[go: up one dir, main page]

JPH0758040A - Susceptor for phase growth apparatus - Google Patents

Susceptor for phase growth apparatus

Info

Publication number
JPH0758040A
JPH0758040A JP22667993A JP22667993A JPH0758040A JP H0758040 A JPH0758040 A JP H0758040A JP 22667993 A JP22667993 A JP 22667993A JP 22667993 A JP22667993 A JP 22667993A JP H0758040 A JPH0758040 A JP H0758040A
Authority
JP
Japan
Prior art keywords
susceptor
concave portion
depth
phase growth
sample substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22667993A
Other languages
Japanese (ja)
Other versions
JP3004846B2 (en
Inventor
Taira Shin
平 辛
Tateo Hayashi
健郎 林
Katsuyuki Takamura
勝之 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUYAMA CERAMICS KK
Coorstek KK
Original Assignee
TOKUYAMA CERAMICS KK
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUYAMA CERAMICS KK, Toshiba Ceramics Co Ltd filed Critical TOKUYAMA CERAMICS KK
Priority to JP5226679A priority Critical patent/JP3004846B2/en
Publication of JPH0758040A publication Critical patent/JPH0758040A/en
Application granted granted Critical
Publication of JP3004846B2 publication Critical patent/JP3004846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a susceptor for a gas phase growth apparatus capable of reducing deformation of a semiconductor wafer and heating the same uniformly. CONSTITUTION:In a susceptor 20 for a gas phase growth apparatus including a circular counterbore part 21 for supporting a flat portion of a semiconductor wafer 22, there is provided an annular protrusion 30 concentric with the circular counterbore part 21. The center line of the annular protrusion 30 is located in the range of 65-75% of the radius of the counterbore part 21, and recessed cross section portions are formed inside and outside the annular protrusion 30. The depth delta1 of the outer recessed portion 32 is 1.2-2.0 times the depth delta2 of the inner recessed portion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハを支持す
る気相成長装置用サセプタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a susceptor for a vapor phase growth apparatus which supports a semiconductor wafer.

【0002】[0002]

【従来の技術】半導体装置の製造に使用するエピタキシ
ャル装置やCVD装置等の気相成長装置は、試料基板の
表面の高品質化の要求に伴い、気相成長において試料基
板全体の温度を均一にすることが要求される。
2. Description of the Related Art A vapor phase growth apparatus such as an epitaxial apparatus or a CVD apparatus used for manufacturing a semiconductor device is required to make the temperature of the entire sample substrate uniform in the vapor phase growth due to the demand for high quality of the surface of the sample substrate. Required to do so.

【0003】図5に示すように、気相成長装置において
試料基板12は、サセプタ10に載置された状態で高周
波誘導加熱方式により加熱されたサセプタ10から熱を
受ける。
As shown in FIG. 5, in the vapor phase growth apparatus, the sample substrate 12 receives heat from the susceptor 10 heated by the high frequency induction heating method while being placed on the susceptor 10.

【0004】試料基板12をサセプタの平面に載せる場
合、試料基板12の軸(厚み)方向の温度勾配及びその
自重により試料基板12に反りが生じ、試料基板12の
径方向の受熱が不均一になるという問題がある。従来
は、この問題を解決するために、図6に示すように、サ
セプタ10の上に座ぐり部11を加工して設けている。
座ぐり部11の底面14を平面ではなく凹面(球面)に
加工し、反りが生じた時に試料基板12をサセプタ10
に面的に接触させようとしている。
When the sample substrate 12 is placed on the flat surface of the susceptor, the sample substrate 12 is warped due to the temperature gradient in the axial (thickness) direction of the sample substrate 12 and its own weight, and the heat received in the radial direction of the sample substrate 12 becomes uneven. There is a problem of becoming. Conventionally, in order to solve this problem, as shown in FIG. 6, a counterbore 11 is processed and provided on the susceptor 10.
The bottom surface 14 of the spot facing portion 11 is processed into a concave surface (spherical surface) instead of a flat surface, and when warpage occurs, the sample substrate 12 is moved to the susceptor 10
I am trying to make a face-to-face contact with.

【0005】また、特公平5−40457号公報には、
加熱された支持台からの伝導熱および輻射熱により被気
相成長基板を加熱する縦型気相成長装置において、支持
台上に設置する基板載置用の座ぐり部を、座ぐり部に同
心する一つの円形稜線を設け、その稜線の内側と外側に
半径方向の断面が円弧上にくぼんだ凹面底の内側空所と
外側空所を形成し、上記円形稜線にて基板を支持するよ
うに構成した気相成長装置用支持台が記載されている。
さらに、基板を支持する円形稜線が基板半径Rの0.6
〜0.9倍の位置に設けられ、基板を支持する円形稜線
により形成された内側空所の凹面底の基板支持面からの
深さが25〜150μmであり、基板を支持する円形稜
線により形成された外側空所の凹面底の基板支持面から
の深さが30〜70μmであることが記載されている。
このように構成された気相成長装置用支持台によって被
気相成長基板の裏面周辺へのシリコンの堆積を排除し、
かつスリップの発生を低減できることが記載されてい
る。
Further, Japanese Patent Publication No. 5-40457 discloses that
In a vertical type vapor phase growth apparatus that heats a substrate to be vapor-deposited by conduction heat and radiant heat from a heated support table, a counterbore for mounting a substrate on the support is concentric with the counterbore. One circular ridge line is provided, and the inner and outer cavities of the concave bottom whose radial cross section is recessed on an arc are formed inside and outside the ridge line, and the circular ridge line supports the substrate. A support for a vapor phase growth apparatus is described.
Furthermore, the circular ridge supporting the substrate has a substrate radius R of 0.6.
Depth from the substrate supporting surface of the concave bottom of the inner space formed by the circular ridge line that supports the substrate is 25 to 150 μm, and is formed by the circular ridge line that supports the substrate. It is described that the depth of the concave bottom of the formed outer cavity from the substrate supporting surface is 30 to 70 μm.
The support for the vapor phase growth apparatus configured in this manner eliminates the deposition of silicon around the back surface of the vapor phase growth substrate,
Moreover, it is described that the occurrence of slip can be reduced.

【0006】[0006]

【発明が解決しようとする課題】しかし、前述の図5お
よび図6に示すサセプタ10においては、実際には試料
基板12の平坦度及び座ぐり底面23の加工精度のばら
つきにより、試料基板12は必ずしも座ぐり底面23に
密着(面的に接触)しない。図7の(a)および(b)
はそれぞれ試料基板12とサセプタ10の座ぐり部が密
着しない場合の模式図と、その試料基板の温度の径方向
の分布のグラフを示している。試料基板12と座ぐり底
面23は部分的に接触するのみで、他の接触しない部分
ではそれらの間にギャップが生じる。ギャップ内のガス
による熱伝導と接触による熱伝導の熱伝達特性の差によ
り、思料基板面上の温度は不均一分布となる。試料基板
の面内の温度差による熱応力は試料基板の降伏挙動をも
たらす原因となる。且つ、試料基板面内の不均一な温度
分布は気相成長によって堆積した薄膜の品質にも悪影響
を与える。
However, in the susceptor 10 shown in FIGS. 5 and 6 described above, the sample substrate 12 is actually formed due to variations in the flatness of the sample substrate 12 and the processing accuracy of the counterbore bottom surface 23. It does not necessarily come into close contact (face contact) with the counterbore bottom surface 23. 7 (a) and (b)
6A and 6B show a schematic diagram when the sample substrate 12 and the spot facing portion of the susceptor 10 do not come into close contact with each other, and a graph of the temperature distribution of the sample substrate in the radial direction. The sample substrate 12 and the counterbore bottom surface 23 only partially contact each other, and a gap is created between them in the other non-contacting portions. Due to the difference in the heat transfer characteristics of the heat conduction due to the gas in the gap and the heat conduction due to the contact, the temperature on the surface of the ideal substrate has an uneven distribution. The thermal stress due to the in-plane temperature difference of the sample substrate causes the yield behavior of the sample substrate. In addition, the non-uniform temperature distribution in the surface of the sample substrate adversely affects the quality of the thin film deposited by vapor phase growth.

【0007】また、前述の特公平5−40457号公報
に記載された気相成長装置用支持台は、半導体ウエハの
加熱処理工程(例えばエピタキシャル工程)におけるウ
エハの変形(たわみ、ソリ)を極力少なくすること、さ
らに、ウエハの均熱性をより向上させるといった技術課
題に対し、充分なものではない。
Further, the support for a vapor phase growth apparatus described in Japanese Patent Publication No. 5-40457 mentioned above minimizes wafer deformation (deflection, warpage) in a semiconductor wafer heat treatment step (eg, epitaxial step). In addition, it is not sufficient for the technical problem of further improving the soaking property of the wafer.

【0008】本発明は、半導体ウエハの変形を少なく
し、均一に加熱することができる気相成長装置用サセプ
タを提供することを目的とする。
An object of the present invention is to provide a susceptor for a vapor phase growth apparatus, which can reduce the deformation of a semiconductor wafer and can heat it uniformly.

【0009】[0009]

【課題を解決するための手段】前述の課題を解決するた
めに、本発明は、半導体ウエハの平面部を支持する円形
座ぐり部を有する気相成長装置用サセプタにおいて、前
記円形座ぐり部に同心する一つの円環状凸部を有し、前
記円環状凸部の中心線が、前記座ぐり部半径の65〜7
5%の範囲に位置し、かつ前記円環状凸部の内側及び外
側に断面凹状部が形成され、前記外側凹状部の深さδ1
が内側凹状部の深さδ2 の1.2〜2.0倍である事を
特徴とする気相成長装置用サセプタを要旨とする。
In order to solve the above problems, the present invention provides a susceptor for a vapor phase growth apparatus having a circular counterbore for supporting a flat surface of a semiconductor wafer, wherein the circular counterbore is provided. It has one concentric annular convex portion, and the center line of the circular convex portion is 65 to 7 of the spot facing portion radius.
5% of the area, and concave portions in cross section are formed inside and outside the annular convex portion, and the depth of the outer concave portion is δ 1
Is 1.2 to 2.0 times the depth δ 2 of the inner recessed portion, and the susceptor for a vapor phase growth apparatus is a gist.

【0010】[0010]

【実施例】第1実施例 本発明の第1実施例による気相成長装置用サセプタにつ
いて、図1および図2を参照して説明する。
First Embodiment A susceptor for a vapor phase growth apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

【0011】サセプタ20の上面に、12個の円形の座
ぐり部21が、円周に沿って設けられている。座ぐり部
21には、それぞれ円環状凸部30、内側凹状部33お
よび外側凹状部34がに設けられている。試料基板22
を座ぐり部21の円環状凸部30に載せ、従来と同様に
して気相成長を行なう。本発明は、図1に示す座ぐり部
21のレイアウト(配置)及び数に限定されるものでは
なく、例えば、試料基板の径に応じてそれらの設定を変
更してもよい。試料基板は、例えば半導体ウエハであ
る。
On the upper surface of the susceptor 20, twelve circular counterbore portions 21 are provided along the circumference. The spot facing portion 21 is provided with an annular convex portion 30, an inner concave portion 33, and an outer concave portion 34, respectively. Sample substrate 22
Is placed on the annular convex portion 30 of the spot facing portion 21, and vapor phase growth is performed in a conventional manner. The present invention is not limited to the layout (arrangement) and the number of counterbore portions 21 shown in FIG. 1, and those settings may be changed depending on the diameter of the sample substrate, for example. The sample substrate is, for example, a semiconductor wafer.

【0012】サセプタ20は、円環状凸部30を除い
て、試料基板22と接触していない。円環状凸部30
は、接触面を有しており、その接触面において試料基板
22と接触している。円環状凸部30は、座ぐり部21
の底面から突起した形状であり、座ぐり部21と同心の
リング形状である。円環状凸部30の中心線は座ぐり部
21の半径の65〜75%の範囲に位置する。円環状凸
部30の中心線とは、円環状凸部30と半導体ウエハと
の接触面の半径方向の幅の中心線である。また円環状凸
部30の半径方向の幅は、半導体ウエハの直径の1%〜
10%好ましくは1%〜3%とする。1%未満とすると
円環状凸部30と半導体ウエハの接触が実質線接触とな
り、熱応力の集中でスリップ発生が顕著となる。また、
製造も困難である。10%を超えると、円環状凸部30
と半導体ウエハの接触が広い面接触となり半導体ウエハ
への熱伝導が不均一となる。
The susceptor 20 is not in contact with the sample substrate 22 except for the annular projection 30. Annular convex portion 30
Has a contact surface and is in contact with the sample substrate 22 at the contact surface. The annular convex portion 30 has a spot facing portion 21.
Is a ring shape concentric with the spot facing portion 21. The center line of the annular convex portion 30 is located within the range of 65 to 75% of the radius of the spot facing portion 21. The center line of the annular protrusion 30 is the center line of the radial width of the contact surface between the annular protrusion 30 and the semiconductor wafer. The radial width of the annular convex portion 30 is 1% to the diameter of the semiconductor wafer.
10%, preferably 1% to 3%. If it is less than 1%, the contact between the annular convex portion 30 and the semiconductor wafer becomes a substantially linear contact, and the occurrence of slip becomes remarkable due to the concentration of thermal stress. Also,
Manufacturing is also difficult. If it exceeds 10%, the annular convex portion 30
The contact between the semiconductor wafer and the semiconductor wafer becomes a wide surface contact, and the heat conduction to the semiconductor wafer becomes uneven.

【0013】円環状凸部30の内側の側壁および外側の
側壁は、それぞれ試料基板22に対して垂直である。し
かしながら、本発明は、これに限定されるものではな
く、円環状凸部30と試料基板22の接触面積が小さく
なるように、円環状凸部30の両側壁を斜めにしてもよ
い。
The inner side wall and the outer side wall of the annular convex portion 30 are perpendicular to the sample substrate 22, respectively. However, the present invention is not limited to this, and both side walls of the annular convex portion 30 may be slanted so that the contact area between the annular convex portion 30 and the sample substrate 22 becomes small.

【0014】内側凹状部33は、円環状凸部30の内側
に形成されており、円形の凹部である。外側凹状部34
は、円環状凸部30の外側に形成されており、円環形の
凹部である。
The inner concave portion 33 is formed inside the annular convex portion 30 and is a circular concave portion. Outer concave portion 34
Is formed on the outer side of the annular convex portion 30 and is an annular concave portion.

【0015】円環状凸部30の内側に対応する範囲の試
料基板22を均一に加熱するように、試料基板22と座
ぐり部21の内側凹状部33との間にギャップ31(間
隙)が形成されている。このギャップ31によって、試
料基板22と内側凹状部33との接触を防止する。サセ
プタ20の表面はSiC(炭化珪素)で被覆されるの
で、それによって内側凹状部33に寸法上の公差がつ
く。したがって、前述のギャップ31を確実に形成する
ために、内側凹状部33の深さδ2 (内側凹状部33の
底部と試料基板22との距離)を、内側凹状部33の寸
法公差よりも大きな値に設定する必要がある。しかしな
がら、この深さδ2 が大き過ぎると、試料基板22を加
熱する効率が下がるという問題が生じる。さらに、円環
状凸部30の近傍における試料基板22の受熱と、試料
基板22のその他の部分の受熱との差が大きくなり、そ
れらの間のバランスを取ることが難しくなるという問題
も生じる。したがって、深さδ2 を、内側凹状部33の
寸法公差の分だけ大きな値に設定することが好ましい。
A gap 31 (gap) is formed between the sample substrate 22 and the inner concave portion 33 of the spot facing portion 21 so as to uniformly heat the sample substrate 22 in the area corresponding to the inside of the annular convex portion 30. Has been done. The gap 31 prevents contact between the sample substrate 22 and the inner concave portion 33. Since the surface of the susceptor 20 is coated with SiC (silicon carbide), the inner concave portion 33 has a dimensional tolerance. Therefore, in order to reliably form the above-mentioned gap 31, the depth δ 2 of the inner concave portion 33 (the distance between the bottom of the inner concave portion 33 and the sample substrate 22) is set larger than the dimensional tolerance of the inner concave portion 33. Must be set to a value. However, if this depth δ 2 is too large, there is a problem that the efficiency of heating the sample substrate 22 decreases. Further, there is a problem that the difference between the heat received by the sample substrate 22 in the vicinity of the annular convex portion 30 and the heat received by other portions of the sample substrate 22 becomes large, and it becomes difficult to balance them. Therefore, it is preferable to set the depth δ 2 to a value larger by the dimensional tolerance of the inner concave portion 33.

【0016】また、ギャップ31内のガスによって、内
側凹状部33から試料基板22への熱伝導が行われてい
る。この熱伝導を良好に行うために、内側凹状部33の
深さδ2 を全面にわたって均一にすることが好ましい。
Further, the gas in the gap 31 conducts heat from the inner concave portion 33 to the sample substrate 22. In order to perform this heat conduction satisfactorily, it is preferable to make the depth δ 2 of the inner concave portion 33 uniform over the entire surface.

【0017】試料基板22の周辺部の温度と中心部の温
度が、互いにほぼ一致するように、座ぐり部21に外側
凹状部32が設けられている。外側凹状部32は、円環
状凸部30の外側に沿って形成されており、円環形状で
ある。外側凹状部32の半径方向の断面形状は、矩形で
ある。この外側凹状部32によって、前述のギャップ3
1による効果と同様の効果を得ることができる。外側凹
状部32の両側面から試料基板22への放射熱の影響を
考慮して、外側凹状部32の深さδ1 (外側凹状部32
の底部と試料基板22との距離)を、内側凹状部33の
深さδ2 の1.2倍〜2.0倍に設定する。それによっ
て、外側凹状部32内のガスによる熱伝導を弱める。
第2実施例 本発明の第2実施例による気相成長装置用サセプタにつ
いて次に説明する。
An outer concave portion 32 is provided in the counterbore portion 21 so that the temperature of the peripheral portion of the sample substrate 22 and the temperature of the central portion thereof substantially match each other. The outer concave portion 32 is formed along the outer side of the annular convex portion 30 and has an annular shape. The cross-sectional shape of the outer concave portion 32 in the radial direction is rectangular. Due to this outer concave portion 32, the above-mentioned gap 3
The same effect as the effect of 1 can be obtained. In consideration of the influence of radiant heat from both side surfaces of the outer concave portion 32 to the sample substrate 22, the depth δ 1 of the outer concave portion 32 (the outer concave portion 32
(The distance between the bottom of the sample substrate 22 and the sample substrate 22) is set to 1.2 to 2.0 times the depth δ 2 of the inner concave portion 33. Thereby, heat conduction by the gas in the outer concave portion 32 is weakened.
Second Embodiment A susceptor for a vapor phase growth apparatus according to a second embodiment of the present invention will be described next.

【0018】前述の第1実施例のサセプタにおいて、座
ぐり部の直径を205mmとし、外側凹状部の深さδ1
を800μmとし、内側凹状部の深さδ2 を500μm
としたサセプタを3個作成した。それらのサセプタの円
環状凸部の中心線の半径を互いに相違させ、それぞれ6
7mm(座ぐり部半径の65%),72mm(座ぐり部
半径の70%)、77mm(座ぐり部半径の75%)と
した。この円環状凸部の半径方向の幅は4mmとした。
In the susceptor of the first embodiment described above, the spot facing portion has a diameter of 205 mm, and the depth of the outer concave portion δ 1
Is 800 μm, and the depth δ 2 of the inner concave portion is 500 μm
3 susceptors were prepared. The radii of the center lines of the annular projections of these susceptors are made different from each other,
It was set to 7 mm (65% of the radius of the spot facing portion), 72 mm (70% of the radius of the spot facing portion), and 77 mm (75% of the radius of the spot facing portion). The radial width of this annular projection was 4 mm.

【0019】これらのサセプタをそれぞれ用いて、エピ
タキシャル工程を行って直径8インチ(inch)のシ
リコンウエハ上に50μmの厚さのシリコン(Si)の
エピタキシャル膜を形成した。このエピタキシャル工程
を含む一連の工程について次に詳しく説明する。
An epitaxial process was carried out using each of these susceptors to form a silicon (Si) epitaxial film having a thickness of 50 μm on a silicon wafer having a diameter of 8 inches. A series of steps including this epitaxial step will be described in detail below.

【0020】まず、サセプタにシリコンウエハを載置
し、それらを35℃/minの昇温速度で1150℃に
加熱した。次にエピタキシャル工程前のガスパージとし
て、水素(H2 )ガスによってシリコンウエハを5分間
パージした。
First, a silicon wafer was placed on the susceptor and heated to 1150 ° C. at a temperature rising rate of 35 ° C./min. Next, as a gas purge before the epitaxial step, the silicon wafer was purged with hydrogen (H 2 ) gas for 5 minutes.

【0021】次に、エピタキシャル工程を行った。すな
わち、シリコンウエハを1150℃に加熱した状態で、
シリコンウエハにトリクロロシラン(SiHCl3 )ガ
スおよび水素(H2 )ガスをそれぞれ25g/minお
よび200l/minの割合で供給して、シリコンウエ
ハ上にシリコンのエピタキシャル膜を形成した。
Next, an epitaxial process was performed. That is, with the silicon wafer heated to 1150 ° C.,
Trichlorosilane (SiHCl 3 ) gas and hydrogen (H 2 ) gas were supplied to the silicon wafer at a rate of 25 g / min and 200 l / min, respectively, to form an epitaxial film of silicon on the silicon wafer.

【0022】次に、エピタキシャル工程後のガスパージ
として水素ガスによってシリコンウエハを3分間パージ
した。その後、300℃/minの降温速度でシリコン
ウエハを冷却した。
Next, as a gas purge after the epitaxial process, the silicon wafer was purged with hydrogen gas for 3 minutes. Then, the silicon wafer was cooled at a temperature decrease rate of 300 ° C./min.

【0023】このようにして形成されたシリコンのエピ
タキシャル膜を光学顕微鏡で観察して、エピタキシャル
膜に発生したスリップ長さを測定した(n=20)。ス
リップ長さが200μm以上であった場合を不良と判定
して、不良率を求めた。その結果を表1に示す。
The silicon epitaxial film thus formed was observed with an optical microscope to measure the slip length generated in the epitaxial film (n = 20). When the slip length was 200 μm or more, it was judged as defective and the defective rate was obtained. The results are shown in Table 1.

【0024】[0024]

【表1】 第3実施例 本発明の第3実施例による気相成長装置用サセプタにつ
いて次に説明する。
[Table 1] Third Embodiment A susceptor for a vapor phase growth apparatus according to a third embodiment of the present invention will be described next.

【0025】前述の第1実施例のサセプタにおいて、座
ぐり部の直径を205mmとし、円環状凸部の中心線の
半径を72mmとし、円環状凸部の半径方向の幅を5m
mとし、内側凹状部の深さδ2 を500μmとしたサセ
プタを3個作成した。それらのサセプタの外側凹状部の
深さδ1 を、互いに相違させ、それぞれ600μm、8
0μm、1000μmとした。
In the susceptor of the first embodiment described above, the spot facing portion has a diameter of 205 mm, the center line radius of the annular convex portion is 72 mm, and the radial width of the annular convex portion is 5 m.
m, and three susceptors having a depth δ 2 of the inner concave portion of 500 μm were prepared. The depths δ 1 of the outer concave portions of these susceptors are different from each other, and are 600 μm and 8 μm, respectively.
It was set to 0 μm and 1000 μm.

【0026】次に、直径8インチのシリコンウエハの中
心および外周部に熱電対を埋め込み、シリコンウエハを
それぞれサセプタに載置した。それらを35℃/min
の昇温速度で1150℃に加熱した後、その温度を10
分間保持した。そして熱電対によってシリコンウエハの
外周部の温度T1 および中心部の温度T2 を測定し、こ
れらの差(T1 −T2 )を求めた。その結果を表2に示
す。
Next, thermocouples were embedded in the center and outer peripheral portion of a silicon wafer having a diameter of 8 inches, and the silicon wafer was placed on the susceptor. 35 ℃ / min
After heating to 1150 ° C at a heating rate of
Hold for minutes. Then, the temperature T 1 of the outer peripheral portion and the temperature T 2 of the central portion of the silicon wafer were measured with a thermocouple, and the difference (T 1 −T 2 ) between them was obtained. The results are shown in Table 2.

【0027】[0027]

【表2】 第1比較例 円環状凸部の中心線の半径をそれぞれ62mm、82m
mとした2個のサセプタを作成した。そのほかの構成を
前述の第2実施例と同様にしてエピタキシャル工程を行
い、不良率を求めた。その結果を前述の表1に示す。
[Table 2] First comparative example The radius of the center line of the annular convex portion is 62 mm and 82 m, respectively.
Two susceptors with m were created. An epitaxial process was carried out in the same manner as in the above-described second embodiment with the other configurations, and the defect rate was obtained. The results are shown in Table 1 above.

【0028】前述の第1実施例と比較すると明らかなよ
うに、円環状凸部の中心線の半径が座ぐり部の半径の6
5〜75%の範囲内とすることにより、シリコンウエハ
のスリップ発生が、顕著に抑制されることがわかった。
As is apparent from comparison with the first embodiment described above, the radius of the center line of the annular convex portion is 6 times the radius of the spot facing portion.
It was found that the occurrence of slip of the silicon wafer was remarkably suppressed by setting it within the range of 5 to 75%.

【0029】第2比較例 外側凹状部の深さδ1 をそれぞれ500μm、1100
μmとした2個のサセプタを作成した。その他の構成を
前述の第3実施例と同様にしてシリコンウエハの外周部
の温度T1 と中心部の温度T2 の差(T1 −T2 )を求
めた。
The second comparative example outside the concave portion 500μm depth [delta] 1, respectively, 1100
Two susceptors having a size of μm were prepared. The difference (T 1 -T 2 ) between the temperature T 1 of the outer peripheral portion of the silicon wafer and the temperature T 2 of the central portion of the silicon wafer was determined in the same manner as in the third embodiment with the other configurations.

【0030】その結果を表2に示す。The results are shown in Table 2.

【0031】第3実施例と比較すると明らかなように、
外側凹状部の深さδ1 が内側凹状部の深さδ2 の1.2
〜2.0倍とすることにより、シリコンウエハの加熱時
の均熱性が顕著に向上することがわかった。
As is clear from comparison with the third embodiment,
The depth δ 1 of the outer concave portion is 1.2 of the depth δ 2 of the inner concave portion.
It was found that the heat uniformity during heating of the silicon wafer was remarkably improved by setting the ratio to about 2.0 times.

【0032】第4実施例 図3を参照して、本発明の第4実施例による気相成長装
置用サセプタについて説明する。
[0032] With reference to Fourth Embodiment FIG. 3, description will be given of a fourth vapor growth apparatus for a susceptor according to an embodiment of the present invention.

【0033】このサセプタ20の構成は、座ぐり部21
の内側凹状部33の形状を除いて、前述の第1実施例の
サセプタの構成と同様であり、同一符号のものは、互い
に対応している。
This susceptor 20 has a counterbore portion 21.
The structure is the same as that of the susceptor of the above-described first embodiment except the shape of the inner concave portion 33, and the same reference numerals correspond to each other.

【0034】試料基板22がたわむ場合は、座ぐり部2
1の内側凹状部33を、試料基板22のたわみ曲面と同
一の形状の凹部に形成することが好ましい。
When the sample substrate 22 bends, the counterbore 2
It is preferable that the inner concave portion 33 of No. 1 is formed in a concave portion having the same shape as the curved curved surface of the sample substrate 22.

【0035】しかしながら、試料基板22のたわみ曲面
は近似的に球面であるから、座ぐり部21の内側凹状部
33を、球面形状の凹部にしてもよい。この場合、この
球面の半径Rは、次の式により決定される。
However, since the flexible curved surface of the sample substrate 22 is approximately spherical, the inner concave portion 33 of the spot facing portion 21 may be a spherical concave portion. In this case, the radius R of this spherical surface is determined by the following equation.

【0036】R=(r2 +d2 )/(2d) ここで、rは試料基板22の半径であり、dは試料基板
22のたわみ量である。
R = (r 2 + d 2 ) / (2d) where r is the radius of the sample substrate 22 and d is the amount of deflection of the sample substrate 22.

【0037】なお、試料基板22のたわみ量が小さい
(例えば、十数μm)場合は、前述の第1実施例(図
2)と同様に、座ぐり部21の内側凹状部33の底部を
平面形状にすることができる。
When the deflection amount of the sample substrate 22 is small (for example, ten and several μm), the bottom of the inner concave portion 33 of the counterbore portion 21 is flattened as in the first embodiment (FIG. 2). It can be shaped.

【0038】第5実施例 図4を参照して、本発明の第5実施例による気相成長装
置用サセプタについて説明する。
[0038] With reference to the fifth embodiment Figure 4, demonstrates the vapor phase growth apparatus for a susceptor according to a fifth embodiment of the present invention.

【0039】このサセプタ20の座ぐり部21には、円
環状凸部に隣接する内側に、さらなる凹状部34が設け
られている。その他の構成については、前述の第1実施
例の構成と同様であり、同一符号のものは、互いに対応
している。
The counterbore portion 21 of the susceptor 20 is provided with a further concave portion 34 on the inner side adjacent to the annular convex portion. Other configurations are similar to those of the above-described first embodiment, and the same reference numerals correspond to each other.

【0040】このさらなる凹状部34は、円環状凸部3
0の内側に沿ってリング形状に形成されている。 この
さらなる凹状部34によって、円環状凸部30の近傍に
おける熱伝導を減らして、円環状凸部30の近傍の試料
基板22の受熱と、試料基板22の他の部分の受熱のバ
ランスを取っている。
This further concave portion 34 is an annular convex portion 3
It is formed in a ring shape along the inside of 0. This further concave portion 34 reduces heat conduction in the vicinity of the annular convex portion 30 to balance the heat reception of the sample substrate 22 in the vicinity of the annular convex portion 30 with the heat reception of other portions of the sample substrate 22. There is.

【0041】さらなる凹状部34の深さδ3 は、内側凹
状部33の深さδ2 の1.2倍〜2.0倍であり、かつ
外側凹状部32の深さδ1 と同じかまたはそれ以下であ
ることが好ましい。さらなる凹状部34の半径方向の幅
は、円環状凸部の半径方向の幅と同程度が好ましい。
The depth δ 3 of the further concave portion 34 is 1.2 to 2.0 times the depth δ 2 of the inner concave portion 33 and is the same as the depth δ 1 of the outer concave portion 32, or It is preferably less than that. The radial width of the further concave portion 34 is preferably approximately the same as the radial width of the annular convex portion.

【0042】本発明は、前述の第1実施例ないし第5実
施例に限定されるものではない。例えば、円環状凸部の
半径方向の断面形状は、前述の形状に限らず、その他の
形状にしてもよい。
The present invention is not limited to the above-mentioned first to fifth embodiments. For example, the radial cross-sectional shape of the annular convex portion is not limited to the above-mentioned shape, and may be another shape.

【0043】また、外側凹状部およびさらなる凹状部の
半径方向の断面形状は、矩形でなくてもよい。例えば曲
線で構成した形状でもよい。
Further, the radial cross-sectional shapes of the outer concave portion and the further concave portion do not have to be rectangular. For example, the shape may be a curve.

【0044】また、従来のサセプタの材料及び製造方法
を採用してサセプタを製造し、そのサセプタの座ぐり部
を加工することによって、本発明によるサセプタを製造
することができる。
Further, the susceptor according to the present invention can be manufactured by manufacturing the susceptor by using the conventional material and manufacturing method of the susceptor and processing the spot facing portion of the susceptor.

【0045】[0045]

【発明の効果】以上説明したように、本発明は、円環状
凸部の中心線が座ぐり部の半径の65〜75%の範囲に
位置するので、半導体ウエハにスリップ現象が発生する
ことを防止できる。
As described above, according to the present invention, since the center line of the annular convex portion is located within the range of 65 to 75% of the radius of the spot facing portion, it is possible to prevent the slip phenomenon from occurring in the semiconductor wafer. It can be prevented.

【0046】しかも、外側凹状部の深さが内側凹状部の
深さの1.2〜2.0倍であるので半導体ウエハに対す
る円環状凸部による輻射や接触伝熱などの影響を抑制す
ることができる。したがって、外側凹状態部および内側
凹状態部の中のガスを介した熱伝導によって半導体ウエ
ハを均一に加熱することができる。
Moreover, since the depth of the outer concave portion is 1.2 to 2.0 times the depth of the inner concave portion, the influence of radiation and contact heat transfer by the annular convex portion on the semiconductor wafer can be suppressed. You can Therefore, the semiconductor wafer can be uniformly heated by heat conduction through the gas in the outer concave portion and the inner concave portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例によるサセプタを示す平面
図。
FIG. 1 is a plan view showing a susceptor according to a first embodiment of the present invention.

【図2】図1に示したサセプタのF−F線に沿った部分
断面図。
FIG. 2 is a partial cross-sectional view of the susceptor shown in FIG. 1 taken along line FF.

【図3】本発明の第4実施例によるサセプタの部分断面
図。
FIG. 3 is a partial sectional view of a susceptor according to a fourth embodiment of the present invention.

【図4】本発明の第5実施例によるサセプタの部分断面
図。
FIG. 4 is a partial sectional view of a susceptor according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 サセプタ 21 座ぐり部 22 試料基板 30 円環状凸部 32 外側凹状部 33 内側凹状部 34 さらなる凹状部 20 susceptor 21 counterbore 22 sample substrate 30 annular convex 32 outer concave 33 inner concave 34 further concave

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月14日[Submission date] June 14, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例によるサセプタを示す平面
図。
FIG. 1 is a plan view showing a susceptor according to a first embodiment of the present invention.

【図2】図1に示したサセプタのF−F線に沿った部分
断面図。
FIG. 2 is a partial cross-sectional view of the susceptor shown in FIG. 1 taken along line FF.

【図3】本発明の第4実施例によるサセプタの部分断面
図。
FIG. 3 is a partial sectional view of a susceptor according to a fourth embodiment of the present invention.

【図4】本発明の第5実施例によるサセプタの部分断面
図。
FIG. 4 is a partial sectional view of a susceptor according to a fifth embodiment of the present invention.

【図5】従来のサセプタを示す平面図。FIG. 5 is a plan view showing a conventional susceptor.

【図6】図5に示したサセプタの2−2線に沿った部分
的な断面図。
6 is a partial cross-sectional view of the susceptor shown in FIG. 5, taken along line 2-2.

【図7】図6に示したサセプタに試料基板が密着しない
状態を説明するための模式図と、その状態における試料
基板の温度分布を示すグラフ。
FIG. 7 is a schematic diagram for explaining a state in which the sample substrate does not adhere to the susceptor shown in FIG. 6 and a graph showing a temperature distribution of the sample substrate in that state.

【符号の説明】 10 サセプタ 11 座ぐり部 12 試料基盤 14 底面 20 サセプタ 21 座ぐり部 22 試料基板 30 円環状凸部 32 外側凹状部 33 内側凹状部 34 さらなる凹状部[Explanation of Codes] 10 susceptor 11 counterbore 12 sample base 14 bottom 20 susceptor 21 counterbore 22 sample substrate 30 annular convex 32 outer concave 33 inner concave 34 further concave

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 健郎 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 高村 勝之 山口県徳山市大字徳山字江口開作8231−5 徳山セラミックス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenro Hayashi, No. 30 Soya, Hadano City, Kanagawa Prefecture, Research & Development Laboratory, Toshiba Ceramics Co., Ltd. Ceramics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハの平面部を支持する円形座
ぐり部を有する気相成長装置用サセプタにおいて、前記
円形座ぐり部に同心する一つの円環状凸部を有し、前記
円環状凸部の中心線が、前記座ぐり部半径の65〜75
%の範囲に位置し、かつ前記円環状凸部の内側及び外側
に断面凹状部が形成され、前記外側凹状部の深さδ1
内側凹状部の深さδ2 の1.2〜2.0倍である事を特
徴とする気相成長装置用サセプタ。
1. A susceptor for a vapor phase growth apparatus having a circular counterbore for supporting a flat surface of a semiconductor wafer, the susceptor having one circular annular concentric portion concentric with the circular counterbore. The center line of the is 65 to 75 of the counterbore radius.
%, And a concave section in cross section is formed inside and outside the annular convex section, and the depth δ 1 of the outer concave section is 1.2 to 2 of the depth δ 2 of the inner concave section. A susceptor for a vapor phase growth apparatus characterized by being 0 times.
【請求項2】 前記円環状凸部に隣接する内側に前記内
側凹状部よりさらなる凹状部が形成され、このさらなる
凹状部の深さδ3 が前記外側凹状部の深さδ1 より同等
もしくは小さく、かつ前記内側凹状部の深さδ2 の1.
2〜2.0倍である事を特徴とする特許請求の範囲第1
項記載の気相成長装置用サセプタ。
2. A concave portion further formed than the inner concave portion is formed on the inner side adjacent to the annular convex portion, and the depth δ 3 of the further concave portion is equal to or smaller than the depth δ 1 of the outer concave portion. And the depth δ 2 of the inner concave portion is 1.
Claim 1 to 2 to 2.0 times
A susceptor for a vapor phase growth apparatus according to the item.
JP5226679A 1993-08-20 1993-08-20 Susceptor for vapor phase growth equipment Expired - Fee Related JP3004846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5226679A JP3004846B2 (en) 1993-08-20 1993-08-20 Susceptor for vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5226679A JP3004846B2 (en) 1993-08-20 1993-08-20 Susceptor for vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH0758040A true JPH0758040A (en) 1995-03-03
JP3004846B2 JP3004846B2 (en) 2000-01-31

Family

ID=16848959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5226679A Expired - Fee Related JP3004846B2 (en) 1993-08-20 1993-08-20 Susceptor for vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JP3004846B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223546A (en) * 1997-02-10 1998-08-21 Toshiba Ceramics Co Ltd Susceptor for chemical vapor deposition
WO2001033617A1 (en) * 1999-10-29 2001-05-10 Applied Materials Inc. Semiconductor-manufacturing apparatus
KR20020058152A (en) * 2000-12-29 2002-07-12 양계모 Wafer susceptor
US6576572B2 (en) 2000-12-28 2003-06-10 Schott Lithotec Ag Method of heating a substrate using a variable surface hot plate for improved bake uniformity
KR100443122B1 (en) * 2001-10-19 2004-08-04 삼성전자주식회사 Heater Assembly for Fabricating a Semiconductor Device
JP2010509780A (en) * 2006-11-15 2010-03-25 マトソン テクノロジー カナダ インコーポレイテッド System and method for supporting a workpiece during heat treatment
JP2010130006A (en) * 2008-11-27 2010-06-10 Samsung Led Co Ltd Susceptor for chemical vapor deposition apparatus, and chemical vapor deposition apparatus
JP2011018876A (en) * 2009-06-09 2011-01-27 Ricoh Co Ltd Method for manufacturing surface-emitting laser device, optical scanner, image forming apparatus, and oxidation apparatus
US9627244B2 (en) 2002-12-20 2017-04-18 Mattson Technology, Inc. Methods and systems for supporting a workpiece and for heat-treating the workpiece
WO2017148734A1 (en) * 2016-02-29 2017-09-08 Aixtron Se Substrate holding device with support protrusions which originate from an annular groove
US20180057958A1 (en) * 2016-08-31 2018-03-01 Nuflare Technology, Inc. Vapor phase growth apparatus
CN107978552A (en) * 2016-10-25 2018-05-01 纽富来科技股份有限公司 Epitaxially growing equipment, annular support and method of vapor-phase growing
JP2021082824A (en) * 2021-01-27 2021-05-27 株式会社ニューフレアテクノロジー Vapor phase growth apparatus
JP2021190688A (en) * 2020-05-28 2021-12-13 環球晶圓股▲ふん▼有限公司Global Wafers Co., Ltd. Wafer mount station and wafer embedding structure formation method
JPWO2022097456A1 (en) * 2020-11-09 2022-05-12
US11848226B2 (en) 2014-05-21 2023-12-19 Applied Materials, Inc. Thermal processing susceptor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223546A (en) * 1997-02-10 1998-08-21 Toshiba Ceramics Co Ltd Susceptor for chemical vapor deposition
US7393417B1 (en) 1999-10-29 2008-07-01 Applied Materials, Inc. Semiconductor-manufacturing apparatus
WO2001033617A1 (en) * 1999-10-29 2001-05-10 Applied Materials Inc. Semiconductor-manufacturing apparatus
JP2001126995A (en) * 1999-10-29 2001-05-11 Applied Materials Inc Semiconductor manufacturing equipment
US6758669B2 (en) 2000-12-28 2004-07-06 Schott Lithotec Ag Variable surface hot plate for improved bake uniformity of substrates
WO2002054455A3 (en) * 2000-12-28 2004-01-08 Dupont Photomasks Inc Variable surface hot plate for improved bake uniformity of substrates
CN100397555C (en) * 2000-12-28 2008-06-25 肖特石版印刷技术股份公司 Variable surface hot plate for improved bake uniformity of substrates
US6576572B2 (en) 2000-12-28 2003-06-10 Schott Lithotec Ag Method of heating a substrate using a variable surface hot plate for improved bake uniformity
KR20020058152A (en) * 2000-12-29 2002-07-12 양계모 Wafer susceptor
KR100443122B1 (en) * 2001-10-19 2004-08-04 삼성전자주식회사 Heater Assembly for Fabricating a Semiconductor Device
US9627244B2 (en) 2002-12-20 2017-04-18 Mattson Technology, Inc. Methods and systems for supporting a workpiece and for heat-treating the workpiece
JP2010509780A (en) * 2006-11-15 2010-03-25 マトソン テクノロジー カナダ インコーポレイテッド System and method for supporting a workpiece during heat treatment
JP2015065458A (en) * 2006-11-15 2015-04-09 マトソン テクノロジー、インコーポレイテッド System and method for supporting work-piece during heat-treating
JP2010130006A (en) * 2008-11-27 2010-06-10 Samsung Led Co Ltd Susceptor for chemical vapor deposition apparatus, and chemical vapor deposition apparatus
JP2011018876A (en) * 2009-06-09 2011-01-27 Ricoh Co Ltd Method for manufacturing surface-emitting laser device, optical scanner, image forming apparatus, and oxidation apparatus
US11848226B2 (en) 2014-05-21 2023-12-19 Applied Materials, Inc. Thermal processing susceptor
WO2017148734A1 (en) * 2016-02-29 2017-09-08 Aixtron Se Substrate holding device with support protrusions which originate from an annular groove
CN108884565A (en) * 2016-02-29 2018-11-23 艾克斯特朗欧洲公司 Substrate holding device with support protrusion protruding from annular groove
US20180057958A1 (en) * 2016-08-31 2018-03-01 Nuflare Technology, Inc. Vapor phase growth apparatus
JP2018037537A (en) * 2016-08-31 2018-03-08 株式会社ニューフレアテクノロジー Vapor growth equipment
US10508363B2 (en) * 2016-08-31 2019-12-17 Nuflare Technology, Inc. Vapor phase growth apparatus having substrate holder with ring-shaped protrusion
CN107978552A (en) * 2016-10-25 2018-05-01 纽富来科技股份有限公司 Epitaxially growing equipment, annular support and method of vapor-phase growing
JP2018073886A (en) * 2016-10-25 2018-05-10 株式会社ニューフレアテクノロジー Vapor phase growth apparatus, annular holder, and vapor phase growth method
JP2021190688A (en) * 2020-05-28 2021-12-13 環球晶圓股▲ふん▼有限公司Global Wafers Co., Ltd. Wafer mount station and wafer embedding structure formation method
JPWO2022097456A1 (en) * 2020-11-09 2022-05-12
EP4243054A4 (en) * 2020-11-09 2024-11-13 NuFlare Technology, Inc. VAPOR PHASE GROWTH APPARATUS
JP2021082824A (en) * 2021-01-27 2021-05-27 株式会社ニューフレアテクノロジー Vapor phase growth apparatus

Also Published As

Publication number Publication date
JP3004846B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
JPH0758041A (en) Susceptor
US8021968B2 (en) Susceptor and method for manufacturing silicon epitaxial wafer
JPH0758040A (en) Susceptor for phase growth apparatus
JP4669476B2 (en) Holder for supporting wafers during semiconductor manufacturing
US6530990B2 (en) Susceptor designs for silicon carbide thin films
JP3090339B2 (en) Vapor growth apparatus and method
JPH0834187B2 (en) Susceptor
US5685906A (en) Method and apparatus for configuring an epitaxial reactor for reduced set-up time and improved layer quality
US7060944B2 (en) Heat treatment device and heat treatment method
KR101079175B1 (en) Method for manufacturing a silicon epitaxial wafer
JPH088198A (en) Susceptor for vapor phase growth equipment
JP3911518B2 (en) Susceptor for vapor phase growth apparatus and vapor phase growth method
JP2004200436A (en) Susceptor and manufacturing method thereof
US20010052324A1 (en) Device for producing and processing semiconductor substrates
JP2009038294A (en) Output adjustment method, manufacturing method of silicon epitaxial wafer, and susceptor
JPH1116991A (en) Carbon support for semiconductor manufacturing equipment
JPH0758029A (en) Susceptor
JP2901546B2 (en) Semiconductor device manufacturing equipment
JPH0268922A (en) Susceptor for vapor growth
JP3868933B2 (en) Atmospheric pressure CVD equipment
JPH02174114A (en) Susceptor
JP3230162B2 (en) Vapor phase growth equipment
JP2764416B2 (en) Susceptor
JP2004296778A (en) Susceptor and manufacturing method thereof
JP2001003172A (en) Semiconductor epitaxial growth method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081119

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20081119

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20091119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees