed. The relationship in FIG. 1 is almost expressed by the equation (1).

Hv=[{90+1300(C%+1/2N%)1/2}・0.06 +100]×Vα′+1800×{0.020×0.35 +[8.7×10-4+0.04(C%+1/2N%)] ×Vα′1/2−0.00628}0.36×(1−Vα′) ・・・
(1) ここで,Hv:硬さ, Vα′:加工誘起マルテンサイト(α′)の体積比 :圧延による相当ひずみ量であり, CR:圧延率であり,100%圧延率を1としたものである。
Hv = [{90 + 1300 (C% + 1 / 2N%) 1/2 } ・0.06 + 100] × Vα ′ + 1800 × {0.020 × 0.35 + [8.7 × 10 -4 +0.04 (C% + 1 / 2N%)] × Vα ' 1/2 -0.00628} 0.36 x (1-Vα') ...
(1) where Hv: hardness, Vα ′: volume ratio of work-induced martensite (α ′): equivalent strain amount due to rolling, CR: rolling rate, where 100% rolling rate is 1.

(1)式は,冷延材の硬さHvは,C,N量,圧延率および
α′量によって決まることを示している。したがって,
目標製品硬さが設定され,C,N量が判り且つ圧延率が決定
されれば,製品冷延材のα′量はいくらでもあるかが計
算によって求まる。
Equation (1) shows that the hardness Hv of the cold rolled material is determined by the C, N content, rolling rate and α'content. Therefore,
Once the target product hardness is set, the C and N contents are known, and the rolling ratio is determined, it is possible to calculate by calculation how much α'a of the product cold rolled material is.

圧延率は製品板厚(設定値)と圧延前の焼鈍ままの元板
厚(変動値)によって決まる。また,圧延率を決定すれ
ば製品板厚より焼鈍ままの元板厚が必然的に決まる。す
なわち,第4図に示すように,製品情報として,成分
(C,N量),製品の目標硬さ,製品板厚が入手された場
合に,焼鈍ままの圧延前の元板厚が決定され,これによ
って圧延率が決定されると(1)式から製品冷延材の
α′量が決定される。
The rolling ratio is determined by the product sheet thickness (set value) and the original sheet thickness before annealing (variable value). Moreover, if the rolling rate is determined, the original sheet thickness as annealed is inevitably determined rather than the product sheet thickness. That is, as shown in FIG. 4, when the components (C, N content), the target hardness of the product, and the product thickness are obtained as product information, the original thickness before rolling as-annealed is determined. When the rolling rate is determined by this, the α'amount of the product cold rolled material is determined from the equation (1).

次に,圧延率とα′量との関係をパターン化する。すな
わち,前記の(1)式からその冷延材製品の必要α′量
と圧延率が決定されることになるがこれに達するまでの
各パスでのα′増量と圧下率との関係をパターン化する
(第4図中に横軸に累積圧下率(圧延率)を,そして縦
軸にα′量をとったパターンの一例を示した)。この
α′量と圧延率とのパターンが制御目標値となる。
Next, the relationship between the rolling rate and the amount of α'is patterned. That is, the required α'amount and rolling rate of the cold rolled material product are determined from the above equation (1), but the pattern of the relationship between the α'increase and the rolling reduction in each pass up to this is determined. (FIG. 4 shows an example of a pattern in which the horizontal axis represents the cumulative rolling reduction (rolling rate) and the vertical axis represents the α ′ amount). The pattern of the amount of α'and the rolling rate becomes the control target value.

この制御目標値のパターンに近づくように,各パスでの
圧延条件を制御するのであるが,その制御対象としては
圧延速度と圧下量を採用し,この圧延速度と圧下量を操
作する量(操作量)の決定にさいしては,前パスのプロ
セス情報から求めた次パスのα′量と累積圧下率が該パ
ターンの目標値にできるだけ近似するように決定する。
つまりフイードバック制御を行う。このフイードバック
制御で必要とするプロセス情報は,各パスにおける圧延
機入側と出側でのα′量の計測値,同板厚計測値および
同材料温度計測値であり,また,各パスにおける圧延速
度,圧下量,圧延油温度などの圧延条件値である。
The rolling condition in each pass is controlled so as to approach the pattern of this control target value. The rolling speed and the reduction amount are adopted as the control targets, and the amount of operation of this rolling speed and the reduction amount (operation In determining the amount, the amount of α'in the next pass obtained from the process information of the previous pass and the cumulative reduction are determined so as to be as close as possible to the target value of the pattern.
That is, feedback control is performed. The process information required for this feedback control is the measured values of the α'amount on the inlet side and the outlet side of the rolling mill in each pass, the same plate thickness measurement value, and the same material temperature measurement value. Rolling condition values such as speed, rolling reduction, rolling oil temperature, etc.

第4図にはこのフイードバック制御のフローを示してい
るが,まず,このフイードバック制御の検出部は,圧延
機12に入る鋼帯と出る鋼帯のα′量を測定するα′量測
定部1,同じく材料温度を測定する材温測定部2,および同
じく板厚を測定する板厚測定部3からなる鋼帯データ測
定部と,圧延速度測定部4および圧延油温測定部6とか
らなる圧延条件測定部とからなる。
Fig. 4 shows the flow of this feedback control. First, the detection part of this feedback control is the α'amount measuring unit 1 which measures the α'amount of the steel strip entering and leaving the rolling mill 12. A steel strip data measuring unit including a material temperature measuring unit 2 that also measures the material temperature and a plate thickness measuring unit 3 that also measures the sheet thickness, and a rolling process that includes a rolling speed measuring unit 4 and a rolling oil temperature measuring unit 6. It consists of a condition measuring unit.

ここで,鋼中のα′量の計測については,電気抵抗法や
X線回折法等が知られているが,本発明のようなオンラ
イン測定には必ずしも適さない。このため,電磁誘導を
利用した探触子式のマルテンサイト量検出計を使用し,
移動している鋼帯表面に探触子の先端を非接触式に支持
しながら計測するのが便宜である。このマルテンサイト
検出計の詳細は特願昭61−41466号(特開昭62−200262
号公報)に記載されている。これらの鋼帯データ測定部
および圧延条件測定部からの各パスごとの検出値は増幅
器7およびA/D変換器8を経てコンピューター9に入力
される。コンピューター9は,予め記録している前記の
α′量と圧延率のパターン目標値とこの入力演算値を比
較し,次パスの演算α′量がパターン目標値とできるだ
け近似するように,圧延速度制御機13および圧下量制御
機14に制御信号を出力する。これを各パス繰り返しなが
ら,終点において目標α′量と目標板厚に的中させる。
つまり途中の各パスでの圧延速度と圧下量の操作によっ
て各パスでのα′量と圧下率がパターン目標の軌道から
外れないようにフイードバック制御しながら各パスの圧
延を繰り返し,最終的に冷延材の目標硬さを得るに必要
なα′量および目標板厚に的中させる。
Here, the electrical resistance method, the X-ray diffraction method, and the like are known for the measurement of the α ′ amount in steel, but they are not necessarily suitable for the online measurement as in the present invention. For this reason, a probe-type martensite detector using electromagnetic induction is used,
It is convenient to measure while supporting the tip of the probe on the surface of the moving steel strip in a non-contact manner. The details of this martensite detector are described in Japanese Patent Application No. 61-41466 (Japanese Patent Application Laid-Open No. 62-200262).
Japanese patent publication). The detected values for each pass from the steel strip data measuring unit and the rolling condition measuring unit are input to the computer 9 via the amplifier 7 and the A / D converter 8. The computer 9 compares the previously recorded α ′ amount and the pattern target value of the rolling rate with this input calculated value, and adjusts the rolling speed so that the calculated α ′ amount of the next pass is as close as possible to the pattern target value. A control signal is output to the controller 13 and the reduction amount controller 14. By repeating this for each pass, the target α ′ amount and the target plate thickness are hit at the end point.
In other words, by controlling the rolling speed and rolling amount in each pass on the way, the α ′ amount and rolling ratio in each pass do not deviate from the trajectory of the pattern target, the rolling of each pass is repeated and the final cooling is repeated. The amount of α'needed to obtain the target hardness of the rolled material and the target plate thickness are matched.

この制御において,各パスで得られるプロセス情報(前
記の鋼帯データ測定部および圧延条件測定部からの検出
値)を次パスの圧延条件(圧延速度と圧下量)の決定に
どのように関与させるかが重要な点である。以下にこれ
を説明する。
In this control, how is the process information (detected values from the above-mentioned steel strip data measuring unit and rolling condition measuring unit) obtained in each pass involved in determining the rolling conditions (rolling speed and reduction amount) in the next pass? Is an important point. This will be explained below.

(a).各パス圧延時に生成するα′量 各パス圧延時に新たに生成するα′量(ΔVα′と記
す)は,各パス圧延後のα′量〔(Vα′)と記す〕
と各パス圧延前のα′量〔(Vα′)と記す〕との差
であり, このΔVα′は,(Vα′)1,各パス圧延前の材温
(Tinと記す),各パス圧延時の圧下量(dと記
す)に主として関与し,次の(2)式で表される。
(A). The amount of α'generated during each pass rolling The amount of α'newly generated during each pass rolling (denoted as ΔVα ') is the amount of α'after each pass rolling [denoted as (Vα') 2 ].
And the amount of α'before each pass rolling [denoted as (Vα ') 1 ], and ΔVα' is (Vα ') 1 , material temperature before each pass rolling (denoted as T in ), each primarily involved in rolling reduction at the time of pass rolling (referred to as d i), it is expressed by the following equation (2).

ΔVα′=(Vα′)−(Vα′) ={As・si2 Bs/(1+As・si2 Bs)} −(Vα′) ・・・(2) ここで,Asは鋼中のNi当量(Nieq)によって決まる定数
であり, As=−0.405×Nieq+8.82 但し,Nieq=Ni%+0.35Si%+0.5Mn%+0.65Cr% +12.6(C%+N%) で与えられる。
ΔVα ′ = (Vα ′) 2 − (Vα ′) 1 = {As · si2 Bs / (1 + As · si2 Bs )} − (Vα ′) 1 (2) where As is the Ni equivalent of steel It is a constant determined by (Nieq) and is given by As = −0.405 × Nieq + 8.82, where Nieq = Ni% + 0.35Si% + 0.5Mn% + 0.65Cr% + 12.6 (C% + N%).

またBsは1.14の定数であり,si2は次の(3)式にし
て示される圧延による相当ひずみ量である。si2 ={(Vα′/Vγ)1/As}1/Bs+k・d ・・
・(3) ここで,Vγはオーステナイト量であり,これは(1−V
α′)で表される。
Bs is a constant of 1.14, and si2 is the equivalent strain amount due to rolling shown in the following equation (3). si2 = {(Vα '/ Vγ) 1 / As} 1 / Bs + k ・ d i・ ・
・ (3) where Vγ is the amount of austenite, which is (1-V
It is represented by α ').

ただし,kは各パス圧延前の材料温度に依存し k=a−b・Tin ・・・(4) で表される。aおよびbは定数であり,それぞれ3.1お
よび0.025で表される。
However, k depends on the material temperature before each pass rolling and is represented by k = ab−T in (4). a and b are constants and are represented by 3.1 and 0.025, respectively.

このkは,各パス圧延時に生成するα′量が各パス圧延
時の材料温度に依存するので,各パス圧延時の圧延ひず
みdを材料温度に関連させて標準化させるための指
標であり,kの材料温度依存性に及ぼすγ安定度の影響は
無視し得る。
This k is an index for standardizing the rolling strain d i in each pass rolling in relation to the material temperature, because the amount of α ′ generated in each pass rolling depends on the material temperature in each pass rolling. The effect of γ stability on the material temperature dependence of k is negligible.

第2図は各パスでの圧下率/パス(d)と圧延速度を
変えた場合のα′量の変化を示したものである。第2図
よりα′量は各パスでの圧下量と圧延速度に著しく影響
されることが明らかである。したがって,前記の(2)
〜(4)式によって各パス後のα′量を計算によって求
め,この演算値が前記のα′量と圧延率のパターン目標
値にできるだけ近似するように次パスの圧下量と圧延速
度を制御すればよいことになる。
FIG. 2 shows the reduction ratio / pass (d) in each pass and the change in the amount of α'when the rolling speed is changed. It is clear from Fig. 2 that the amount of α'is significantly affected by the rolling amount and rolling speed in each pass. Therefore, (2) above
~ The amount of α'after each pass is calculated by the equation (4), and the rolling amount and rolling speed of the next pass are controlled so that the calculated value is as close as possible to the pattern target value of the amount of α'and the rolling rate. It should be done.

(b).圧延時の材料温度変化 つぎに,各パス圧延時の材料温度変化および各パス圧延
後から次パス圧延前までの材料温度変化を推定すること
が次パス圧延時の圧延条件を決定するうえで必要である
が,これらは,発熱分としてのγ相,α′相の変形熱お
よびγ相からα′相への変態熱と,吸熱分としての圧延
油による冷却および各圧延パス間での自然放熱によって
決定される。発熱分のうち,γ相とα′相の変形熱は基
本的にはγ相,α′相を変形させる変形熱でありこれら
はγ相およびα′相の各パス圧延時の固有の変形に要す
る強度,γ相の量とα′相の量,および各パス圧延によ
る変形量によると考えられるが,各パス圧延時の硬さお
よび変形量との関連で処理することができる。またγ相
からα′相への変態熱はb・ΔVα′(bは定数)で処
理することができる。したがって,発熱分(ΔTup) は,ΔTup=f(Hv,d,ΔVα′) =a・(Hv・d)+b・ΔVα′ ・・(5) ただし,aおよびbは板厚により変動する係数である。
(B). Material temperature change during rolling Next, it is necessary to estimate the material temperature change during each pass rolling and the material temperature change after each pass rolling and before the next pass rolling in order to determine the rolling conditions during the next pass rolling. These are the heat of deformation of the γ phase and the α ′ phase as heat generation, the heat of transformation from the γ phase to the α ′ phase, the cooling with rolling oil as the heat absorption, and the natural heat dissipation between each rolling pass. Determined by Of the heat generated, the deformation heats of the γ phase and α ′ phase are basically the deformation heats that deform the γ phase and α ′ phase, and these are the deformations unique to each pass rolling of the γ phase and α ′ phase. It is considered that it depends on the required strength, the amount of γ phase and the amount of α ′ phase, and the amount of deformation by each pass rolling, but it can be processed in relation to the hardness and the amount of deformation during each pass rolling. The heat of transformation from the γ phase to the α'phase can be treated with b · ΔVα '(b is a constant). Therefore, the heat generation amount (ΔT up ) is ΔT up = f (Hv, d, ΔVα ′) = a · (Hv · d) + b · ΔVα ′ ··· (5) However, a and b vary depending on the plate thickness. It is a coefficient.

一方,吸熱分としての圧延油の冷却は, =(k′/S)・(Tin−ToiL)で表される。On the other hand, cooling of the rolling oil as an endothermic component is represented by = (k '/ S) · (T in -T oiL).

ただし,Tinは各パス圧延前の材温,ToiLは油温,Sは圧延
速度(m/min),k′は板厚により変動する係数である。
Where T in is the material temperature before each pass rolling, T oiL is the oil temperature, S is the rolling speed (m / min), and k ′ is a coefficient that varies depending on the strip thickness.

また各圧延パス間での自然放熱は, =a+(b−C・S)・Toutで表される。Also, the natural heat dissipation between each rolling pass is expressed as = a + (b-C * S) * Tout .

ただし,a,b,Cは定数でありToutは各パス圧延直後の材料
温度(℃)である。
However, a, b and C are constants and T out is the material temperature (° C) immediately after each pass rolling.

これらの結果から,各パス圧延時の材料温度の変化(Δ
T)は, ΔT=a・(Hv・d)+b・ΔVα′ −(k′/S)・(Tin−ToiL) ・・・(6) で示され,そして各圧延のパス間での自然放熱温度(Δ
TDOWN)は, ΔTDOWN=a+(b−C・S)・Tout ・・(7) で示される。したがって,次パス圧延時の入側材温(T
IN(N))は, TIN(N)=Tin+ΔTup−ΔTDOWN ・・(8) にて示される。
From these results, the change in material temperature during each pass rolling (Δ
T) is given by ΔT = a · (Hv · d) + b · ΔVα ′-(k ′ / S) · (T in −T oiL ) ... (6), and between each rolling pass Natural heat dissipation temperature (Δ
T DOWN ) is represented by ΔT DOWN = a + (b−C · S) · T out ··· (7). Therefore, the material temperature at the inlet side (T
IN (N) ) is given by T IN (N) = T in + ΔT up −ΔT DOWN ··· (8).

第3図は各パスでの圧下率/パス(d)と圧延速度を
変えた場合の次パス圧延時のロール入側での材料温度
(入り材温と言う)の変化を示したものである。第3図
のように次パス圧延時の入り材温は各パスでの圧下量と
圧延速度に著しく影響される。したがって,任意のパス
における圧延後の材料温度とα′量を実測し,前記
(5)〜(8)式によって次パス圧延時の入り材温を求
め,この計算値を用いて前記(2)〜(4)式によって
各パス圧延後のα′量を計算で推定できる。より具体的
には,(8)式を(4)式に代入し,(2)式を用い
て,次パスのΔVα′を計算で推定できる。これによ
り,何パス後までも推測することが可能となる。
FIG. 3 shows changes in the rolling reduction / pass (d) at each pass and the material temperature (referred to as the entering material temperature) at the roll entrance side during the next pass rolling when the rolling speed is changed. . As shown in FIG. 3, the incoming material temperature at the time of the next pass rolling is significantly affected by the rolling amount and rolling speed at each pass. Therefore, the material temperature after rolling and the amount of α'in any pass are measured, the entering material temperature at the time of the next pass is calculated by the above equations (5) to (8), and the calculated value is used to calculate the above (2). The amount of α ′ after each pass rolling can be estimated by calculation according to the equation (4). More specifically, by substituting the equation (8) into the equation (4) and using the equation (2), ΔVα ′ of the next path can be estimated by calculation. This makes it possible to guess even after many passes.

実際には,各パス圧延後に実測した材料温度とα′量を
ベースにして,どのような圧延条件(圧下量と圧延速
度)とすれば,次パスのα′量がどうなるかを演算す
る。そして,この演算値のうち,α′量と圧延率のパタ
ーン目標値にできるだけ近似一致するような次パスの圧
延条件(圧下量と圧延速度)の演算値を選択し,この条
件で圧延するという予測制御圧延を行ない,この制御を
最終パスまで繰り返すことにより目標値に近いα′量を
有する製品材を得ることができる。
Actually, based on the material temperature and the amount of α'measured after each pass rolling, what rolling condition (reduction amount and rolling speed) will be used to calculate what the amount of α'in the next pass will be. Then, of these calculated values, the calculated values of the rolling conditions (reduction amount and rolling speed) for the next pass that are as close as possible to the pattern target values of the α ′ amount and rolling rate are selected, and rolling is performed under these conditions. By performing predictive controlled rolling and repeating this control until the final pass, it is possible to obtain a product material having an α ′ amount close to the target value.

なお,この制御を行なうにあたり,α′量と圧延率の目
標パターンは当該圧延設備で標準的な圧延条件で得られ
るものを設定しておく。さらに,選択できる圧延条件,
すなわちパス当たりの圧下量および圧延速度の上下限
値,を設備仕様に会うように設定する。そして,演算は
圧下率は例えば1%きざみ,圧延速度は例えば5m/分間
隔で繰り返し演算を行い,そのうち最も目標パターンに
近いα′量が得られる演算値で且つ標準の圧延条件に近
い演算圧延条件を選択し,これで圧延を行なうように設
定し,目標の製品板厚になるまで繰り返し圧延する。
When performing this control, the target pattern of the α'amount and rolling rate is set so that it can be obtained under standard rolling conditions in the rolling facility. In addition, you can choose rolling conditions,
That is, the amount of reduction per pass and the upper and lower limits of rolling speed are set so as to meet the equipment specifications. Then, the rolling reduction is performed in increments of 1%, for example, and the rolling speed is repeatedly calculated at intervals of 5 m / min, for example. An arithmetic value that obtains the α ′ amount closest to the target pattern and is close to standard rolling conditions Select the conditions, set it to roll with this, and repeat rolling until the target product thickness is reached.

以上のようにして,本発明によると準安定オーステナイ
ト計ステンレス鋼から,ばね,スチールベルト,車両な
どの高強度材製品を冷間圧延によって製造する場合に,
目標とする機械的性質の冷延材が目標とする板厚で精度
よく且つ安定して製造することができるようになり,加
工誘起マルテンサイトの生成量の変動によって機械的性
質が大きく変化する準安定オーステナイト系ステンレス
鋼の精密冷間圧延技術の進歩に貢献するところは多大な
ものがあると思われる。
As described above, according to the present invention, when high strength material products such as springs, steel belts and vehicles are manufactured by cold rolling from metastable austenitic stainless steel,
A cold-rolled material with the target mechanical properties can now be manufactured accurately and stably with the target plate thickness, and the quasi-mechanical properties that greatly change due to fluctuations in the amount of process-induced martensite produced. It seems that there is a great deal of contribution to the progress of precision cold rolling technology for stable austenitic stainless steel.

【図面の簡単な説明】[Brief description of drawings]

第1図はSUS301の冷間圧延における圧延率を変えた場合
のα′量と硬さとの関係を示す図,第2図は同じく各パ
ス圧延時の圧下率/パス(d)と圧延速度を変えた場
合のα′量の変化を示す図,第3図は同じく各パス圧延
時の圧下率/パスと圧延速度を変えた場合の入り側材温
の変化を示す図,第4図は本発明法の制御フロー図であ
る。
Fig. 1 shows the relationship between α'value and hardness when changing the rolling ratio in cold rolling of SUS301, and Fig. 2 shows the rolling reduction / pass (d) and rolling speed at each pass rolling. Fig. 3 is a diagram showing changes in the amount of α'when changed, Fig. 3 is a diagram showing changes in rolling reduction / pass at each pass rolling, and changes in inlet side material temperature when the rolling speed is changed. It is a control flow chart of an invention method.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21D 7/02 E 7217−4K Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C21D 7/02 E 7217-4K

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】準安定オーステナイト系ステンレス鋼の焼
鈍ままの鋼帯を多パス冷延によって目標板厚にまで冷間
圧延するさいに,圧延機を通過する鋼帯の各パスでの圧
延速度と圧下量とを操作因子として設定された目標硬さ
および目標板厚を有する冷延材製品を製造する方法であ
って, 冷延材製品の目標硬さに対応する加工誘起マルテンサイ
ト量(α′量)と圧延率との予め求めておいた相関を制
御目標パターンとして使用すること, 各パスにおける入側と出側でのα′量,板厚および材料
温度を計測して得た計測情報,並びに各パスにおける圧
延速度,圧下量および圧延油温度の圧延情報をコンピュ
ーターに入力すること, 該コンピューターにおいて該入力情報を演算したうえ前
記の目標パターン値と比較して目標パターン値に近似さ
せるに必要な次パス圧延での圧延速度と圧下量を算出す
ること, この算出信号に基づいて次パス圧延における圧延速度と
圧下量を制御し,そしてこの制御を最終パスまで繰り返
して目標硬さおよび目標板厚の冷延材を得ること, を特徴とする準安定オーステナイト系ステンレス鋼の冷
間圧延方法。
1. When cold rolling an as-annealed steel strip of a metastable austenitic stainless steel to a target strip thickness by multi-pass cold rolling, the rolling speed at each pass of the steel strip passing through the rolling mill is A method for producing a cold-rolled product having a target hardness and a target plate thickness set by using the reduction amount as an operation factor, wherein the amount of work-induced martensite (α ′ corresponding to the target hardness of the cold-rolled product is Amount) and the rolling ratio obtained in advance as the control target pattern, and the measurement information obtained by measuring the α ′ amount, the plate thickness and the material temperature on the inlet and outlet sides in each pass, In addition, by inputting rolling information such as rolling speed, reduction amount and rolling oil temperature in each pass into a computer, the input information is calculated in the computer and compared with the target pattern value to approximate the target pattern value. To calculate the rolling speed and reduction amount in the next pass rolling required for the purpose, control the rolling speed and reduction amount in the next pass rolling based on this calculation signal, and repeat this control until the final pass to obtain the target hardness and A cold rolling method for metastable austenitic stainless steel, characterized in that a cold rolled material having a target thickness is obtained.
JP61041464A 1986-02-28 1986-02-28 Method for cold rolling metastable austenitic stainless steel Expired - Lifetime JPH0753287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041464A JPH0753287B2 (en) 1986-02-28 1986-02-28 Method for cold rolling metastable austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041464A JPH0753287B2 (en) 1986-02-28 1986-02-28 Method for cold rolling metastable austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPS62199214A JPS62199214A (en) 1987-09-02
JPH0753287B2 true JPH0753287B2 (en) 1995-06-07

Family

ID=12609096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041464A Expired - Lifetime JPH0753287B2 (en) 1986-02-28 1986-02-28 Method for cold rolling metastable austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPH0753287B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415722B1 (en) * 1999-12-22 2004-01-31 주식회사 포스코 a method of manufacturing austenite stainless steel with high strength
WO2002085548A1 (en) * 2001-04-17 2002-10-31 Nisshin Steel Co., Ltd. Production method of belt for stainless steel continuously variable transmission belt
JP4609197B2 (en) * 2005-06-23 2011-01-12 株式会社日立製作所 Plate thickness controller
KR101056235B1 (en) 2008-11-25 2011-08-11 주식회사 포스코 Prediction of Material Properties of Austenitic Stainless Steel Cold Rolled Products

Also Published As

Publication number Publication date
JPS62199214A (en) 1987-09-02

Similar Documents

Publication Publication Date Title
Li et al. A computational model for the prediction of steel hardenability
Kusiak et al. Modelling of microstructure and mechanical properties of steel using the artificial neural network
Somani et al. Enhanced mechanical properties through reversion in metastable austenitic stainless steels
JP4752764B2 (en) Material control method and apparatus for rolling, forging or straightening line
Hodgson Microstructure modelling for property prediction and control
CN101389417A (en) Method of heating control in steel sheet production line and apparatus therefor
JPH0753287B2 (en) Method for cold rolling metastable austenitic stainless steel
Kumar et al. A model for the estimation of hardness of laser bent strips
Choi et al. An approach to predict the depth of the decarburized ferrite layer of spring steel based on measured temperature history of material during cooling
Xu et al. Artificial neural network prediction of retained austenite content and impact toughness of high-vanadium high-speed steel (HVHSS)
Zhu et al. Rapid alloy prototyping for strip steel development: DP800 steel case study
Szeliga et al. Accounting for the Inhomogeneity of Deformation in Identification of Microstructure Evolution Model/Niejednorodność Odkształcenia WI Dentyfikacji Modelu Rozwoju Mikrostruktury
US6679626B2 (en) Method for determining the thermal materials properties of shaped metal parts
Pohjonen et al. Semi-automatic optimization of steel heat treatments for achieving desired microstructure
Novák et al. The effect of strain rate on position of forming limit curve
Singh et al. Predicting microstructural evolution and yield strength of microalloyed hot rolled steel plate
Korczak et al. Investigation of microstructure prediction during experimental thermo-mechanical plate rolling
Baochun et al. Analysis of the methods to calculate austenite static recrystallization volume fraction
Terčelj et al. Neural network analysis of the influence of chemical composition on surface cracking during hot rolling of AISI D2 tool steel
Kaspar et al. Determination of CCT diagrams by thermal analysis after simulated hot deformation processes
CN113795601A (en) Method for heat treating a metal product
Vasilyev et al. MODELING MICROSTRUCTURE EVOLUTION DURING THERMOMECHANICAL PROCESSING AND HEAT TREATMENT OF STEELS AND PREDICTING THEIR MECHANICAL PROPERTIES.
Mazur et al. Investigation and numerical modeling of the process of cold rolling HSLA steels
Junpradub et al. Mathematical modeling to predict the mechanical properties of hot rolled steel sheets
Hayashi et al. In-situ laser ultrasonics measurements of ferrite formation during stepped cooling of a 0.1 C-2Mn dual phase steel