[go: up one dir, main page]

JPH0766069B2 - Reactor fuel assembly - Google Patents

Reactor fuel assembly

Info

Publication number
JPH0766069B2
JPH0766069B2 JP62018433A JP1843387A JPH0766069B2 JP H0766069 B2 JPH0766069 B2 JP H0766069B2 JP 62018433 A JP62018433 A JP 62018433A JP 1843387 A JP1843387 A JP 1843387A JP H0766069 B2 JPH0766069 B2 JP H0766069B2
Authority
JP
Japan
Prior art keywords
fuel
rods
water
fuel assembly
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62018433A
Other languages
Japanese (ja)
Other versions
JPS63187192A (en
Inventor
伸雄 多田
能成 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62018433A priority Critical patent/JPH0766069B2/en
Publication of JPS63187192A publication Critical patent/JPS63187192A/en
Publication of JPH0766069B2 publication Critical patent/JPH0766069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子炉燃料集合体に係り、特に、燃料棒の冷却
効率を向上させるのに好適な原子炉燃料集合体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor fuel assembly, and more particularly to a reactor fuel assembly suitable for improving cooling efficiency of fuel rods.

〔従来の技術〕[Conventional technology]

沸騰水型原子炉の炉心は、相互に一定の間隔を保つて配
置される燃料集合体の相互の間に挿入される制御棒から
構成される。
The core of a boiling water reactor is composed of control rods that are inserted between fuel assemblies arranged at regular intervals.

沸騰水型原子炉に使用される燃料集合体は、第4図に示
すように、複数本の燃料棒2,燃料棒2の水平方向間隔を
一定に保持するスペーサ3,燃料棒2およびウオータロツ
ド1を支持し、かつ、その間隔を一定に保持する上部タ
イプレート7および下部タイプレート8から構成され
る。
As shown in FIG. 4, a fuel assembly used in a boiling water reactor has a plurality of fuel rods 2, a spacer 3 for keeping a constant horizontal interval between the fuel rods 2, a fuel rod 2, and a water rod 1. Of the upper tie plate 7 and the lower tie plate 8 for supporting and maintaining a constant interval.

このような構造の燃料集合体内を冷却材である水が流
れ、この水は燃料棒4内に存在するウラン235などの核
分裂性物質の反応によつて発生する熱エネルギを除去す
る。また、水はチヤンネルボツクス9の外側の燃料集合
体間の間隙にも流れる。
Water as a coolant flows in the fuel assembly having such a structure, and this water removes heat energy generated by the reaction of the fissile material such as uranium 235 existing in the fuel rod 4. Water also flows into the gaps between the fuel assemblies outside the channel box 9.

一方、水は中性子の減速材としての働きも持つており、
核分裂によつて生じたエネルギの高い高速中性子は、減
速材である水によつて減速されエネルギの低い熱中性子
となる。この熱中性子が燃料棒4中の核分裂性物質、た
とえば、ウラン235に吸収されると核分裂反応を起こし
エネルギを発生する。
On the other hand, water also has a function as a moderator of neutrons,
High-energy fast neutrons generated by nuclear fission are decelerated by water, which is a moderator, to become low-energy thermal neutrons. When this thermal neutron is absorbed by the fissile material in the fuel rod 4, for example, uranium 235, it causes a fission reaction to generate energy.

このような機能をもつ沸騰水型原子炉の炉心において、
経済性の高い燃料の開発が必要となつている。燃料経済
性を向上させるには、燃料の燃焼度を大きくすることに
よつて実現できる。燃料の燃焼度を大きくするには、燃
料棒2内に存在するウラン235の濃縮度を上げればよい
が、水対ウラン比を大きくしないで、濃縮度を上げたの
では、中性子スペクトルが硬化してしまい、燃料集合体
の無限増倍率は、その濃縮度における無限増倍率の最大
値とはならない。
In the core of a boiling water reactor with such a function,
Economical fuel development is needed. The fuel economy can be improved by increasing the burnup of the fuel. In order to increase the burnup of the fuel, the enrichment of uranium 235 existing in the fuel rod 2 may be increased, but if the enrichment is increased without increasing the water-uranium ratio, the neutron spectrum will be hardened. Therefore, the infinite multiplication factor of the fuel assembly does not become the maximum value of the infinite multiplication factor in the enrichment.

第5図は、燃料の濃縮度が増加するに従つて、水対ウラ
ン比と無限増倍率の関係がどのように変化するかを示し
ている。第5図に示すように、一定の濃縮度でできるだ
け大きい無限増倍率を得るには、濃縮度に応じた最適の
水対ウラン比を実現する必要がある。
FIG. 5 shows how the relationship between the water to uranium ratio and the infinite multiplication factor changes as the fuel enrichment increases. As shown in FIG. 5, in order to obtain as large an infinite multiplication factor as possible at a constant enrichment, it is necessary to realize an optimum water-uranium ratio corresponding to the enrichment.

すなわち、燃料の経済性を向上させるのに、濃縮度を上
げると最適の水対ウラン比が大きくなるので、ウオータ
ロツドを増やす必要がある。
That is, in order to improve the economical efficiency of the fuel, it is necessary to increase the water rod because the optimum water-to-uranium ratio increases as the concentration increases.

従来の8×8型燃料では、通常二本程度のウオータロツ
ドが使用されているが、高濃縮度燃料では、さらにウオ
ータロツドを増やす必要がある。
In the conventional 8 × 8 type fuel, usually about two water rods are used, but in the case of highly enriched fuel, it is necessary to further increase the water rods.

第6図に、高燃焼度,高濃縮度型の9行×9列配列の燃
料集合体において、ウオータロツド本数を、燃料棒の本
数相当で増やしたときの、省ウラン効果を示す。
FIG. 6 shows the uranium saving effect when the number of water rods is increased by the number corresponding to the number of fuel rods in the high burnup, high enrichment type fuel assembly of 9 rows × 9 columns arrangement.

第6図から、ウオータロツドは、燃料棒本数相当で、九
本以上のときに省ウラン効果は6.5%以上と大であり、
九本以上増やしても省ウラン効果は、あまり増えないこ
とがわかる。
From Fig. 6, the water rod is equivalent to the number of fuel rods, and the uranium saving effect is 6.5% or more when the number is 9 or more,
It can be seen that the uranium-saving effect does not increase much even if the number is increased to 9 or more.

ウオータロツドを燃料棒本数相当で、九本とした場合の
燃料集合体の例を第7図に示す。さらには、圧力損失量
を抑え、燃料安定性の向上を図るため、第8図に示すよ
うに、その断面積が燃料棒本数相当で九本程度となる太
径のウオータロツド1を燃料集合体の中央部、あるい
は、その近傍に配する構造が考えられている。
FIG. 7 shows an example of a fuel assembly in which the water rod is equivalent to the number of fuel rods and has nine rods. Further, in order to suppress the amount of pressure loss and improve fuel stability, as shown in FIG. 8, a large diameter water rod 1 having a cross-sectional area of about nine fuel rods is used as a fuel assembly. A structure arranged in the central part or in the vicinity thereof is considered.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

太径のウオータロツド1を燃料集合体の中央部あるいは
中央部近傍に配した場合、その太径のウオータロツド1
の外側対角方向に比較的大きな空間が生じる。その空間
は、冷却材の流動に対する抵抗が燃料棒間の抵抗にくら
べて小さいため、冷却材は太径のウオータロツド1のま
わりを流れようとして、集合体内の流量分布に偏りが生
じる。すなわち、発熱部であるため、十分な冷却材流量
が必要な燃料棒間は冷却材流量が少なくなり、非発熱部
であるため冷却材流量はそれほど必要でない太径のウオ
ータロツド1の近傍の冷却材流量が増すといつた現象が
起こり、集合体全体の冷却効率が著しく悪化する。
When the large diameter water rod 1 is arranged at or near the center of the fuel assembly, the large diameter water rod 1
A relatively large space is created in the outer diagonal direction of. In this space, the resistance against the flow of the coolant is smaller than the resistance between the fuel rods, so that the coolant tries to flow around the water rod 1 having a large diameter, so that the distribution of the flow rate in the assembly is biased. That is, the coolant flow rate is small between the fuel rods that require a sufficient coolant flow rate because it is a heat generating portion, and the coolant flow rate near the large diameter water rod 1 that does not require much coolant flow rate because it is a non-heat generating section When the flow rate increases, a phenomenon occurs and the cooling efficiency of the entire assembly deteriorates significantly.

以上の現象を防止するには、冷却材流路を集合体内に均
一に分散させる必要がある。
In order to prevent the above phenomenon, it is necessary to uniformly disperse the coolant channels in the assembly.

その手段として、太径のウオータロツド1の断面形状を
多角形にして、太径のウオータロツド1の対角方向の空
間を埋めてやることが考えられるが、これは太径のウオ
ータロツド1の製造性を悪化させるだけでなく、集合体
全体の流路面積を減小させること、及び、冷却材が接す
る面積が増加することによつて、燃料集合体の圧力損失
量が増加してしまうため、チヤンネル安定性、及び、炉
心安定性が悪化する。
As a means for this, it is conceivable to make the cross section of the large diameter water rod 1 polygonal so as to fill the space in the diagonal direction of the large diameter water rod 1 in order to improve the manufacturability of the large diameter water rod 1. Not only worsening, but also reducing the flow path area of the whole assembly and increasing the area in contact with the coolant will increase the pressure loss amount of the fuel assembly, thus stabilizing the channel. And core stability deteriorate.

本発明の目的は、圧力損失量を増加させることなく、燃
料集合体内の流量分布を均一化し、冷却効率のよい原子
炉燃料集合体を提供することにある。
An object of the present invention is to provide a reactor fuel assembly that has a uniform cooling rate distribution and a high cooling efficiency without increasing the pressure loss amount.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ウオータロツドの径1及び断面形状、さら
には、燃料棒径を変えず、流路面積を不変とし、燃料棒
の配置を工夫することによつて冷却材流路を集合体内に
均一に分散することにより達成される。
The above object is to make the coolant flow passage uniform in the assembly by changing the diameter and cross-sectional shape of the water rod, the fuel rod diameter without changing the flow passage area, and devising the arrangement of the fuel rods. It is achieved by dispersing.

〔作用〕[Action]

すなわち、燃料棒を正方格子点から移動させることによ
つて、太径のウオータロツド1の近傍の空間(冷却材流
路)を燃料棒間に移すことになるので、集合体内の冷却
材流路は、その断面積を減少させることなく集合体内に
均一に分散される。
That is, by moving the fuel rods from the square lattice points, the space (coolant flow passage) near the large diameter water rod 1 is moved between the fuel rods, so that the coolant flow passages in the assembly are , Evenly distributed within the aggregate without reducing its cross-sectional area.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図により説明する。第1図
は、本発明による燃料集合体のスペーサ3位置での横断
面図である。9行9列の正方格子点の中央の3行3列の
位置に太径のウオータロツド1が配置されている。太径
のウオータロツド1の周囲には七十二本の燃料棒2が配
置されている。燃料棒2は、各々が、円型のスペーサセ
ル31で間隔が保たれている。相隣子スペーサセル31はそ
の接点を溶接され、さらに、最外周部をスペーサ外枠32
で固定されて一つのスペーサ3を構成している。また、
七十二本の燃料棒2のうち、四十八本の燃料棒2は、正
方格子上に配置されているが、第四行,第六行さらには
第四列,第六列の燃流棒2(合計二十四本)は、各々
が、太径のウオータロツド1の方向に向かつて正方格子
点からずれた位置に配置され、太径のウオータロツド1
に隣接する十二本の燃料棒2が、ウオータロツド1から
全て等距離になるように配置される。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a cross-sectional view of a fuel assembly according to the present invention at a position of a spacer 3. A water rod 1 having a large diameter is arranged at the position of the third row and the third column at the center of the square grid point of the ninth row and the ninth column. Seventy-two fuel rods 2 are arranged around a large diameter water rod 1. The fuel rods 2 are each spaced by circular spacer cells 31. The side-by-side spacer cells 31 are welded at their contact points, and the outermost peripheral portion is attached to the spacer outer frame 32.
Are fixed together to form one spacer 3. Also,
Of the 72 fuel rods 2, forty-eight fuel rods 2 are arranged on a square lattice, but the fourth row, the sixth row, and the fourth and sixth rows of the fuel rods 2 are arranged. (24 pieces in total) are arranged in the direction of the large diameter water rod 1 and are displaced from the square lattice points once, and the large diameter water rod 1 is arranged.
The twelve fuel rods 2 adjacent to each other are arranged so that they are all equidistant from the water rod 1.

上記のような燃料集合体を制作した後、燃料集合体内に
ボイド率約40%の二相流を流し、第1図の点5及び点6
で、各々流量を測定した。その結果、得られた流量測定
点5の流量と流量測定点6の流量の比を第3図に示す。
第3図には、第4図の示した従来例の測定結果をあわせ
て示すがこれより容易に、本実施例によつて、集合体内
流量分布が均一化されることがわかる。
After producing the fuel assembly as described above, a two-phase flow with a void ratio of about 40% was made to flow through the fuel assembly, and points 5 and 6 in FIG.
Then, the flow rate was measured respectively. As a result, the ratio of the flow rates at the flow rate measuring points 5 and 6 obtained is shown in FIG.
FIG. 3 also shows the measurement results of the conventional example shown in FIG. 4, but it is easier to see that the flow rate distribution in the aggregate is made uniform according to this example.

第2図に、本発明の第二の実施例を示す。第二の実施例
では、七十二本の燃料棒2のうち第四〜第六行及び第四
〜第六列の燃料棒2(合計三十六本)は、各々が、太径
のウオータロツド1に向かつて正方格子点から等距離ず
つ移動し、残りの三十六本の燃料棒2は正方格子点上に
正しく位置している。本実施例における流量測定点5と
流量測定点6の流量の比も第3図に示す。本実施例で
は、第一の実施例ほど流量分布を均一化できないが、従
来例にくらべると改善の効果は著るしい。また、本実施
例では、九個のスペーサセル31を3行3列の正方格子に
組んだモジユールを八個合わせて一つのスペーサ3を成
すことができるので、製作で容易であるという利点をも
つ。
FIG. 2 shows a second embodiment of the present invention. In the second embodiment, among the 72 fuel rods 2, the fuel rods 2 in the 4th to 6th rows and the 4th to 6th columns (total 36 rods) each have a large diameter water rod. Once moved to 1, the equidistant distance from the square lattice point, the remaining thirty-six fuel rods 2 are correctly positioned on the square lattice point. The ratio of the flow rates at the flow rate measuring points 5 and 6 in this embodiment is also shown in FIG. In this embodiment, the flow rate distribution cannot be made more uniform than in the first embodiment, but the improvement effect is remarkable as compared with the conventional example. In addition, in this embodiment, since eight spacer modules in which nine spacer cells 31 are assembled in a square lattice of three rows and three columns can be combined to form one spacer 3, there is an advantage that the manufacturing is easy. .

第一,第二の実施例ともに七十二本全てを燃料棒2とし
たが、何らかの要求によりそれらのいくつかが細径のウ
オータロツド11に置き換えられてもよいことは明白であ
る。
In the first and second embodiments, all the 72 rods are used as the fuel rods 2, but it is obvious that some of them may be replaced by the water rods 11 having a small diameter.

〔発明の効果〕〔The invention's effect〕

本発明によれば、流路面積を減じることなく集合体内の
流量分布を均一化できるので、圧力損失量を増大させる
ことなく冷却効率を向上させることができる。
According to the present invention, since the flow rate distribution in the aggregate can be made uniform without reducing the flow passage area, the cooling efficiency can be improved without increasing the pressure loss amount.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第一の実施例の燃料集合体におけるス
ペーサ位置での横断面図、第2図は本発明の第二の実施
例の燃料集合体におけるスペーサ位置での横断面図、第
3図は本発明の効果を示す燃料集合体内での二点の流量
の比を示した図、第4図は従来の燃料集合体の側面図、
第5図は水対ウラン比と無限増倍率の関係を示した図、
第6図はウオータロツド本数と省ウラン効果の関係を示
した図、第7図,第8図は従来技術による燃料集合体に
おけるスペーサ位置での横断面図を示す。 1……太径のウオータロツド、2……燃料棒、3……ス
ペーサ、31……スペーサセル、32……スペーサ外枠、5
……流量測定点(1)、6……流量測定点(2)、7…
…上部タイプレート、8……下部タイプレート、9……
チヤンネルボツクス、11……細径のウオータロツド。
1 is a cross-sectional view at a spacer position in a fuel assembly of a first embodiment of the present invention, FIG. 2 is a cross-sectional view at a spacer position of a fuel assembly of a second embodiment of the present invention, FIG. 3 is a diagram showing a flow rate ratio of two points in the fuel assembly showing the effect of the present invention, and FIG. 4 is a side view of a conventional fuel assembly.
Figure 5 shows the relationship between the water-uranium ratio and the infinite multiplication factor.
FIG. 6 is a diagram showing the relationship between the number of water rods and the uranium saving effect, and FIGS. 7 and 8 are transverse sectional views at the spacer position in the fuel assembly according to the prior art. 1 ... Large diameter water rod, 2 ... Fuel rod, 3 ... Spacer, 31 ... Spacer cell, 32 ... Spacer outer frame, 5
...... Flow rate measurement points (1), 6 ...... Flow rate measurement points (2), 7 ...
… Upper tie plate, 8 …… Lower tie plate, 9 ……
Channel box, 11 …… A thin water rod.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】太径のウオータロツドを、中央部に配置
し、前記太径のウオータロツドの周囲に、燃料棒七十二
本あるいは燃料棒と細径のウオータロツドを合わせて七
十二本を9行9列の格子状に配置して構成する原子炉燃
料集合体において、 前記燃料棒あるいは細径のウオータロツドの一部が、正
方格子点から、前記太径のウオータロツドの方向へずれ
た位置に配置されていることを特徴とする原子炉燃料集
合体。
1. A large-diameter water rod is arranged in the center, and 72 fuel rods or 72 fuel rods and small-diameter water rods are arranged around the large-diameter water rod in nine rows. In a reactor fuel assembly configured by arranging in 9 rows of lattices, a part of the fuel rods or the small diameter water rods is arranged at a position displaced from a square lattice point in the direction of the large diameter water rods. Reactor fuel assembly characterized by the following.
JP62018433A 1987-01-30 1987-01-30 Reactor fuel assembly Expired - Fee Related JPH0766069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62018433A JPH0766069B2 (en) 1987-01-30 1987-01-30 Reactor fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62018433A JPH0766069B2 (en) 1987-01-30 1987-01-30 Reactor fuel assembly

Publications (2)

Publication Number Publication Date
JPS63187192A JPS63187192A (en) 1988-08-02
JPH0766069B2 true JPH0766069B2 (en) 1995-07-19

Family

ID=11971512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62018433A Expired - Fee Related JPH0766069B2 (en) 1987-01-30 1987-01-30 Reactor fuel assembly

Country Status (1)

Country Link
JP (1) JPH0766069B2 (en)

Also Published As

Publication number Publication date
JPS63187192A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
JP3036810B2 (en) Fuel assembly
US4059484A (en) Hybrid nuclear fuel assembly with reduced linear heat generation rates
JPH0232293A (en) Boiling water nuclear reactor
US4526746A (en) Fuel assembly having water passageway in channel wall
US9666311B2 (en) Nuclear fuel assembly having varying spacing between fuel rods
US3132076A (en) Nuclear reactor
JPH0631745B2 (en) Fuel assembly
JPH022976A (en) Small fuel rod bundle for fuel assembly
JPH0766069B2 (en) Reactor fuel assembly
JP3036129B2 (en) Fuel assembly
JP3262057B2 (en) Fuel assembly
US3317398A (en) Fuel element assembly
JPS6039194B2 (en) nuclear fuel assembly
JP2713983B2 (en) Reactor fuel assemblies
JP2965317B2 (en) Fuel assembly
JP2000304885A (en) Fuel assemblies and reactor cores
JP2504514B2 (en) Reactor fuel assembly
JPH0713663B2 (en) Fuel assembly
JP2809626B2 (en) Fuel assembly
JPH04294294A (en) nuclear reactor core
JP3791201B2 (en) D lattice fuel assembly
JPH11101888A (en) Fuel assemblies and reactor cores
JP2632726B2 (en) Fuel assembly for boiling water reactor
JP3990013B2 (en) Fuel assemblies and reactor cores
JPS6013284A (en) Fuel aggregate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees