[go: up one dir, main page]

JPH076502B2 - Capacity control method for variable capacity compressor in air conditioner - Google Patents

Capacity control method for variable capacity compressor in air conditioner

Info

Publication number
JPH076502B2
JPH076502B2 JP62219655A JP21965587A JPH076502B2 JP H076502 B2 JPH076502 B2 JP H076502B2 JP 62219655 A JP62219655 A JP 62219655A JP 21965587 A JP21965587 A JP 21965587A JP H076502 B2 JPH076502 B2 JP H076502B2
Authority
JP
Japan
Prior art keywords
temperature
capacity
compressor
variable
capacity control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62219655A
Other languages
Japanese (ja)
Other versions
JPS6463670A (en
Inventor
新一 鈴木
忠一 河村
Original Assignee
株式会社豊田自動織機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機製作所 filed Critical 株式会社豊田自動織機製作所
Priority to JP62219655A priority Critical patent/JPH076502B2/en
Publication of JPS6463670A publication Critical patent/JPS6463670A/en
Publication of JPH076502B2 publication Critical patent/JPH076502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は車両用冷房装置における可変容量圧縮機の容量
制御方法に係わり、詳しくは蒸発器の吹出空気温度が繰
り返し大きく変動(ハンチング)した場合に、そのハン
チングの幅を小さくするため、圧縮機の容量制御を適正
に行うようにした容量制御方法に関するものである。
The present invention relates to a method for controlling the capacity of a variable capacity compressor in a vehicle cooling system, and more specifically, the temperature of air blown from an evaporator repeatedly and largely fluctuates (hunting). In this case, the present invention relates to a capacity control method for appropriately controlling the capacity of the compressor in order to reduce the hunting width.

(従来の技術) 従来、車両用冷房装置は例えば第7図に示すようにエン
ジン1により回転駆動される揺動傾斜板(ワッブル)式
の可変容量圧縮機2と、この圧縮機2の吐出室3及び吸
人室4を吐出ポートと吸人ポート(図示略)を介して接
続する外部管路5の途中に順次接続された凝縮器6、膨
脹弁7及び蒸発器8と、さらに、前記蒸発器8に空気を
供給するブロア9と、前記蒸発器8の出口側管路5aの外
表面に取着され、蒸発器8出口の冷媒ガス温度及び圧力
を検出して前記膨脹弁7の開量を制御する感温筒10とに
より構成されている。
(Prior Art) Conventionally, a vehicle cooling device includes, for example, as shown in FIG. 7, a variable displacement compressor 2 of an oscillating inclined plate (wobble) type that is rotationally driven by an engine 1, and a discharge chamber of the compressor 2. 3, a condenser 6, an expansion valve 7 and an evaporator 8 which are sequentially connected in the middle of an external pipe 5 connecting the discharge port 3 and the sucker chamber 4 via a discharge port and a sucker port (not shown); The blower 9 for supplying air to the evaporator 8 and the outer surface of the outlet side conduit 5a of the evaporator 8 are attached to detect the refrigerant gas temperature and pressure at the outlet of the evaporator 8 to open the expansion valve 7. And a temperature-sensitive tube 10 for controlling the.

前記可変量圧縮機2のリヤハウジング部には、第6図に
示すように容量可変機構を構成する電磁弁11が内蔵され
ている。この電磁弁11はクランク室12内の圧力Pcを制御
するものであって、その制御によってピストン14のスト
ローク量を変化させることにより、揺動傾斜板13の傾斜
角を変化させ、圧縮容量を制御するようにしている。そ
して、電磁弁11のデューティ比を制御して、吐出室3と
クランク室12との間を連通する通路15の開閉制御を行
い、吐出圧力Pdである冷媒ガスのクランク室12内への導
入量を制御することによって、可変容量圧縮機2の圧縮
容量を制御するようになっている。前記クランク室12は
リーク通路16により吸入室4と連通され、圧縮室からク
ランク室12へブローバイされる冷媒ガスを吸入室4へリ
ークさせるようになっている。
In the rear housing portion of the variable amount compressor 2, as shown in FIG. 6, a solenoid valve 11 which constitutes a variable capacity mechanism is built in. The solenoid valve 11 controls the pressure Pc in the crank chamber 12, and the stroke amount of the piston 14 is changed by the control to change the tilt angle of the swinging tilt plate 13 to control the compression capacity. I am trying to do it. Then, the duty ratio of the solenoid valve 11 is controlled to control the opening / closing of the passage 15 that communicates between the discharge chamber 3 and the crank chamber 12, and the amount of refrigerant gas, which is the discharge pressure Pd, introduced into the crank chamber 12. Is controlled to control the compression capacity of the variable capacity compressor 2. The crank chamber 12 communicates with the suction chamber 4 through a leak passage 16 so that the refrigerant gas blown by from the compression chamber to the crank chamber 12 leaks to the suction chamber 4.

さらに、第7図に示すように前記電磁弁11にはその開閉
制御を行うための演算制御装置17が接続されている。こ
の演算制御装置17には、前記圧縮機2の回転数を検出す
るための回転センサ18、前記蒸発器8の吹出空気温度を
検出するための温度センサ19、前記ブロア9の電圧を蒸
発器8の吹出空気量として検出するための電圧センサ2
0、さらに、外気温度を検出する温度センサ21がそれぞ
れ接続されている。
Further, as shown in FIG. 7, the solenoid valve 11 is connected to an arithmetic and control unit 17 for controlling the opening and closing of the solenoid valve 11. The arithmetic and control unit 17 includes a rotation sensor 18 for detecting the number of revolutions of the compressor 2, a temperature sensor 19 for detecting the temperature of the air blown from the evaporator 8, and a voltage of the blower 9 for the evaporator 8. Voltage sensor 2 for detecting the amount of blown air
0, and a temperature sensor 21 for detecting the outside air temperature is connected to each.

そして、車両冷房装置をスタートさせて、演算制御装置
17により蒸発器8の吹出空気温度Tfの目標温度Tcを設定
し、次いで、両温度センサ19,21により前記吹出空気温
度Tf及び外気温度等を検出するとともに、回転センサ18
及び電圧センサ20により、圧縮機2の回転数及び蒸発器
8の吹出空気量を検出して、これらの検出信号に基いて
演算制御装置17により容量制御量を演算し、これに比例
する制御信号を電磁弁11に入力してそのデューティ比を
制御し、圧縮機2の容量を制御するようにしていた。
Then, the vehicle cooling device is started, and the arithmetic and control unit
The target temperature Tc of the blown air temperature Tf of the evaporator 8 is set by 17, and then the blown air temperature Tf and the outside air temperature are detected by both temperature sensors 19 and 21, and the rotation sensor 18
The voltage sensor 20 detects the rotation speed of the compressor 2 and the amount of air blown out of the evaporator 8, and the arithmetic control unit 17 calculates a capacity control amount based on these detection signals, and a control signal proportional to this. Was input to the solenoid valve 11 to control the duty ratio of the solenoid valve 11 to control the capacity of the compressor 2.

(発明が解決しようとする問題点) ところが、前記従来の可変容量圧縮機の容量制御方法
は、電磁弁11の制御動作が膨脹弁7の制御動作と独立し
て行われるようにしていたので、つまり膨脹弁7は蒸発
器8の出口の感温筒10によりスーパヒートを制御してお
り、一方、可変容量圧縮機は蒸発器8出口の吹出空気温
度Tfを目標温度に保持するように前記演算制御装置17に
より制御されていたので、冷房装置全体として必ずしも
最良の制御を行うことができなかった。すなわち、蒸発
器8の出口冷媒ガス温度、外気温度及び回転数のある範
囲内で膨脹弁7の制御量と可変容量圧縮機2の制御量と
のマッチングが悪いと、第5図に示すように蒸発器8の
吹出空気温度Tfが時間tの経過とともに、目標温度Tcを
はさんで比較的長い周期で上下に大きくハンチングし、
冷房フィーリングを著しく損ない乗員に不快感を与える
という問題があった。
(Problems to be Solved by the Invention) However, in the conventional displacement control method for the variable displacement compressor, the control operation of the solenoid valve 11 is performed independently of the control operation of the expansion valve 7. That is, the expansion valve 7 controls the superheat by the temperature sensing tube 10 at the outlet of the evaporator 8, while the variable displacement compressor controls the above so that the blown air temperature Tf at the outlet of the evaporator 8 is maintained at the target temperature. Since it was controlled by the device 17, it was not always possible to perform the best control as the entire cooling device. That is, if the control amount of the expansion valve 7 and the control amount of the variable displacement compressor 2 do not match well within a certain range of the outlet refrigerant gas temperature of the evaporator 8, the outside air temperature, and the rotation speed, as shown in FIG. As the blown air temperature Tf of the evaporator 8 elapses with time t, it hunts largely up and down with a relatively long cycle across the target temperature Tc,
There has been a problem that the cooling feeling is significantly impaired and the passengers feel uncomfortable.

本発明の目的は上記従来の運転制御方法に存する問題点
を解消して、蒸発器出口の吹出空気温度の大幅なハンチ
ングを抑制して冷房フィーリングを向上することができ
るとともに、幅広く冷房装置に適応できる冷房装置にお
ける可変容量圧縮機の容量制御方法を提供することにあ
る。
The object of the present invention is to eliminate the problems existing in the above-mentioned conventional operation control method, and to improve the cooling feeling by suppressing a significant hunting of the air temperature blown out of the evaporator outlet, and to a wide range of cooling devices. An object of the present invention is to provide a capacity control method for a variable capacity compressor in an applicable cooling device.

発明の構成 (問題点を解決するための手段) 本発明は前記問題点を解消するため、可変容量圧縮機の
吐出側ポートと吸人側ポートに対し凝縮器、膨脹弁及び
蒸発器を順次接続するとともに、前記蒸発器の出口側管
路には前記膨脹弁を制御する感温筒を設け、前記蒸発器
の吹出空気温度を検出するセンサからの検出信号に基づ
いて、容量制御量を演算して可変容量圧縮機の容量可変
機構へ制御信号を出力する演算制御装置を備えた冷房装
置において、 前記可変量圧縮機の冷媒ガスの現在における吸入温度又
は吐出温度と、所定時間前の吸入温度又は吐出温度との
温度差が、設定温度域内にあるときには、演算制御装置
における容量制御定数を初期設定値のままにして前記容
量制御量を演算し、前記温度差が前記設定温度域を越え
て上昇した場合には、容量制御定数を大にして容量制御
量を演算し、前記温度差が前記設定温度域を越えて下降
した場合には、容量制御定数を小にして容量制御量を演
算するという手段を採っている。
Configuration of the Invention (Means for Solving Problems) In order to solve the above problems, the present invention sequentially connects a condenser, an expansion valve, and an evaporator to a discharge side port and a suction side port of a variable displacement compressor. In addition, a temperature-sensitive tube for controlling the expansion valve is provided in the outlet side pipe of the evaporator, and the capacity control amount is calculated based on a detection signal from a sensor that detects the temperature of air blown out of the evaporator. In a cooling device including an arithmetic and control unit that outputs a control signal to a variable capacity mechanism of a variable capacity compressor, a current suction temperature or discharge temperature of the refrigerant gas of the variable quantity compressor and a suction temperature before a predetermined time or When the temperature difference from the discharge temperature is within the set temperature range, the capacity control constant in the arithmetic and control unit remains at the initial set value to calculate the capacity control amount, and the temperature difference rises beyond the set temperature range. When The means for calculating the capacity control amount by increasing the capacity control constant and decreasing the capacity control constant and calculating the capacity control amount when the temperature difference falls below the set temperature range. I am collecting.

(作用) 本発明は前記手段を採ったことにより、次のように作用
する。
(Operation) The present invention operates as follows by adopting the above means.

冷房装置が起動されると、演算制御装置により容量制御
定数を初期設定値に保持して容量制御量が演算され、こ
れに比例する容量制御信号により可変容量圧縮機の容量
可変機構が制御され、蒸発器出口の吐出空気温度は目標
温度をはさんで許容温度域内で制御される。そして、膨
脹弁の制御量と演算制御装置による圧縮機の容量制御量
がマッチングしなくなって、蒸発器出口の吹出空気温度
が大きく変動し、現在の冷媒ガスの吸人温度又は吐出温
度と所定時間前の吸入温度又は吐出温度との温度差が、
設定温度域を越えて上昇(下降)すると、容量制御定数
が大きく(小さく)なり、この容量制御定数に基づいて
容量制御量が演算され、これに比例する容量制御信号に
より可変容量圧縮機の容量可変機構が制御される。この
結果、制御定数が初期設定値のときの前記蒸発器の吐出
空気温度の制御と比較して小幅な吹出空気温度の制御が
行われ、乗員への不快感が無くなる。
When the air conditioner is activated, the arithmetic and control unit holds the capacity control constant at the initial setting value to calculate the capacity control amount, and the capacity control signal proportional to this controls the capacity variable mechanism of the variable capacity compressor, The discharge air temperature at the outlet of the evaporator is controlled within the allowable temperature range across the target temperature. Then, the control amount of the expansion valve and the capacity control amount of the compressor by the arithmetic and control unit do not match, the temperature of the blown air at the evaporator outlet fluctuates greatly, and the current sucker temperature or discharge temperature of the refrigerant gas and the predetermined time The temperature difference from the previous intake temperature or discharge temperature is
When the temperature rises (falls) beyond the set temperature range, the capacity control constant increases (decreases), the capacity control amount is calculated based on this capacity control constant, and the capacity control signal proportional to this is used to calculate the capacity of the variable capacity compressor. The variable mechanism is controlled. As a result, compared with the control of the discharge air temperature of the evaporator when the control constant is the initial setting value, the control of the blown air temperature is performed to a narrower extent, and the passenger's discomfort is eliminated.

又、本発明は膨脹弁の感温筒の時定数と関連することは
ないので、幅広く冷房装置に適用が可能である。
Further, since the present invention is not related to the time constant of the temperature sensing tube of the expansion valve, it can be widely applied to the cooling device.

(実施例) 以下、本発明を具体化した一実施例を第1図〜第5図に
基づいて説明する。この実施例において、符号1〜21は
前述した従来の冷房装置と同様の機能を有する部材であ
るため、同一の符号を付して構成説明を省略する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 5. In this embodiment, reference numerals 1 to 21 are members having the same functions as those of the conventional cooling device described above, and therefore, the same reference numerals are given and the description of the configuration is omitted.

本発明実施例において、圧縮機2の吐出室3から凝縮器
6までの管路5に、圧縮機の冷媒ガスの吐出温度Tdを検
出するための吐出温度センサ22が設けられている。この
吐出温度Tdの変動は第5図に示すように吸入温度Tsとと
もに蒸発器出口の吹出空気温度Tfの変動と相関関係にあ
り、この発明ではこれらの相関関係に着目して、吹出空
気温度Tfの変動を吐出温度Td又は吸人温度Tsの変動によ
り感知して、この変動に応じて演算制御装置17における
容量制御定数を変更し、圧縮機2の適正な容量制御を行
い、蒸発器の吹出空気温度Tfの制御を確実に行うように
したのである。
In the embodiment of the present invention, the discharge temperature sensor 22 for detecting the discharge temperature Td of the refrigerant gas of the compressor is provided in the pipe line 5 from the discharge chamber 3 of the compressor 2 to the condenser 6. This variation of the discharge temperature Td has a correlation with the variation of the blown air temperature Tf at the evaporator outlet together with the intake temperature Ts as shown in FIG. 5, and in the present invention, paying attention to these correlations, the blown air temperature Tf Of the discharge temperature Td or the sucker temperature Ts is sensed, the capacity control constant in the arithmetic and control unit 17 is changed according to this fluctuation, the capacity of the compressor 2 is properly controlled, and the blowout of the evaporator is performed. The air temperature Tf is surely controlled.

このため前記演算制御装置17は、蒸発器出口における吹
出空気の目標温度Tcを設定する目標温度設定手段23と、
前記吐出温度センサ22からの吐出温度Tdに基づいて、現
在の吐出温度Td1と所定時間(例えば10秒)前の吐出温
度Td2との吐出温度差ΔTd(Td1−Td2)を演算するため
の吐出温度差演出手段24と、同吐出温度差演算手段24か
らの吐出温度差ΔTdに応じて容量制御定数を変更し、こ
の変更した容量制御定数に基づいて制御量を演算し、圧
縮機2の容量可変機構へ制御信号を出力する容量制御定
数変更手段25とを具備している。
Therefore, the arithmetic and control unit 17, the target temperature setting means 23 for setting the target temperature Tc of the blown air at the evaporator outlet,
A discharge temperature for calculating the discharge temperature difference ΔTd (Td1-Td2) between the current discharge temperature Td1 and the discharge temperature Td2 before a predetermined time (for example, 10 seconds) based on the discharge temperature Td from the discharge temperature sensor 22. The capacity control constant is changed according to the discharge temperature difference ΔTd from the difference production means 24 and the discharge temperature difference calculation means 24, and the control amount is calculated based on the changed capacity control constant to change the capacity of the compressor 2. And a capacity control constant changing means 25 for outputting a control signal to the mechanism.

又、この実施例では前記吐出温度差演算手段24からの吐
出温度差ΔTdを、予め記憶された第一〜第五の設定温度
域T1〜T5と比較して、吐出温度差ΔTdが第一設定温度域
T1(例えば−1〜+1℃)の間にあるときには、前記容
量制御定数変更手段25の容量制御定数Cを初期設定値a
のままとし、第二設定温度域T2(例えば1〜5℃)のと
きには、前記初期設定値aに対し正の可変定数rを加算
した(a+r)の容量制御定数に、又、第三設定温度域
T3(例えば5℃以上)のときには、初期設定値aに対し
前記可変定数rよりも大きい可変定数r′を加算した
(a+r′)の容量制御定数に基づいて容量制御量Aを
演算した後、これに比例する容量制御信号を可変容量圧
縮機2へ出力してその容量を制御するようにしている。
Further, in this embodiment, the discharge temperature difference ΔTd from the discharge temperature difference calculation means 24 is compared with the first to fifth set temperature regions T1 to T5 stored in advance, and the discharge temperature difference ΔTd is set to the first setting. Temperature range
When it is between T1 (for example, −1 to + 1 ° C.), the capacity control constant C of the capacity control constant changing means 25 is set to the initial setting value a.
In the second set temperature range T2 (for example, 1 to 5 ° C.), the capacity control constant of (a + r) obtained by adding the positive variable constant r to the initial set value a, and the third set temperature Area
At T3 (for example, 5 ° C. or higher), after the capacity control amount A is calculated based on the capacity control constant (a + r ′) obtained by adding the variable constant r ′ larger than the variable constant r to the initial setting value a, A capacity control signal proportional to this is output to the variable capacity compressor 2 to control its capacity.

反対に、前記吐出温度差ΔTdが第四設定温度域T4(例え
ば−1〜−5℃)又は第五設定温度域T5(例えば5℃以
下)のときには、前記初期設定値aに対し負の可変定数
rを加算した(a−r)の容量制御定数又は初期設定値
aに対し前記負の可変定数rよりも小さい負の可変定数
r′を加算した(a−r′)の容量制御定数に基づいて
容量制御量Aを演算した後、これに比例する容量制御信
号を可変容量圧縮機2へ出力してその容量を制御するよ
うにしている。
On the contrary, when the discharge temperature difference ΔTd is in the fourth set temperature range T4 (for example, −1 to −5 ° C.) or the fifth set temperature range T5 (for example, 5 ° C. or less), it is a negative variable with respect to the initial set value a. To the (a-r) capacity control constant to which the constant r is added, or to the (a-r ') capacity control constant to which a negative variable constant r'which is smaller than the negative variable constant r is added to the initial setting value After the capacity control amount A is calculated based on this, a capacity control signal proportional to this is output to the variable capacity compressor 2 to control its capacity.

さらに詳述すると、蒸発器8の吹出空気温度をTf、蒸発
器8の吹出空気の目標温度Tcを例えば6℃、圧縮機2の
制御量をAとした場合、 比例補償制御、A=C1(Tf−6) 微分補償制御、A=C2・dTf/dt 積分補償制御、A=C3・▲∫K 0▼(Tf−6)dt 以上三種類の制御における各容量制御定数C1、C2、C3の
うち、比例補償制御の制御定数C1を必要に応じて前述し
た初期設定値aと可変定数r,r′に基づいて変更するこ
とにより、可変容量圧縮機2の容量を増減し得るように
している。
More specifically, when the temperature of the air blown from the evaporator 8 is Tf, the target temperature Tc of the air blown from the evaporator 8 is 6 ° C., and the control amount of the compressor 2 is A, proportional compensation control, A = C1 ( tf-6) differential compensation control, a = C2 · dTf / dt integral compensation control, a = C3 · ▲ ∫ K 0 ▼ (Tf-6) each capacity control constant C1 in dt three or more types of control, C2, C3 of Of these, the capacity of the variable capacity compressor 2 can be increased or decreased by changing the control constant C1 of the proportional compensation control based on the above-mentioned initial setting value a and the variable constants r and r'as needed. .

次に、前記可変容量圧縮機2の容量制御方法を第1図の
フローチャートを中心に説明する。
Next, the capacity control method of the variable capacity compressor 2 will be described with a focus on the flowchart of FIG.

今、車室温度が高くて冷房が必要な状態で、圧縮機2の
電磁クラッチ(図示略)がONされて、エンジン1の回転
が圧縮機2の回転軸に伝達されると、第6図において揺
動傾斜板13によりピストン14が往復動され、吸入冷媒ガ
スが圧縮室で圧縮されて吐出室3から吐出される。この
圧縮冷媒ガスは凝縮器6、膨脹弁7を経て蒸発器8に至
り、ここで熱交換されて、吸入室4へ流入される。
Now, when the vehicle interior temperature is high and cooling is required, the electromagnetic clutch (not shown) of the compressor 2 is turned on, and the rotation of the engine 1 is transmitted to the rotary shaft of the compressor 2. In, the piston 14 is reciprocated by the swinging inclined plate 13, and the suction refrigerant gas is compressed in the compression chamber and discharged from the discharge chamber 3. The compressed refrigerant gas reaches the evaporator 8 through the condenser 6 and the expansion valve 7, where heat is exchanged and the refrigerant flows into the suction chamber 4.

前記電磁クラッチ(図示略)の作動により冷房装置の運
転がスタートすると、目標温度設定手段23により蒸発器
出口の吹出空気の目標温度Tcが設定され、圧縮機2の回
転数が回転センサ18により、蒸発器8の吹出空気温度Tf
は温度センサ19によりそれぞれ常時検出される。又、吐
出温度センサ22により冷媒ガスの吐出温度Tdが検出され
る。さらに、演算制御装置17により比例補償制御の容量
制御定数C1が初期設定値aに設定される。なお、微分補
償制御と積分補償制御の制御定数C2,C3は、この実施例
では不変である。
When the operation of the cooling device is started by the operation of the electromagnetic clutch (not shown), the target temperature setting means 23 sets the target temperature Tc of the air blown from the evaporator outlet, and the rotation speed of the compressor 2 is set by the rotation sensor 18. Air temperature Tf blown out of the evaporator 8
Are constantly detected by the temperature sensor 19. Further, the discharge temperature sensor 22 detects the discharge temperature Td of the refrigerant gas. Further, the capacity control constant C1 of the proportional compensation control is set to the initial setting value a by the arithmetic and control unit 17. The control constants C2 and C3 of the differential compensation control and the integral compensation control are unchanged in this embodiment.

一方、吐出温度差演算手段24により検出された吐出温度
Tdに基づいて現在の吐出温度Td1と所定時間前の吐出温
度Td2との吐出温度差ΔTdが演算され、同温度差ΔTdが
第一設定温度域T1(−1〜+1℃)の範囲内であれば、
可変定数rが零に保持されるため、制御定数C1が初期設
定値aのままとなり、演算制御装置17により制御定数C1
〜C3の各補償制御に基づいて圧縮機の制御量Aが演算さ
れ、これに比例した制御信号が可変容量圧縮機2の電磁
弁11へ入力され容量制御が行われる。この結果、蒸発器
出口の吹出空気温度Tfは第3図に示すように目標温度Tc
をはさんで許容温度範囲内で制御される。
On the other hand, the discharge temperature detected by the discharge temperature difference calculation means 24
The discharge temperature difference ΔTd between the current discharge temperature Td1 and the discharge temperature Td2 a predetermined time before is calculated based on Td, and the temperature difference ΔTd must be within the first set temperature range T1 (-1 to + 1 ° C). If
Since the variable constant r is held at zero, the control constant C1 remains at the initial setting value a, and the arithmetic and control unit 17 controls the control constant C1.
The control amount A of the compressor is calculated based on each compensation control of C3 to C3, and a control signal proportional to this is input to the solenoid valve 11 of the variable displacement compressor 2 to control the displacement. As a result, the outlet air temperature Tf at the evaporator outlet is set to the target temperature Tc as shown in FIG.
It is controlled within the allowable temperature range by sandwiching it.

そして、膨脹弁7の制御量と、演算制御装置17による圧
縮機の容量制御量とのマッチングが低下して、吹出空気
温度Tfが第3図に示すように上方へ大きく変動した場合
には、吐出温度差ΔTdが大きくなって第二又は第三の設
定温度域T2,T3となるため、容量制御定数変更手段25に
より初期設定値aに正の可変定数r又はr′(>r)が
加算された大きい制御定数(a+r)又は(a+r′)
に基づいて容量制御量Aが演算制御装置17により演算さ
れ、これに比例する制御信号が可変容量圧縮機2の電磁
弁11へ出力される。この結果、第3図に示すように蒸発
器の吹出空気温度Tfの目標温度Tcから上方への大きい変
動が抑制される。
Then, when the matching between the control amount of the expansion valve 7 and the compressor capacity control amount by the arithmetic control device 17 decreases, and the blown air temperature Tf largely fluctuates upward as shown in FIG. 3, Since the discharge temperature difference ΔTd becomes large and becomes the second or third set temperature range T2, T3, a positive variable constant r or r '(> r) is added to the initial set value a by the capacity control constant changing means 25. Large control constant (a + r) or (a + r ')
Based on the above, the displacement control amount A is calculated by the arithmetic control unit 17, and a control signal proportional to this is output to the solenoid valve 11 of the variable displacement compressor 2. As a result, as shown in FIG. 3, a large upward change in the blown air temperature Tf of the evaporator from the target temperature Tc is suppressed.

反対に、吐出温度差ΔTdが負の第四又は第五の設定温度
域T4,T5と一致したときは、容量制御定数変更手段25に
より初期設定値aに負の可変定数−r又は−r′(<−
r)が加算された初期設定値aよりも小さい制御定数
(a−r)又は(a−r′)に基づいて容量制御量Aが
演算制御装置17により演算され、これに比例する制御信
号が可変容量圧縮機2の電磁弁11へ出力される。この結
果、第3図に示すように蒸発器の吹出空気温度Tfの目標
温度Tcから下方への大きい変動が抑制される。
On the contrary, when the discharge temperature difference ΔTd coincides with the negative fourth or fifth set temperature range T4, T5, the capacity control constant changing means 25 makes the initial set value a a negative variable constant -r or -r '. (<-
The capacity control amount A is calculated by the arithmetic and control unit 17 based on the control constant (ar) or (ar ′) smaller than the initial setting value a to which r) is added, and a control signal proportional to this is calculated. Output to the solenoid valve 11 of the variable displacement compressor 2. As a result, as shown in FIG. 3, a large downward change of the blown air temperature Tf of the evaporator from the target temperature Tc is suppressed.

さて、本発明実施例では吐出温度差ΔTdが第一〜第五の
設定温度域T1〜T5のいずれの温度域にあるかを判別し
て、初期設定値a、又は初期設定値aに対し正又は負の
可変定数r、r′、−r、−r′を加算した制御定数C1
に基づいて比例補償制御により容量制御量を演算するよ
うにしたので、圧縮機2の容量制御を適正に行うことが
でき、その結果、蒸発器8の吹出空気温度Tfの変動を小
幅に抑制し、適正な冷房を行ない、乗員への不快感をな
くすことができる。
In the embodiment of the present invention, it is determined which of the first to fifth set temperature ranges T1 to T5 the discharge temperature difference ΔTd is in, and the positive set value a or the positive set value a is set. Or, a control constant C1 which is obtained by adding negative variable constants r, r ', -r, -r'.
Since the capacity control amount is calculated by the proportional compensation control based on, the capacity control of the compressor 2 can be appropriately performed, and as a result, the fluctuation of the blown air temperature Tf of the evaporator 8 can be suppressed to a small extent. By performing proper cooling, it is possible to eliminate discomfort to passengers.

なお、本発明は次のように具体化することもできる。The present invention can also be embodied as follows.

(1)第4図に示すように、現在の吸入温度Ts1と所定
時間前の吸入温度Ts2との吸入温度差ΔTsを検出し、こ
の吸入温度差ΔTsと第一〜第五の設定温度域T1〜T5とを
比較して、制御定数を変更することにより、微分補償制
御の容量制御定数C2を変更し、圧縮機の容量制御量を演
算すること。この別例の作用、効果も前記実施例と同様
である。
(1) As shown in FIG. 4, the suction temperature difference ΔTs between the current suction temperature Ts1 and the suction temperature Ts2 before a predetermined time is detected, and the suction temperature difference ΔTs and the first to fifth set temperature ranges T1 are detected. By comparing with ~ T5 and changing the control constant, change the capacity control constant C2 of the differential compensation control and calculate the capacity control amount of the compressor. The operation and effect of this other example are similar to those of the above-described embodiment.

(2)前記実施例では第一〜第五の設定温度域T1〜T5と
吐出温度差ΔTdを比較したが、これを第一設定温度域
と、それを越えて上昇又は下降した場合には、可変定数
rを変更する三段切換方法等、任意の段数の切換方法を
採用すること。
(2) In the above embodiment, the first to fifth set temperature ranges T1 to T5 were compared with the discharge temperature difference ΔTd. When the discharge temperature difference ΔTd is increased or decreased beyond the first set temperature range, Use a switching method with an arbitrary number of steps, such as a three-step switching method that changes the variable constant r.

(3)前記吐出温度Td又は吸入温度Tsを検出してそれら
の温度差ΔTd又はΔTに基づいて積分補償制御の制御定
数C3の可変定数rを変更するようにすること。さらに、
〜の各補償制御の制御定数C1〜C3を前述のように変
更可能にすること。
(3) The discharge temperature Td or the suction temperature Ts is detected, and the variable constant r of the control constant C3 of the integral compensation control is changed based on the temperature difference ΔTd or ΔT. further,
The control constants C1 to C3 of each compensation control of ~ should be changeable as described above.

発明の効果 以上詳述したように、この発明は吸入温度又は吐出温度
の現在の測定値から所定時間前の測定値を引いた温度差
が、設定温度域を上方又は下方へ越えた場合には、圧縮
機の容量制御定数を増減変更することにより、膨脹弁の
制御にかかわらず圧縮機の容量制御を適正化でき、蒸発
器出口の吹出空気温度の変動幅を小さくして乗員への不
快感をなくすことができる効果がある。
Effect of the Invention As described in detail above, according to the present invention, when the temperature difference obtained by subtracting the measured value of the intake temperature or the discharge temperature from the current measured value a predetermined time ago exceeds the set temperature range upward or downward. By increasing or decreasing the capacity control constant of the compressor, the capacity control of the compressor can be optimized regardless of the expansion valve control, and the fluctuation range of the air temperature at the outlet of the evaporator can be reduced to make passengers uncomfortable. There is an effect that can be eliminated.

又、本発明は膨脹弁制御用の感温筒の時定数と関連する
ことはないので、幅広く冷房装置に適用が可能となる効
果もある。
Further, since the present invention is not related to the time constant of the temperature sensing cylinder for controlling the expansion valve, it has an effect that it can be widely applied to the cooling device.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明を具体化した一実施例を示し、
第1図は可変容量圧縮機の容量制御方法を示すフローチ
ャート、第2図は車両冷房装置の略体回路図、第3図は
蒸発器の吹出空気温度と冷媒ガスの吐出温度との関係を
示すグラフ、第4図は本発明の別例を示すフローチャー
ト、第5図は蒸発器出口の吹出空気温度と吸人温度及び
吐出温度との相関関係を示すグラフ、第6図は可変容量
圧縮機の一例を示す中央部縦断面図、第7図は従来の冷
房装置の略体回路図である。 可変容量圧縮機2、吐出室3、吸入室4、管路5、凝縮
器6、膨脹弁7、蒸発器8、感温筒10、容量可変機構を
構成する電磁弁11、演算制御装置17、蒸発器出口の吹出
空気温度センサ19、電圧センサ20、外気温度センサ21、
吐出温度センサ22、目標温度設定手段23、吐出温度差演
算手段24、容量制御定数変更手段25、蒸発器の吹出空気
温度Tf、吹出空気の目標温度Tc、現在の吐出温度Td1、
所定時間前の吐出温度Td2、吐出温度差ΔTd、容量制御
定数C,C1,C2,C3、第一〜第五の設定温度域T1〜T5、初期
設定値a、可変定数r。
1 to 3 show an embodiment embodying the present invention,
FIG. 1 is a flow chart showing a capacity control method of a variable capacity compressor, FIG. 2 is a schematic circuit diagram of a vehicle cooling device, and FIG. 3 shows a relationship between an outlet air temperature of an evaporator and a refrigerant gas discharge temperature. A graph, FIG. 4 is a flowchart showing another example of the present invention, FIG. 5 is a graph showing the correlation between the blown-out air temperature at the evaporator outlet and the sucker temperature and the discharge temperature, and FIG. 6 is a variable capacity compressor. FIG. 7 is a schematic circuit diagram of a conventional cooling device, showing a longitudinal cross-sectional view of a central portion showing an example. Variable capacity compressor 2, discharge chamber 3, suction chamber 4, pipe line 5, condenser 6, expansion valve 7, evaporator 8, temperature sensitive cylinder 10, solenoid valve 11 constituting variable capacity mechanism, arithmetic and control unit 17, Evaporator outlet blown air temperature sensor 19, voltage sensor 20, outside air temperature sensor 21,
Discharge temperature sensor 22, target temperature setting means 23, discharge temperature difference calculation means 24, capacity control constant changing means 25, evaporator blown air temperature Tf, blown air target temperature Tc, current discharge temperature Td1,
The discharge temperature Td2 before a predetermined time, the discharge temperature difference ΔTd, the capacity control constants C, C1, C2, C3, the first to fifth set temperature ranges T1 to T5, the initial set value a, and the variable constant r.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】可変容量圧縮機の吐出側ポートと吸人側ポ
ートに対し凝縮器、膨脹弁及び蒸発器を順次接続すると
ともに、前記蒸発器の出口側管路には前記膨脹弁を制御
する感温筒を設け、前記蒸発器の吹出空気温度を検出す
るセンサからの検出信号に基づいて、容量制御量を演算
して可変容量圧縮機の容量可変機構へ制御信号を出力す
る演算制御装置を備えた冷房装置において、 前記可変容量圧縮機の冷媒ガスの現在における吸入温度
又は吐出温度と、所定時間前の吸入温度又は吐出温度と
の温度差が、設定温度域内にあるときには、演算制御装
置における容量制御定数を初期設定値のままにして前記
容量制御量を演算し、前記温度差が前記設定温度域を越
えて上昇した場合には、容量制御定数を大にして容量制
御量を演算し、前記温度差が前記設定温度域を越えて下
降した場合には、容量制御定数を小にして容量制御量を
演算する冷房装置における可変容量圧縮機の容量制御方
法。
1. A condenser, an expansion valve and an evaporator are sequentially connected to a discharge side port and a sucker side port of a variable capacity compressor, and the expansion valve is controlled in an outlet side line of the evaporator. An arithmetic and control unit is provided which is provided with a temperature sensitive cylinder and which calculates a volume control amount based on a detection signal from a sensor for detecting the temperature of air blown out of the evaporator and outputs a control signal to a volume variable mechanism of a variable displacement compressor. In the cooling device provided, when the temperature difference between the current suction temperature or discharge temperature of the refrigerant gas of the variable capacity compressor and the suction temperature or discharge temperature before a predetermined time is within the set temperature range, the When the capacity control constant is maintained at the initial setting value to calculate the capacity control amount, and when the temperature difference rises beyond the set temperature range, the capacity control constant is increased to calculate the capacity control amount, The temperature difference is A capacity control method for a variable capacity compressor in a cooling device, wherein a capacity control constant is reduced to calculate a capacity control amount when the temperature falls below the set temperature range.
【請求項2】前記設定温度域は−1.0〜+1.0℃の第一設
定温度域と、1〜5℃の第二設定温度域と、5℃以上の
第三設定温度域と、−1〜−5℃の第四設定温度域と、
−5℃以下の第五設定温度域に設定され、これらの各設
定温度域に応じて容量制御定数が段階的に増減される特
許請求の範囲第1項に記載の冷房装置における可変容量
圧縮機の容量制御方法。
2. The set temperature range includes a first set temperature range of −1.0 to + 1.0 ° C., a second set temperature range of 1 to 5 ° C., a third set temperature range of 5 ° C. or higher, and −1. A fourth set temperature range of ~ -5 ℃,
The variable capacity compressor in a cooling device according to claim 1, wherein the variable capacity compressor is set in a fifth set temperature range of −5 ° C. or lower, and the capacity control constant is stepwise increased or decreased according to each of the set temperature ranges. Capacity control method.
JP62219655A 1987-09-01 1987-09-01 Capacity control method for variable capacity compressor in air conditioner Expired - Lifetime JPH076502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62219655A JPH076502B2 (en) 1987-09-01 1987-09-01 Capacity control method for variable capacity compressor in air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62219655A JPH076502B2 (en) 1987-09-01 1987-09-01 Capacity control method for variable capacity compressor in air conditioner

Publications (2)

Publication Number Publication Date
JPS6463670A JPS6463670A (en) 1989-03-09
JPH076502B2 true JPH076502B2 (en) 1995-01-30

Family

ID=16738905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62219655A Expired - Lifetime JPH076502B2 (en) 1987-09-01 1987-09-01 Capacity control method for variable capacity compressor in air conditioner

Country Status (1)

Country Link
JP (1) JPH076502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102538313B1 (en) * 2018-07-24 2023-06-01 한온시스템 주식회사 Apparatus for controlling compressor and method thereof

Also Published As

Publication number Publication date
JPS6463670A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
KR100665052B1 (en) Control method of vehicle air conditioner
US4934157A (en) Apparatus for controlling a variable displacement refrigerant compressor for a car air-conditioner
KR880007924A (en) Variable Capacity Variable Compressor
US6189325B1 (en) Air conditioning system for a motor vehicle
JPS63285282A (en) Controlling method for variable displacement compressor in cooler
JPH076502B2 (en) Capacity control method for variable capacity compressor in air conditioner
US4890458A (en) Refrigerating circuit for car air conditioning
US11499766B2 (en) Electric expansion valve, a heat exchange system and a method of controlling the electric expansion valve
JP2006117240A (en) Control method for automotive air conditioner
US6185947B1 (en) Air conditioning system for a motor vehicle
JPH0648275Y2 (en) heat pump
JP2767937B2 (en) Refrigeration cycle refrigerant charging amount detection device
JP2506377B2 (en) Air conditioner and its control method
KR960002567B1 (en) Refrigeration circuit
JPH0297871A (en) Refrigerant flow rate detecting device for refrigerating cycle
KR101153420B1 (en) Method for controlling air-conditioner
JP2995421B2 (en) Condensing capacity control device for cooling cycle
JPH0215782B2 (en)
JPH0249982A (en) Method of controlling air-conditioning device
JP2539771B2 (en) Idle speed control device for internal combustion engine for vehicle equipped with air conditioner
JPH01119413A (en) Vehicle air-conditioning device
JPH10170105A (en) Expansion valve
JP3007482B2 (en) Control unit for automotive air conditioner
JPH05332622A (en) Operation control device for air conditioner
JP2001116372A (en) Refrigerating cycle controller