JPH0765721B2 - Exhaust heat recovery heat exchange device - Google Patents
Exhaust heat recovery heat exchange deviceInfo
- Publication number
- JPH0765721B2 JPH0765721B2 JP2065659A JP6565990A JPH0765721B2 JP H0765721 B2 JPH0765721 B2 JP H0765721B2 JP 2065659 A JP2065659 A JP 2065659A JP 6565990 A JP6565990 A JP 6565990A JP H0765721 B2 JPH0765721 B2 JP H0765721B2
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- liquid level
- exhaust
- heat exchange
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ガスタービン、往復動エンジン、燃料電池等
を動力源として用いた発電装置、あるいは塵芥焼却炉等
の産業廃棄物処理施設から排出される排ガスから熱回収
を行い蒸気を発生させる排熱回収熱交換装置に関する。DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a power generator using a gas turbine, a reciprocating engine, a fuel cell or the like as a power source, or an industrial waste such as a refuse incinerator. The present invention relates to an exhaust heat recovery heat exchange device that recovers heat from exhaust gas discharged from a material processing facility to generate steam.
(従来の技術) 従来の排熱回収熱交換装置の熱交換器形式としては、自
然循環形または強制循環形の気水分離ドラムを有する水
管式ボイラないしは強制循環形の貫流式ボイラあるいは
満液式の煙管式ボイラ等が用いられている。(Prior Art) As a heat exchanger type of a conventional exhaust heat recovery heat exchange device, there are a water pipe boiler having a natural circulation type or forced circulation type steam-water separation drum, a forced circulation type once-through type boiler, or a full liquid type. The smoke tube type boiler of is used.
例えば、第5図に示すように、従来の満液式の蒸発器1
は、蒸発器本体胴1Aと、この本体胴1A内に横置された複
数の伝熱管2と、これらの伝熱管2に排ガスを送りこむ
排ガス入口20と排ガス出口21からなっている。また、液
位制御装置4が本体胴1に取付けられている。そして、
本体胴1Aの底部に設けた給水入口25から給水して蒸発器
1の内部の大部分を満たして伝熱管2の外面との間で熱
交換を行い、発生した蒸気を蒸気出口21から取り出して
過熱器等へ供給するようになっている。For example, as shown in FIG. 5, a conventional liquid-filled evaporator 1 is used.
Is composed of an evaporator main body 1A, a plurality of heat transfer tubes 2 arranged in the main body 1A, and an exhaust gas inlet 20 and an exhaust gas outlet 21 for sending exhaust gas to these heat transfer tubes 2. A liquid level control device 4 is attached to the body barrel 1. And
Water is supplied from a water supply inlet 25 provided at the bottom of the main body 1A to fill most of the inside of the evaporator 1 to perform heat exchange with the outer surface of the heat transfer tube 2, and take out generated steam from a steam outlet 21. It is designed to be supplied to a superheater, etc.
(発明が解決しようとする課題) しかしながら、これらの熱交換器形式のうち、ドラム
(胴部)を有する形式の蒸発器、例えば気水分離ドラム
を有する水管式ボイラ、前述した満液式の煙管式ボイラ
等、ではドラムの内部に常時保有する水量が多い。その
ため、蒸発器の起動開始から定常の運転状態に達するま
でに長時間を要し、かつ、定常状態に達するまでの間
は、発生した蒸気を熱交換系外あるいは需要先に供給す
ることができない。(Problems to be Solved by the Invention) However, among these heat exchanger types, an evaporator having a drum (body), for example, a water tube type boiler having a water / water separation drum, the above-described full-fill smoke tube In boilers, etc., the amount of water always held inside the drum is large. Therefore, it takes a long time from the start of the evaporator start up to reach a steady operating state, and until the steady state is reached, the generated steam cannot be supplied outside the heat exchange system or to the demand destination. .
一方、貫流式ボイラでは、その内部の保有水量が少ない
ので起動開始後、短時間で定常状態に達するが、その性
能保持上、一般に厳しい給水の水質管理が要求される。On the other hand, in a once-through type boiler, since the amount of water contained therein is small, a steady state is reached in a short time after starting operation, but in order to maintain its performance, generally strict water quality control of water supply is required.
また、この種貫流式ボイラを燃焼ボイラ程の高温ガスを
扱わない排熱回収用ボイラに使用することは、水蒸気側
の圧力損失が大きい等の欠点があるため得策とはいえな
い。In addition, it is not a good idea to use this kind of once-through type boiler as an exhaust heat recovery boiler that does not handle high-temperature gas as much as a combustion boiler, because it has drawbacks such as a large pressure loss on the steam side.
さらに、起動時間が短く、かつ、給水の水質管理が緩か
な管外流下膜蒸発式の蒸発器を使用することが考えられ
る。しかし、管外流下膜蒸発器は蒸発量以上の給水をし
ないと所定の性能を発揮できないため、給水の再循環ポ
ンプを常時運転する必要がある。そのため、動力の消費
が大きくなる欠点がある。Further, it is conceivable to use an extra-tube falling film evaporation type evaporator in which the startup time is short and the water quality control of the supply water is loose. However, the extra-pipe falling film evaporator cannot exhibit its predetermined performance unless the amount of water supplied is more than the amount of evaporation, and therefore it is necessary to constantly operate the feed water recirculation pump. Therefore, there is a drawback that power consumption is large.
本発明は、上記の問題点に鑑みてなされたもので、起動
開始から起動完了(定常状態)までの所要時間を極力短
縮し、厳しい給水の水質管理が不要な、かつ、消費動力
の少ない排熱回収熱交換装置を提供することを目的とし
ている。The present invention has been made in view of the above problems, and shortens the time required from the start of startup to the completion of startup (steady state) as much as possible, eliminates the need for strict water quality control of water supply, and consumes less power. An object is to provide a heat recovery heat exchange device.
(課題を解決するための手段) 本発明は、排熱源から導かれるガスから熱回収する蒸発
器により給水を加熱して蒸気を発生させる排熱回収熱交
換装置において、蒸発器の内部保有水の液位を蒸発器内
に横置された伝熱管群の下端面よりも下方の液位と伝熱
管群の上端面よりも上方の液位としてそれぞれ切替えて
管外流下膜蒸発器あるいは満液式蒸発器として機能させ
ることを特徴とする。(Means for Solving the Problem) The present invention relates to an exhaust heat recovery heat exchange device that heats feed water by an evaporator that recovers heat from a gas introduced from an exhaust heat source to generate steam. The liquid level is switched between the liquid level below the lower end surface of the heat transfer tube group placed horizontally in the evaporator and the liquid level above the upper end surface of the heat transfer tube group by switching the falling film evaporator outside the tube or the full liquid type. It is characterized in that it functions as an evaporator.
(作 用) 本発明は、上記のようにして構成されているので、蒸発
器の内部保有水の液位を伝熱管群の下端面よりも下方の
液位に切替えると排熱回収熱交換装置は管外流下膜蒸発
器として機能し、また伝熱管群の上端面よりも上方の液
位に切替えると満液式蒸発器として機能するようにな
る。(Operation) Since the present invention is configured as described above, when the liquid level of the water retained inside the evaporator is switched to the liquid level below the lower end surface of the heat transfer tube group, the exhaust heat recovery heat exchange device Functions as an extra-flowing film evaporator, and when it is switched to a liquid level above the upper end surface of the heat transfer tube group, it functions as a full liquid evaporator.
(実施例) 本発明の排熱回収熱交換器の一実施例を第1図から第3
図について説明する。(Embodiment) An embodiment of an exhaust heat recovery heat exchanger of the present invention is shown in FIGS.
The figure will be described.
第1図にその一部破断側面を示すように、本発明の排熱
回収熱交換装置を構成する蒸発器1では、円筒形をした
蒸発器本体胴1Aの中に多数の伝熱管2を横置して配設
し、産業廃棄物処理施設等からの排ガスを受け入れる排
ガス入口20と排熱回収後の排ガスを排出する排ガス出口
21がそれぞれ本体胴1Aの両端部に配設されている。ま
た、本体胴1A内の上部空間には多数の散水孔3Aを穿設し
たパイプ状の散水装置3が設けられていて、散水装置3
に接続された給水入口23から給水して伝熱管2の表面に
均一に散水するようにしたシェルアンドチューブ形の煙
管式(管外)流下膜蒸発器として構成されている。そし
て、伝熱管2の外面との熱交換により発生した蒸気は本
体胴1A内から蒸気出口24より過熱器等へ供給されるとと
もに、本体胴1Aの底部には再循環出口22が配設されてい
て、給水再循環ポンプ14(第3図)で吸引されて所定個
所へ供給されるようになっている。また、本体胴1Aの側
面には本体胴1の内部保有水の液位を検出する液位トラ
ンスミッタ4が取付けられている。また、この蒸発器1
では、需要先で要求される蒸気流量を発生させるのに必
要な伝熱面積よりも大きな伝熱面積をもつように、伝熱
管の長さ及び本数を設定する。さらに、この実施例の蒸
発器1には、その内部保有水の液位を制御する制御装置
30(第2参照)が付設され、所定の切替信号を受けて蒸
発器1の内部水の2つの正常液位を切り替えて設定でき
るようになっている。第1図に示すように、そのうちの
第1の正常液位(NWL)は伝熱管群2の下端面よりも下
方に設定され、また、第2の正常液位(NWL+ΔH)
は、伝熱管群2の上端面よりも上方に設定されて、いづ
れかに切り替えて異なった作用をする蒸発器1として機
能するように構成してある。As shown in the partially broken side view of FIG. 1, in the evaporator 1 which constitutes the exhaust heat recovery heat exchange apparatus of the present invention, a large number of heat transfer tubes 2 are laterally arranged in a cylindrical evaporator main body 1A. Exhaust gas inlet 20 that receives the exhaust gas from the industrial waste treatment facility and the exhaust gas outlet that discharges the exhaust gas after exhaust heat recovery
21 are arranged at both ends of the main body 1A. Further, a pipe-shaped sprinkler 3 having a large number of sprinkler holes 3A is provided in the upper space of the main body 1A.
It is configured as a shell-and-tube type smoke tube type (extra-tube) falling film evaporator in which water is supplied from a water supply inlet 23 connected to the heat transfer tube 2 to uniformly spray the surface of the heat transfer tube 2. The steam generated by heat exchange with the outer surface of the heat transfer tube 2 is supplied from the steam outlet 24 to the superheater or the like from inside the main body 1A, and the recirculation outlet 22 is provided at the bottom of the main body 1A. Then, it is sucked by the water supply recirculation pump 14 (FIG. 3) and supplied to a predetermined location. A liquid level transmitter 4 for detecting the liquid level of the water contained inside the main body 1 is attached to the side surface of the main body 1A. Also, this evaporator 1
Then, the length and the number of the heat transfer tubes are set so that the heat transfer area is larger than the heat transfer area required to generate the steam flow rate required at the demand destination. Further, the evaporator 1 of this embodiment has a control device for controlling the liquid level of the water held therein.
30 (see second) is attached so that it can be set by switching between two normal liquid levels of the internal water of the evaporator 1 in response to a predetermined switching signal. As shown in FIG. 1, the first normal liquid level (NWL) of them is set lower than the lower end surface of the heat transfer tube group 2, and the second normal liquid level (NWL + ΔH)
Is set above the upper end surface of the heat transfer tube group 2 and is configured to function as the evaporator 1 that performs different operations by switching to any of them.
第3図の熱交換系統の構成図に示すように、蒸発器1は
熱交換系統に組みこまれ、過熱器6、予熱器8、給水加
熱器9とで熱交換装置が構成されている。産業廃棄物処
理施設等から出た排ガスは、切替ダンパ12を経て主流路
10に流入し、過熱器6を経て蒸発器1の伝熱管2内に入
り散水装置3からの散水と伝熱管2の外面で熱交換して
蒸気を発生するようになっている。ここで発生した蒸気
は過熱器6へ送られて過熱され、給水加熱器9で熱仕事
をして復水として給水タンク15へ戻される。蒸発器1で
熱交換を行った排ガスは主流路10に戻されて予熱器8を
経て系外へ排出される。一方、主流路10に入る前に排ガ
スの一部は切替ダンパ13を経てバイパス流路11に流入
し、過熱器6と蒸発器1とをバイパスして蒸発器1から
排出された排ガスと主流路10で再び合流して予熱器8に
達した後、系外に排出される。さらに、蒸発器1には、
その内部保有水を吸引する給水再循環ポンプ14が付設さ
れ、吸引された保有水は、予熱器8と蒸発器1の散水装
置3へ供給されるようになっている。さらに、給水と給
水加熱器9からの復水は、一旦、給水タンク15に貯めら
れた後、給水ポンプ16と給水流量調節弁17を経て予熱器
8へ送られて予熱された上、蒸発器1へ給水される。As shown in the configuration diagram of the heat exchange system in FIG. 3, the evaporator 1 is incorporated in the heat exchange system, and the superheater 6, the preheater 8 and the feed water heater 9 constitute a heat exchange device. Exhaust gas emitted from industrial waste treatment facilities, etc. passes through the switching damper 12 and the main flow path.
10 flows into the heat transfer tube 2 of the evaporator 1 through the superheater 6, and heat is exchanged between the water spray from the water spray device 3 and the outer surface of the heat transfer tube 2 to generate steam. The steam generated here is sent to the superheater 6 to be superheated, and is heated by the feed water heater 9 to be returned to the feed water tank 15 as condensed water. The exhaust gas that has undergone heat exchange in the evaporator 1 is returned to the main flow path 10 and is discharged to the outside of the system via the preheater 8. On the other hand, before entering the main flow path 10, a part of the exhaust gas flows into the bypass flow path 11 via the switching damper 13, bypasses the superheater 6 and the evaporator 1, and the exhaust gas discharged from the evaporator 1 and the main flow path. After rejoining at 10 and reaching the preheater 8, it is discharged to the outside of the system. Furthermore, the evaporator 1 has
A water supply recirculation pump 14 for sucking the internal retained water is attached, and the sucked retained water is supplied to the preheater 8 and the sprinkler device 3 of the evaporator 1. Further, the water supply and the condensate from the water supply heater 9 are once stored in the water supply tank 15, then sent to the preheater 8 via the water supply pump 16 and the water supply flow rate control valve 17 to be preheated, and then the evaporator. Water is supplied to 1.
また、第2図に示すように、蒸発器の液位制御装置30
は、液位トラッスミッタ4から液位信号を受ける偏差演
算部31、この偏差演算信号を受けて増幅するPID演算部3
2、さらには液位信号以外の給水流量信号と蒸気流量信
号を加算する加算部33、これらの電気信号を空気信号に
変換して給水流量調節弁17を開閉弁する電気/空気信号
変換部34とから構成されている。さらに、この液位制御
装置30には、例えば蒸発器の定格圧力到達信号等の設定
値切替指令信号の入力を受けて第1正常液位(NWL)と
第2正常液位(NWL+ΔH)に蒸発器1の液位を切り替
える設定値切替部35と変化率制限部36が付設されてい
る。また、偏差演算部31には液位の基準値が入力され
る。また、液位制御装置30には、熱交換系統の、例えば
蒸気流量、給水流量の変動等を監視して蒸発器1内部の
保有水の液位信号(単要素)と、これを加えた3要素
(液位、給水流量、蒸気流量)との切替指令信号を入力
する3要素・単要素切替部37と、この切替部37に入力さ
れた信号にこの信号がしきい値以下の場合にバイアスを
かける0%バイアス部38、さらには、給水流量と蒸気流
量からの信号を入力して減算し、切替部37へ出力する減
算部39が付設されている。In addition, as shown in FIG.
Is a deviation calculator 31 that receives the liquid level signal from the liquid level transmitter 4, and a PID calculator 3 that receives and amplifies the deviation calculation signal.
2. Further, an addition unit 33 for adding the feed water flow rate signal other than the liquid level signal and the steam flow rate signal, an electric / air signal conversion unit 34 for converting these electric signals into air signals and opening / closing the feed water flow rate control valve 17 It consists of and. Further, the liquid level control device 30 receives an input of a set value switching command signal such as a rated pressure reaching signal of the evaporator and evaporates into a first normal liquid level (NWL) and a second normal liquid level (NWL + ΔH). A set value switching unit 35 for switching the liquid level of the container 1 and a change rate limiting unit 36 are additionally provided. Further, a reference value of the liquid level is input to the deviation calculator 31. Further, the liquid level control device 30 monitors the fluctuation of the steam flow rate, the feed water flow rate, and the like of the heat exchange system, and the liquid level signal (single element) of the retained water inside the evaporator 1 and 3 A three-element / single-element switching section 37 for inputting a switching command signal for switching between elements (liquid level, feed water flow rate, steam flow rate), and the signal input to this switching section 37 is biased when this signal is below a threshold value. Further, a 0% bias unit 38 for applying a pressure, and a subtraction unit 39 for inputting and subtracting signals from the feed water flow rate and the steam flow rate and outputting to the switching unit 37 are additionally provided.
このようにして構成された液位制御装置30においては、
通常、蒸発器の内部保有水の液位を液位トランスミッタ
4で検出し、設定値との偏差を偏差演算部31で演算し、
偏差が検出された場合には弁操作信号をPID演算部32を
経て、かつ、加算部33をスキップして電気/空気信号変
換部34へ送り給水流量調節弁17の弁開度を調節して内部
保有水の液位を制御する。In the liquid level control device 30 configured in this way,
Normally, the liquid level of the water held inside the evaporator is detected by the liquid level transmitter 4, and the deviation from the set value is calculated by the deviation calculation unit 31,
When a deviation is detected, the valve operation signal is sent to the electric / air signal conversion unit 34 by skipping the addition unit 33 through the PID calculation unit 32 and adjusting the valve opening of the feed water flow rate control valve 17. Controls the liquid level of the internal retained water.
また、熱交換系統の定格圧力が流下膜蒸発器としての機
能で規定値に到達したときには、例えば蒸発器の必要最
低限の正常液位(NWL)から最高限の正常液位(NWL+Δ
H)に、設定値切替指令信号を設定値切替部35で受けて
設定値を切り替える。そして、この切替信号を変化率制
限部36にかけて修正してから偏差演算部31へ送り実際の
液位との偏差を演算し、電気/空気信号変換部34へ弁操
作信号を送り給水流量調節弁17の弁開度を調節して内部
保有水の液位を正常液位(NWL+ΔH)に維持するよう
に制御する。When the rated pressure of the heat exchange system reaches a specified value by the function of the falling film evaporator, for example, the minimum normal liquid level (NWL) of the evaporator to the maximum normal liquid level (NWL + Δ
In H), the set value switching command signal is received by the set value switching unit 35 to switch the set value. Then, the switching signal is corrected by the rate-of-change limiting unit 36 and then sent to the deviation calculating unit 31 to calculate the deviation from the actual liquid level, and the valve operation signal is sent to the electric / air signal converting unit 34 to supply water flow rate adjusting valve. The valve opening of 17 is adjusted to control the liquid level of the internally held water to the normal liquid level (NWL + ΔH).
さらに、熱交換系統の給水流量、蒸気流量を制御要素と
して内部保有水の液位制御を行う場合には、単要素から
3要素への切替指令信号を受けて3要素・単要素切替部
37の切り替えを行うようになっている。Furthermore, when the liquid level control of the internal retained water is performed by using the feed water flow rate and the steam flow rate of the heat exchange system as control elements, the three-element / single-element switching unit receives the switching command signal from the single element to the three elements.
It is designed to switch between 37.
このようにして構成された本発明の実施例の排熱回収熱
交換装置の作用について説明する。まず、蒸発器1に付
設された液位制御装置30が蒸発器1の内部保有水の正常
液位を蒸発器1内の底部の必要最低限の高さである第1
正常液位(NWL)に設定し、給水流量調節弁17と、第2
図に示すように連動して第1正常液位(NWL)を設定値
に保つ。この際、第3図に示す給水再循環ポンプ14が作
動しているので、予熱器8と蒸発器1との間で水が循環
し、給水の散水装置3から水が伝熱管2群に散布され伝
熱管2の外面を流下する間に熱交換されて蒸発器1は流
下膜蒸発器として機能して蒸気を発生して過熱器6へ供
給する。このように、起動(コールドスタート)前、蒸
発器1の内部には、流下膜蒸発器として機能する液位が
ある。そのため液位制御装置30には第1正常液位として
NWLが設定されていて、液位トランスミッタ4からの液
位信号のみを制御要素とする単要素制御方式により液位
制御がされている。そこで、排ガスが、かりに定格の流
量と温度で供給されると熱交換装置、配管の構造部材等
の昇温に要する僅かな時間の経過後、蒸発器1の水側が
所定の圧力と温度に到達し、蒸気の送給が開始される。The operation of the exhaust heat recovery heat exchange device of the embodiment of the present invention thus configured will be described. First, the liquid level control device 30 attached to the evaporator 1 sets the normal liquid level of the water contained in the evaporator 1 to the minimum required height of the bottom of the evaporator 1.
Set the normal liquid level (NWL), supply water flow control valve 17 and the second
The first normal liquid level (NWL) is maintained at the set value by interlocking as shown in the figure. At this time, since the water supply recirculation pump 14 shown in FIG. 3 is operating, water circulates between the preheater 8 and the evaporator 1, and the water is sprayed from the water supply sprinkler 3 to the heat transfer tubes 2 groups. Then, heat is exchanged while flowing down the outer surface of the heat transfer tube 2, and the evaporator 1 functions as a falling film evaporator to generate steam and supply it to the superheater 6. Thus, before the start (cold start), inside the evaporator 1, there is a liquid level that functions as a falling film evaporator. Therefore, the liquid level control device 30 has the first normal liquid level.
NWL is set, and the liquid level is controlled by a single element control method in which only the liquid level signal from the liquid level transmitter 4 is used as a control element. Therefore, when the exhaust gas is supplied at a rated flow rate and temperature, the water side of the evaporator 1 reaches a predetermined pressure and temperature after a short time required for raising the temperature of the heat exchange device, the structural members of the piping, and the like. Then, steam supply is started.
ところで、本発明の蒸発器は、通常の排ガスの放出温度
(約100℃〜120℃)よりさらに温度を下げて多くの熱を
回収するように構成されている。そのため、給水の飽和
液の状態付近を境にして排ガスの一部を切替ダンパ13を
経て排ガスバイパス流路11へ送り、過熱器6と蒸発器1
をバイパスさせ、予熱器8の排ガス上流側に合流させる
ことによって予熱器8での交換熱量を増し、熱交換装置
を予熱器8と蒸発器1とに分け、蒸発量に影響を及すこ
となく、多量の給水を蒸発器1に送りこむことができる
ようにする。すなわち、この排ガスバイパス管路系は、
蒸発器1の伝熱面積が所要な蒸気流量を発生するのには
過大であるので、蒸発器1に流入する排ガス流量を制限
する。これにより、蒸発量を適量に調節するとともに、
予熱器8に高温の排ガスを直接付与してその熱負荷を高
め、蒸発量以上の給水流量をその飽和点付近まで予熱さ
せる。これによって、蒸発器1に保有される液分を累積
増加させる作用をもつようになる。By the way, the evaporator of the present invention is configured to recover a large amount of heat by further lowering the temperature from the normal exhaust gas discharge temperature (about 100 ° C to 120 ° C). Therefore, a portion of the exhaust gas is sent to the exhaust gas bypass flow passage 11 through the switching damper 13 with the vicinity of the saturated liquid state of the feed water as a boundary, and the superheater 6 and the evaporator 1 are connected.
By bypassing and bypassing the preheater 8 to the upstream side of the exhaust gas, the amount of heat exchanged in the preheater 8 is increased, and the heat exchange device is divided into the preheater 8 and the evaporator 1 without affecting the evaporation amount. , So that a large amount of water can be sent to the evaporator 1. That is, this exhaust gas bypass pipeline system
Since the heat transfer area of the evaporator 1 is too large to generate the required vapor flow rate, the exhaust gas flow rate flowing into the evaporator 1 is limited. With this, while adjusting the amount of evaporation to an appropriate amount,
High-temperature exhaust gas is directly applied to the preheater 8 to increase its heat load and preheat a feed water flow rate equal to or more than the evaporation amount to near its saturation point. As a result, it has an effect of cumulatively increasing the liquid content held in the evaporator 1.
そして、蒸発器の所定圧力への到達信号(設定値切替指
令信号)を受けて、蒸発器1の液位制御装置30の正常液
位は設定値切替部35により満液式蒸発器として機能する
伝熱管2群が露出しない液位である第2正常液位(NWL
+ΔH)に切り替わる。また、液位制御装置30の液位制
御方式は、蒸気流量信号(3要素、単要素切替信号)に
よって切り替えられて、給水流量信号と蒸気流量信号お
よび液位信号を要素とする3要素制御方式となってい
る。このような制御条件下での液位制御装置30の第2図
について説明した働きにより蒸発器1内の内部保有水の
液位給水流量調整弁17の開弁により徐々に上昇し、つい
には満液式蒸発器としての定格の液位(第2正常液位、
NWL+ΔH)に達し、液位は液位制御装置30により常に
一定に制御される。同時に給水再循環ポンプ14の作動が
停止され、散水が中断され、伝熱管2の外面との間で熱
交換が行われて蒸気が発生する。その後、排ガスはその
バイパス流量を調節されて蒸発器2へ送られ、余剰の蒸
気が発生し、この余剰蒸気は給水加熱器9へ送給され
て、給水の予熱のために用いられる。The normal level of the liquid level control device 30 of the evaporator 1 functions as a full-fill type evaporator by the set value switching unit 35 in response to the arrival signal (setting value switching command signal) of the evaporator to reach the predetermined pressure. The second normal liquid level (NWL), which is the liquid level where the second heat transfer tube group is not exposed.
+ ΔH). Further, the liquid level control system of the liquid level control device 30 is switched by a steam flow rate signal (three elements, single element switching signal), and is a three-element control system having a feed water flow rate signal, a steam flow rate signal and a liquid level signal as elements. Has become. Under the control conditions as described above, the function described in FIG. 2 of the liquid level control device 30 gradually increases by opening the liquid level feed water flow rate adjusting valve 17 of the internal retained water in the evaporator 1, and finally reaches the full level. Rated liquid level as a liquid type evaporator (second normal liquid level,
NWL + ΔH), and the liquid level is constantly controlled by the liquid level control device 30. At the same time, the operation of the water supply recirculation pump 14 is stopped, the water spray is interrupted, heat is exchanged with the outer surface of the heat transfer tube 2, and steam is generated. Thereafter, the bypass flow rate of the exhaust gas is adjusted and sent to the evaporator 2, and excess steam is generated. The excess steam is sent to the feed water heater 9 and used for preheating the feed water.
本発明の排熱回収熱交換装置によれば、蒸発器に配設し
た液位制御装置により蒸発器の内部保有水の液位を2つ
の異なった正常液位に切替えて制御できる。そのため、
蒸発器をその起動時においては、管外流下膜蒸発器とし
て機能させることができ、内部保有水量を最低限正常水
位まで低減させて極めて短時間のうちに蒸発器から定格
の温度、圧力、流量の蒸気を発生することができるよう
になる。According to the exhaust heat recovery heat exchange device of the present invention, the liquid level control device provided in the evaporator can switch and control the liquid level of the water contained in the evaporator to two different normal liquid levels. for that reason,
When the evaporator is started up, it can function as an external pipe falling film evaporator, reducing the internal retained water amount to the minimum normal water level, and from the evaporator to the rated temperature, pressure and flow rate in an extremely short time. Will be able to generate steam.
また、定格運転到達後は内部保有水の液位制御装置の制
御により液位を徐々に上昇させて満液式蒸発器として機
能させることができるので、その後は、散水のための給
水再循環ポンプの運転が不要となり、その結果、消費動
力の節約ができるという効果がある。In addition, after reaching the rated operation, the liquid level can be gradually increased by the control of the liquid level controller of the internal retained water to function as a full liquid evaporator. Is unnecessary, and as a result, power consumption can be saved.
第1図は本発明の排熱回収熱交換装置を構成する蒸発器
の一実施例の一部破断側面図、第2図は第1図に示した
蒸発器の液位制御装置の制御ブロック図、第3図は本発
明の排熱回収熱交換装置が適用される熱交換系統の一実
施例の構成図、第4図は本発明の排熱回収熱交換装置を
構成する蒸発器の他の実施例の一部破断側面図、第5図
は排熱回収熱交換装置を構成する従来の満液式蒸発器の
一部破断側面図である。 1……蒸発器、1A……蒸発器本体胴、2……伝熱管、3
……散水装置、4……液位トランスミッタ、20……排ガ
ス入口、21……排ガス出口、22……再循環液出口、23…
…給水入口、24……蒸気出口。FIG. 1 is a partially cutaway side view of an embodiment of an evaporator constituting an exhaust heat recovery heat exchange device of the present invention, and FIG. 2 is a control block diagram of a liquid level control device for the evaporator shown in FIG. FIG. 3 is a block diagram of an embodiment of a heat exchange system to which the exhaust heat recovery heat exchange apparatus of the present invention is applied, and FIG. 4 shows another evaporator constituting the exhaust heat recovery heat exchange apparatus of the present invention. FIG. 5 is a partially cutaway side view of the embodiment, and FIG. 5 is a partially cutaway side view of a conventional liquid-filled evaporator constituting an exhaust heat recovery heat exchange device. 1 ... Evaporator, 1A ... Evaporator main body, 2 ... Heat transfer tube, 3
…… Sprinkler, 4 …… Liquid level transmitter, 20 …… Exhaust gas inlet, 21 …… Exhaust gas outlet, 22 …… Recirculating liquid outlet, 23…
… Water supply inlet, 24… Steam outlet.
Claims (3)
蒸発器により給水を加熱して蒸気を発生させ、得られた
蒸気を過熱器により加熱して過熱蒸気を生成するように
した排熱回収熱交換装置において、該蒸発器の内部保有
水の液位を前記蒸発器内に横置された伝熱管群の下端面
よりも下方の液位と前記伝熱管群の上端面よりも上方の
液位とにそれぞれ切替えて管外流下膜蒸発器あるいは満
液式蒸発器として機能させることを特徴とする排熱回収
熱交換装置。1. Exhaust heat in which feed water is heated by an evaporator that recovers heat from a gas introduced from an exhaust heat source to generate steam, and the resulting steam is heated by a superheater to generate superheated steam. In the recovery heat exchange device, the liquid level of the water retained inside the evaporator is lower than the liquid level below the lower end surface of the heat transfer tube group disposed laterally in the evaporator and above the upper end surface of the heat transfer tube group. An exhaust heat recovery heat exchanger characterized by being switched to a liquid level and functioning as a falling film evaporator or a full liquid evaporator.
しての機能の切替えを蒸発器の定格圧力到達信号等の設
定値切替指令信号によって作動する液位制御装置によっ
て行うことを特徴とする請求項1記載の排熱回収熱交換
装置。2. A liquid level control device that operates as a falling film evaporator or a full-fill type evaporator is switched by a liquid level control device that operates by a set value switching command signal such as a rated pressure reaching signal of the evaporator. The exhaust heat recovery heat exchange device according to claim 1.
過熱器と蒸発器とをバイパスして予熱器の上流側で前記
主流路と合流する排ガスのバイパス流路とを設け、給水
の飽和液の状態付近を境にして排ガスの一部を前記バイ
パス流路へ送り、前記蒸発器を起動させることを特徴と
する請求項1または2記載の排熱回収熱交換装置。3. A main flow path for exhaust gas in an exhaust heat recovery heat exchange device,
A bypass passage for exhaust gas that joins the main passage upstream of the preheater by bypassing the superheater and the evaporator is provided, and a part of the exhaust gas is bypassed with the vicinity of the saturated liquid state of the feed water as a boundary. The exhaust heat recovery heat exchange device according to claim 1 or 2, wherein the exhaust heat recovery heat exchange device is sent to a path to activate the evaporator.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2065659A JPH0765721B2 (en) | 1990-03-16 | 1990-03-16 | Exhaust heat recovery heat exchange device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2065659A JPH0765721B2 (en) | 1990-03-16 | 1990-03-16 | Exhaust heat recovery heat exchange device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH03267602A JPH03267602A (en) | 1991-11-28 |
| JPH0765721B2 true JPH0765721B2 (en) | 1995-07-19 |
Family
ID=13293347
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2065659A Expired - Fee Related JPH0765721B2 (en) | 1990-03-16 | 1990-03-16 | Exhaust heat recovery heat exchange device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0765721B2 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4506091B2 (en) * | 2003-03-26 | 2010-07-21 | 日産自動車株式会社 | How to start the evaporator |
| KR100686189B1 (en) * | 2006-04-28 | 2007-02-22 | 윤명혁 | Waste Heat Recovery Device of Hot Water |
| JP6019990B2 (en) * | 2012-09-20 | 2016-11-02 | 三浦工業株式会社 | Steam generator |
| JP6003448B2 (en) * | 2012-09-20 | 2016-10-05 | 三浦工業株式会社 | Steam generator |
| JP6064731B2 (en) * | 2013-03-27 | 2017-01-25 | 三浦工業株式会社 | Steam generator |
| US9995170B2 (en) * | 2016-03-16 | 2018-06-12 | General Electric Technology Gmbh | System and method for heating components of a heat recovery steam generator |
| CN107504823B (en) * | 2016-12-30 | 2019-01-11 | 华北水利水电大学 | A kind of Organic Rankine Cycle afterheat generating system based on falling film evaporator |
-
1990
- 1990-03-16 JP JP2065659A patent/JPH0765721B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH03267602A (en) | 1991-11-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4572110A (en) | Combined heat recovery and emission control system | |
| US5404708A (en) | Method for operating a gas and steam turbine plant and gas and steam turbine plant operating according to the method | |
| JPS6249443B2 (en) | ||
| US4745757A (en) | Combined heat recovery and make-up water heating system | |
| JPH0765721B2 (en) | Exhaust heat recovery heat exchange device | |
| AU651315B2 (en) | Waste heat recovery apparatus | |
| DK154731B (en) | Steam boiler with catalytic flue gas treatment as well as boiler operation | |
| JP3688012B2 (en) | Method and apparatus for starting a steam power plant having a plurality of boilers | |
| EP0011104B1 (en) | Flue gas reheat system | |
| JP7400934B2 (en) | Water supply control device | |
| JP7516275B2 (en) | Waste heat recovery boiler | |
| JPH07122485B2 (en) | Steamer steam prevention device for once-through thermal power generation boiler system | |
| JPH0758121B2 (en) | Recycling controller for economizer | |
| JP7308719B2 (en) | Exhaust heat recovery system | |
| JPS6212364B2 (en) | ||
| JPH11294713A (en) | Water supply system for waste heat recovery boiler | |
| JP3820636B2 (en) | Method and apparatus for controlling feed water temperature in exhaust recombustion combined cycle plant | |
| JPH07119414A (en) | Operation control method for waste heat utilization complex plant of waste incinerator | |
| JP2725143B2 (en) | Combustion superheater | |
| JPS61235685A (en) | Temperature control device in waste heat retrieving device for thermal plant | |
| CN119860684A (en) | Fused salt heat storage system of coupling coal-fired unit | |
| JP2003083501A (en) | Fluidized bed boiler | |
| JPS6316193B2 (en) | ||
| JPS5818027Y2 (en) | gas reheat device | |
| JPH05149108A (en) | Drum level controller for combined cycle power plant |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 13 |
|
| LAPS | Cancellation because of no payment of annual fees |