JPH0767236B2 - Distribution line protection device - Google Patents
Distribution line protection deviceInfo
- Publication number
- JPH0767236B2 JPH0767236B2 JP63323347A JP32334788A JPH0767236B2 JP H0767236 B2 JPH0767236 B2 JP H0767236B2 JP 63323347 A JP63323347 A JP 63323347A JP 32334788 A JP32334788 A JP 32334788A JP H0767236 B2 JPH0767236 B2 JP H0767236B2
- Authority
- JP
- Japan
- Prior art keywords
- distribution line
- switch
- accident
- protection device
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、配電線保護装置に係り、具体的には地絡事故
や短絡事故等の配電線事故を検出し、その事故点を含む
区間(事故区間)を切離して配電線の事故を除去する配
電線保護装置に関する。Description: TECHNICAL FIELD The present invention relates to a distribution line protection device, and more specifically, a section including a distribution line accident such as a ground fault accident or a short circuit accident and including the accident point. The present invention relates to a distribution line protection device that separates (accident section) to eliminate a distribution line accident.
従来、配電線の事故発生時に、健全区間と事故区間を速
やかに区分するため、「故障区間自動検出用区分開閉
器」が用いられている(例;昭和63年2月電気学会発行
「電気工学ハンドブツク」1264頁)。これによれば、事
故発生によつて全ての区分開閉器が開放された後、予め
設定された時間間隔で、各区分開閉器を自動的に順次再
投入するようにし、変電所の配電線引出口に設置した保
護継電器により事故が検出されたとき、配電線引出口の
しゃ断器を直ちに開放するとともに、その直前に再投入
された円分開閉器によりどの区間に事故があるかを判別
するようにしたものである。この方式は一般に時限順送
課電方式といわれる。Conventionally, a "division switch for automatic detection of a faulty section" has been used to quickly separate a healthy section from an accidental section when an accident occurs on a distribution line (Example: "Electrical Engineering" issued by the Institute of Electrical Engineers, February 1988). Handbook "p. 1264). According to this, after all the division switches have been opened due to the occurrence of an accident, the division switches are automatically re-closed at a preset time interval, and the distribution line of the substation is pulled. When an accident is detected by the protective relay installed at the exit, the circuit breaker at the outlet of the distribution line should be immediately opened, and the circle switch that was re-closed immediately before that should identify the section where the accident occurred. It is the one. This method is generally called a time-limited progressive power supply method.
したがつて、従来の時限順送課電方式によれば、配電線
の末端までの課電が完了するのに、(時限順送用機能を
有した開閉器の数)×(順送時間)分の時間が必要とな
る。この結果、末端ほど停電時間が長くなるという問題
がある。また、停電時間を短くしようとすれば、時限順
送機能を有した開閉器の配置個数に限界があり、保護区
間(停電区間)が長大になるという問題がある。Therefore, according to the conventional time-sequential progressive charging / discharging method, although the power distribution to the end of the distribution line is completed, (the number of switches having the time-sequential progressive function) x (progressive time) It will take a minute. As a result, there is a problem that the power outage time becomes longer toward the end. Further, if the power outage time is shortened, there is a limit to the number of switches having the time-sequential forwarding function, and the protection section (blackout section) becomes long.
また、上記従来の方法では、最初の事故検出の時と事故
区間検出の時を合わせると、健全区間が2回停電すると
いう問題がある。Further, in the above-mentioned conventional method, when the time of the first accident detection and the time of the accident section detection are combined, there is a problem that the power failure of the sound section occurs twice.
本発明の目的は、配電線の事故区間の検出および切離し
のための健全区間の停電区間を極小化することができる
配電線保護装置を提供することにある。An object of the present invention is to provide a distribution line protection device capable of minimizing a power failure section of a sound section for detecting and disconnecting an accident section of the distribution line.
また、本発明の他の目的は、順送課電にかかる時間を短
縮して停電時間を短時間化することができる配電線保護
装置を提供することにある。Another object of the present invention is to provide a distribution line protection device that can shorten the time required for progressive power supply and shorten the power failure time.
上記目的を達成するために本発明では、第一、第二の配
電線を開閉する開閉器と、第一または第二の配電線の電
力状態を検出する電力検出手段とを備え、第一または第
二の配電線にはこの配電線の電力異常の発生後、配電線
の閉路状態を維持する配電線閉路保持期間が経過した後
に、配電線を開路する遮断装置が接続されることを特徴
とする配電線保護装置において、第一、または第二の配
電線の事故状態を検出する配電線事故状態検出手段と、
この配電線事故状態検出手段からの信号に応じて開閉器
を開路する配電線開路手段と、開閉器の開路後、電力検
出手段からの電力検出信号に応じて配電線閉路保持期間
以内に開閉器を閉路するようにしたものである。In order to achieve the above object, in the present invention, a switch for opening and closing the first and second distribution lines, and a power detection means for detecting the power state of the first or second distribution line, the first or The second distribution line is characterized in that a disconnecting device for opening the distribution line is connected to the second distribution line after the occurrence of the power abnormality in the distribution line and after the distribution line closing holding period for maintaining the closed state of the distribution line has elapsed. In the distribution line protection device, the first or second distribution line accident state detecting means for detecting an accident state of the distribution line,
The distribution line opening means for opening the switch in response to the signal from the distribution line accident state detection means, and the switch within the distribution line closed holding period after the switch is opened and according to the power detection signal from the power detection means. It is designed to be closed.
また、他の目的を達成するために本発明では、第一、第
二の配電線を開閉する開閉器と、第一または第二の配電
線の電力状態を検出する電力検出手段とを備え、第一ま
たは第二の配電線にはこの配電線に電力が供給された
後、配電線の開路状態を維持する配電線開路保持期間が
経過した後に、配電線を閉路する遮断装置が接続される
ことを特徴とする配電線保護装置において、第一または
第二の配電線の事故状態を検出する配電線事故状態検出
手段と、この配電線事故状態検出手段からの事故状態検
出に応じて開閉器を開放した後、この開閉器を閉路する
配電線開閉手段と、配電線開閉手段により開閉器が閉路
された後、配電線開路保持期間の間、配電線事故状態検
出手段により事故状態が検出されない場合は開閉器の閉
路状態を維持するようにしたものである。Further, in order to achieve another object, in the present invention, a switch that opens and closes the first and second distribution lines, and a power detection unit that detects a power state of the first or second distribution line, To the first or second distribution line, after power is supplied to this distribution line, a disconnecting device that closes the distribution line is connected after the distribution line opening holding period for maintaining the open state of the distribution line has elapsed. In the distribution line protection device characterized by the above, a distribution line accident state detecting means for detecting an accident state of the first or second distribution line, and a switch according to the accident state detection from the distribution line accident state detecting means. After opening the switch, the distribution line opening / closing means for closing this switch, and after the switch is closed by the distribution line opening / closing means, the distribution line accident state detection means does not detect an accident state during the distribution line opening retention period. If the switch is closed It is obtained by the.
さらに、他の目的を達成するために本発明では、配電線
を介して他の開閉器と接続され開閉器グループを構成す
ることを特徴とする配電線保護装置において、この配電
線保護装置は順送式開閉器の動作機能と、グループ間接
続点用開閉器の動作機能とを備え、そしてこれらの機能
を任意に選択切替え出来るようにしたものである。Further, in order to achieve another object, in the present invention, in a distribution line protection device, which is connected to another switch through a distribution line to form a switch group, the distribution line protection device is It is provided with the operation function of the transmission switch and the operation function of the switch for connecting points between groups, and these functions can be arbitrarily selected and switched.
このように構成されることから、次の作用により本発明
の目的が達成される。With this configuration, the object of the present invention is achieved by the following actions.
まず、配電線保護装置に配電線事故状態検出手段を設け
て開閉器を開路するようにし、このとき遮断装置は両側
電圧が無電力となつても一定時間(例えば1.5秒程度)
その閉路状態を保持しているので、電力が供給されてい
る配電線に最も近い配電線保護装置が直ち(例えば1秒
以内)に閉路する事により、健全な区間を一度に再充電
可能となる。それにより、回復性の事故であれば復旧操
作が直ちに完了する。First, the distribution line protection device is provided with distribution line accident state detection means to open the switch. At this time, the breaker has a fixed time (for example, about 1.5 seconds) even if the voltage on both sides is no power.
Since the closed state is maintained, it is possible to recharge a healthy section at once by closing the distribution line protection device closest to the distribution line to which power is being supplied immediately (for example, within 1 second). Become. Thereby, in case of a recoverable accident, the recovery operation is completed immediately.
また、配電線保護装置に配電線事故状態検出手段を設け
て開閉器を開路した後、閉路するようにし、このとき遮
断装置は配電線の開路状態を配電線開路保持期間維持す
るので、この配電線開路保持期間に配電線事故状態が検
出されない場合は、開閉器の閉路状態を維持するように
しているので、少なくともこの遮断装置と配電線保護装
置との間の配電区間の充電を確保できるようになる。In addition, the distribution line protection device is provided with distribution line accident state detection means to open and close the switch, and at this time the breaker maintains the open state of the distribution line for the distribution line open holding period. If a distribution line fault condition is not detected during the line open circuit holding period, the switch is kept closed, so that at least the charging of the distribution section between the breaker and the distribution line protection device can be ensured. become.
さらに、配電線保護装置に順送式開閉器の動作機能と、
グループ間接続点用開閉器の動作機能とを備え、この機
能を任意に選択切替え出来るようにしているので、例え
ば、配電系統のグループ区間の長さを状況に応じて任意
に設定することができるようになり、事故発生時の応答
の均一化が図れるようになる。In addition, the operation function of the progressive switch to the distribution line protection device,
Since there is an operation function of the switch for connecting points between groups and this function can be arbitrarily selected and switched, for example, the length of the group section of the distribution system can be arbitrarily set according to the situation. As a result, the response can be made uniform when an accident occurs.
以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.
第1図に本発明を適用した6.6KV配電線の系統構成を示
す。図示のように変電所のトランス1から6.6KVの電源
バス2を介して配電線3に電力が供給されている。配電
線3の変電所引出点にはしゃ断能力を有する引出口しゃ
断器FCBが設けられている。配電線3には開閉器DM1〜DM
6や適宜分散配置され、これ等の途中に事故検出リレーR
yを有するしゃ断開閉器PCB1,PCB2が配設されこれにより
配電区間L1〜L9等が画成されている。FIG. 1 shows the system configuration of a 6.6 KV distribution line to which the present invention is applied. As shown in the figure, power is supplied from the transformer 1 of the substation to the distribution line 3 via the power bus 2 of 6.6 KV. An outlet breaker FCB having a breaking capability is provided at the substation drawing point of the distribution line 3. Switch DM1 to DM on distribution line 3
6 or distributed appropriately, and accident detection relay R in the middle of these
The cut-off switches PCB 1 and PCB 2 having y are arranged to define the distribution sections L 1 to L 9, etc.
引出口しゃ断器FCB及びしゃ断開閉器PCB1,PCB2には事故
検出用の変成器FCT,CT1,CT2及び事故検出リレーFRY,R
Y1,RY2がそれぞれ設けられている。これらの変成器とし
ては電流変成器や零相電流変成器、あるいは必要に応じ
て電圧変成器や零相電圧変成器等を設ける。Transformers FCT, CT 1 and CT 2 for accident detection and accident detection relays FRY and R are used for the outlet breaker FCB and the break switch PCB 1 and PCB 2.
Y 1 and RY 2 are provided respectively. As these transformers, a current transformer, a zero-phase current transformer, or a voltage transformer or a zero-phase voltage transformer is provided as necessary.
また、短絡事故検出リレーの動作時間はしゃ断開閉器の
設置点における配電線の線間電圧に比例して可変設定さ
れるようにしてもよい。Further, the operating time of the short circuit accident detection relay may be variably set in proportion to the line voltage of the distribution line at the installation point of the breaking switch.
開閉器DM1〜DM6には電源変圧器T1〜T6が開閉器の電源側
に設置されており、又しゃ断開閉器PCB1,PCB2にも電源
変圧器T11,T21が設置されている。Power supply transformers T 1 to T 6 are installed on the power supply side of the switches in the switches DM 1 to DM 6, and power supply transformers T 11 and T 21 are also installed in the disconnecting switches PCB 1 and PCB 2. Has been done.
開閉器DM1〜DM6は片側に電圧印加後X時限(例えば10
秒)経過したのち、当該開閉器DMを閉路し、電圧が消失
後一定時限(1.5秒程度)の間は閉路を継続すするよう
に保持されている。The switches DM 1 to DM 6 are applied to one side for a time period X (eg 10
After a lapse of seconds), the switch DM is closed, and the circuit is maintained so as to be closed for a fixed time period (about 1.5 seconds) after the voltage disappears.
ここにDMR1〜DMR6は上述の開閉器DMの開閉制御をつかさ
どる開閉器制御装置である。DMR 1 to DMR 6 are switch control devices that control the opening and closing of the switch DM.
同様にしゃ断開閉器制御装置CBR1,CBR2は当該事故検出
リレーRy1,Ry2が不動作時には開閉器制御装置DMRと同様
に電圧の有無に応じてしゃ断開閉器PCBの開閉及び保持
を行なう。また、事故検出リレーRy1,Ry2が動作した時
には、しゃ断開閉器PCBを直ちに開放し、その後片側が
加圧状態(電源側が健全状態)にある時は直ちに(およ
そ1秒)しゃ断開閉器PCBを閉路する。さらに、しゃ断
開閉器PCBを閉路してからY時限(例えば8秒…X時限
より幾分短かい時間)中に事故検出リレーRyが動作しな
い時は、しゃ断開閉器PCBよりも負荷側に事故が無いも
のと考えられることから、再度事故検出リレーRyが動作
してもしゃ断開閉器PCBを開放しないよう鎖錠する(但
し、所定時間後自動的に鎖錠は解除する)。なお、Y時
限中に再び事故検出リレーRyが動作した時は負荷側に事
故ありとして、しゃ断開閉器PCBを開放し、次の再閉路
時限はしゃ断開閉器PCBの無電圧開放遅延時間との協調
をとつた時限とする。また、開放後に両側無電圧時に
は、以後DMRと同様に電圧印加後X時限経過したのちし
ゃ断開閉器PCBを閉路するようになつている。Similarly, the interrupting switch control devices CBR 1 and CBR 2 open and close the interrupting switch PCB depending on the presence or absence of voltage when the accident detection relays Ry 1 and Ry 2 are not operating, similar to the switching device control device DMR. . When the accident detection relays Ry 1 and Ry 2 are activated, the break switch PCB is immediately opened, and when one side is under pressure (the power supply side is in a healthy state), the break switch PCB is immediately opened (approximately 1 second). Make a circuit. Furthermore, if the accident detection relay Ry does not operate within the Y time period (for example, 8 seconds ... somewhat shorter than the X time period) after closing the circuit breaker PCB, an accident occurs on the load side of the circuit breaker PCB. It is considered that there is no such thing, so even if the accident detection relay Ry operates again, the blocking switch PCB is locked so as not to open (however, the locking is automatically released after a predetermined time). When the accident detection relay Ry operates again during the Y period, it is determined that there is an accident on the load side, the disconnecting switch PCB is opened, and the next reclosing time is coordinated with the non-voltage release delay time of the disconnecting switch PCB. Is the time limit. Also, when there is no voltage on both sides after opening, the circuit breaker switch PCB is closed after X time has elapsed after voltage application, as in DMR.
このように構成される実施例の動作について第2図に示
した各部の動作タイミングチヤートに沿つて説明する。
同図は配電区間L9のF点で事故が発生した場合を例にし
て示したものであり、図象中のL1〜L9に於いて斜線部は
課電状態、空白部は停電状態を示す。The operation of the embodiment configured as described above will be described along with the operation timing chart of each unit shown in FIG.
This figure are those shown in the case of an accident at the point F of the distribution leg L 9, hatched portion at the L 1 ~L 9 in Zuzo the voltage application state, a blank portion is a power failure state Indicates.
なお、本発明の説明に直接関係のない開閉器DM1,DM2に
ついては図示を省略している。The switches DM 1 and DM 2 not directly related to the description of the present invention are not shown.
いま、t1時にF点で事故が発生したとすると、事故検出
リレーFRy,Ry1,Ry2は、略同じ事故電流が流れるので、
略同時に動作を開始する。しかし、例えば変電所の引出
口の事故検出リレーFRyに比べて各しゃ断開閉器の事故
検出リレーRy1,Ry2の方が早く動作するように時限設定
しておく事により、t2時点で各しゃ断開閉器PCB1及びPC
B2の事故検出リレーRy1及びRy2が動作し、しゃ断開閉器
PCB1及びPCB2へほぼ同時に開放指令が出力され、開放応
動時間tsだけ遅れてしゃ断開閉器PCB1及びPCB2が時点t3
で開路される。Now, assuming that an accident occurs at point F at t 1 , the accident detection relays FRy, Ry 1 and Ry 2 have approximately the same accident current, so
The operation starts almost at the same time. However, by previously timed set as towards the accident detection relay Ry 1, Ry 2 of each cutoff switch is operated earlier than the accident detection relay FRy of outlets, for example substation, each at t 2 time Break switch PCB 1 and PC
The accident detection relays Ry 1 and Ry 2 of B 2 are activated, and the break switch
An open command is output to PCB 1 and PCB 2 almost at the same time, and the interrupting switches PCB 1 and PCB 2 are delayed by the open response time t s and are turned on at time t 3.
Is opened.
この時点t3のとき引出口しゃ断器FCBは未だ開放に至っ
ておらず、引出口の事故検出リレーFRyが事故が除去さ
れたことをもって復旧してしまうため、これにより引出
口しゃ断器FCBは最終的に引き外しに至らない。この結
果、事故点を有する区間L9を含むL4〜L9が無電圧とな
る。しかし、引出口しゃ断器FCBが開放されないため区
間L1〜L3は停電しない。本発明において、区間L1〜L3は
停電しないことが一つの特徴となっている。At this time t 3, the outlet breaker FCB has not yet been opened, and the accident detection relay FRy at the outlet will be restored when the accident is removed. It does not lead to tripping. As a result, there is no voltage in L 4 to L 9 including the section L 9 having the accident point. However, since the outlet breaker FCB is not opened, the power failure does not occur in the sections L 1 to L 3 . One feature of the present invention is that there is no power outage in the sections L 1 to L 3 .
しゃ断開閉器PCB1及びPCB2が事故検出リレーRy1及びy2
の動作により開放した直後、片側に加圧状態となつてい
るしゃ断開閉器PCB1は直ち(Δt1=およそ1秒後)に閉
路操作を制御装置CBR1から行われる。この時開閉器DM3
〜DM6はまだ閉路状態を保持しているが、しゃ断開閉器P
CB2が事故検出リレーRy2動作により開放しているためし
ゃ断開閉器PCB2よりも非電源側の開閉器DM5〜DM6は無電
圧開放遅延時間Δt2(および1.5秒)後に開放される。D
M3,DM4はΔt1<Δt2のためその開路状態は保持したまま
であり、しゃ断開閉器PCB1の投入と同時に区間L4〜L6が
課電される。The break switches PCB 1 and PCB 2 are the accident detection relays Ry 1 and y 2
Immediately after opening by the action of, the circuit breaker PCB 1, which is in a pressurized state on one side, is immediately closed (Δt 1 = approximately 1 second later) from the control device CBR 1 . Switch DM 3 at this time
~ DM 6 is still closed, but the break switch P
It is opened after the no-voltage open delay time Delta] t 2 (and 1.5 seconds) switches DM 5 to dm 6 of non-power side than cutoff switch PCB 2 for CB 2 is opened by the detection relay Ry 2 operation accident . D
Since M 3 and DM 4 have Δt 1 <Δt 2 , the open circuit state is still maintained, and the sections L 4 to L 6 are energized at the same time as the interruption switch PCB 1 is turned on.
この状態では、事故区間L9は切離されているため、しゃ
断開閉器PCB1投入後、Y時限(例えば8秒)中に事故検
出リレーRy1が事故検出をせず、試充電成功と判断す
る。そしてこれ以降、適宜の時間事故検出リレーRy1が
動作してもしゃ断開閉器PCB1に対するトリツプ信号をロ
ツクする。In this state, since the fault section L 9 is disconnected, after interrupting switch PCB 1-on accident detection relay Ry 1 is not a fault detection in Y timed (e.g. 8 seconds), determines that試充electrostatic success To do. After that, even if the accident detection relay Ry 1 operates for an appropriate time, the trip signal to the break switch PCB 1 is locked.
しゃ断開閉器PCB2は片側加圧後X時限(例えば10秒)経
過すると閉路される。これにより区間L7が課電され、開
閉器DM5は片側加圧状態となるため、さらにX時限後に
閉路する。これにより、区間L8が課電され、ついで開閉
器DM6がX時限後閉路となり(これを順送課電方式とい
う。)、区間L9が加圧される。The cut-off switch PCB 2 is closed after X time (for example, 10 seconds) has elapsed after pressurization on one side. As a result, the section L 7 is energized and the switch DM 5 is in a one-sided pressurization state, so that the circuit is closed after the X time limit. As a result, the section L 8 is energized, the switch DM 6 is closed after the X time period (this is referred to as a progressive energization method), and the section L 9 is pressurized.
ここでもし、区間L9の事故が消去されていれば、このま
ま、運転に入るが、除去されていない場合は第2図のよ
うに、事故再発生となり事故検出リレーFRy,Ry1,Ry2が
共に動作を開始する。しかしこの場合,第1回目の事故
時と同様に事故検出リレーRy1,Ry2の方が事故検出リレ
ーFRyより早く動作するため、前記したと同じ理由によ
って引出口しゃ断器FCBは開放までに至らない。そし
て、事故検出リレーRy1についてみると、これはしゃ断
開閉器PCB1が再閉路後Y時限(<X時限)以上経過した
事から、しゃ断開閉器PCB1には開放指令が与えられない
ように鎖錠されている。このため、しゃ断開閉器PCB2の
みへ開放指令が与えられ(時点t8)、しゃ断開閉器PCB
の応動時間(時点ts)後、しゃ断開閉器PCB2は開放する
(時点t9)。このように本発明によれば、区間L1〜L6は
再発生事故によつて停電せず、最初にL4〜L6区間のみが
短時間(Δt1≒1秒程度)の停電をするだけで済む。And again, if it is erased accident interval L 9, anyway, will enter into operation, if not removed, as in the second figure, the accident reoccurrence and makes fault detection relay FRy, Ry 1, Ry 2 Start to work together. However, in this case, as in the case of the first accident, the accident detection relays Ry 1 and Ry 2 operate faster than the accident detection relay FRy. Therefore, the outlet breaker FCB does not open until the same reason as described above. Absent. Then, looking at the accident detection relay Ry 1, which is the fact that shut off switch PCB 1 has passed over reclosing after Y timed (<X timed), as opening command to shut off switch PCB 1 is not given It is locked. Therefore, the open command to only interrupting switch PCB 2 is given (time t 8), interrupting switch PCB
After the response time (time ts), interrupting switch PCB 2 is opened (time point t 9). As described above, according to the present invention, the sections L 1 to L 6 do not have a power failure due to a re-occurrence accident, and only the section L 4 to L 6 initially has a power failure for a short time (about Δt 1 ≈ 1 second). Just do it.
しゃ断開閉器PCB2は開放した後開閉器DMにおける順送課
電方式の動作を開始し、X時限後しゃ断開閉器PCB2を再
度閉路し、L7区間加圧、X時限後開閉器DM5閉路、L8区
間加圧の順序でL8区間まで充電してその動作を完了す
る。なんとなれば、開閉器DM6は閉路後、事故再発生の
ためにY時限以内に無加圧となつたため順送課電方式の
ルールに従つて以後の順送起能は鎖錠されているから、
L8区間の加圧によつては開閉器DM6は閉路動作は行わな
いのである。After the disconnecting switch PCB 2 is opened, the operation of the progressive power-on / off method in the opening / closing switch DM is started, the X-time after-breaking switch PCB 2 is closed again, the L 7 section is pressurized, and the X-time after-break switch DM 5 closed, it completes its operation and charging in order of L 8 sections pressurized to L 8 sections. What happens is that the switch DM 6 becomes unpressurized within the Y time limit after the circuit closed due to the reoccurrence of the accident, so the subsequent progressive power is locked according to the rules of the progressive power supply system. From
The switch DM 6 does not close due to the pressurization of the L 8 section.
第3図のタイムチャートははしゃ断開閉器PCB2が再閉路
してX時限以上経過(開閉器DM5が順送する時間)後、
再開放時にはL7区間しゃ断開閉器PCB2の次区間には事故
要因なしとして次の再々閉路動作をX時限よりも早くか
つ、開閉器が無電圧開放する時間(Δt3≒例えば2秒)
とした場合を示す。The time chart in Fig. 3 shows that after the interrupting switch PCB 2 recloses and the X time period or more has passed (the time when the switch DM 5 advances),
And the next again and again closing operation as no accident factor is at reopening the next section L 7 interval interruption switch PCB 2 faster than X timed, the time switch is no voltage open (Delta] t 3 ≒ e.g. 2 seconds)
Is shown.
これによればしゃ断開閉器PCB2以後の開閉器DM5,DM6は
Δt2(<Δt3)で一旦開放されるため、しゃ断開閉器PC
B2を高速再閉路動作しても以後の開閉器DMによる順送課
電方式の動作タイムチャートは同時に行われる事を示
し、それ丈、区間L7,L8の復電が早くなる事を示してい
る。According to this, since the switches DM 5 and DM 6 after the interrupting switch PCB 2 are once opened at Δt 2 (<Δt 3 ), the interrupting switch PC
Even if B 2 is reclosed at high speed, the subsequent operation time chart of the progressive power-supply method using the switch DM shows that it is performed at the same time, and that length, sections L 7 and L 8 will recover faster. Shows.
第4図は再々閉路動作時に於けるX時限短縮を開閉器DM
にも適用した場合を示し、時点t10′でしゃ断開閉器PCB
2が閉路した後開閉器DM5はΔt4(例えば1秒)、この場
合にはしゃ断開閉器PCB2のΔt3>Δt2であり開閉器DM6
は開放状態であるので即閉路している。このようにすれ
ば、第2図では区間L8が復電するのに時点t9から20秒
(X=10秒とするとき)かかるのが、第3図の方式では
12秒、更に第4図の方式では3秒と大巾に短縮される事
となり、実用上の効果が極めて大きい事を示す。Fig. 4 shows the switch DM for shortening the X time limit during re-closing operation.
It is also applied to the circuit breaker PCB at time t 10 ′.
After 2 is closed, switch DM 5 is Δt 4 (for example, 1 second), and in this case, interrupting switch PCB 2 has Δt 3 > Δt 2 and switch DM 6
Is closed, so it is closed immediately. In this way, in FIG. 2, it takes 20 seconds (when X = 10 seconds) from time t 9 for the section L 8 to recover power.
It is 12 seconds, and in the method of Fig. 4, it is greatly shortened to 3 seconds, showing that the practical effect is extremely large.
第5図は区間L9の事故が回復性でしゃ断開閉器PCB1の開
放で再発生しない場合のタイムチャートを示す。従来こ
のような場合変電所の引出口しゃ断器FCBにより開放,
再閉路の後全区間をX時限慢に順次課電するためL9区間
が課電完了するのに80秒+FCB再閉路時間を要していた
が、本方式によればわずか31秒で済む事となる。(X=
10秒とした時。)第6図はしゃ断開閉器PCB1としゃ断開
閉器PCB2の間にある区間L6に永久事故が発生した場合の
タイムチャートでしゃ断開閉器PCB1の再々閉路時間は第
3図の場合と同様にΔt3に短縮した場合を示している。Fig. 5 shows the time chart when the accident in section L 9 is recoverable and does not reoccur when the break switch PCB 1 is opened. Conventionally, in such a case, it is opened by the outlet breaker FCB of the substation,
Although L 9 section for sequentially voltage application all the region after reclosing the X timed chronic had took 80 seconds + FCB reclosing time to complete voltage application, it suffices only 31 seconds according to the present method Becomes (X =
When 10 seconds. ) Fig. 6 is a time chart when a permanent accident occurs in the section L 6 between the break switch PCB 1 and the break switch PCB 2 and the reclosed time of the break switch PCB 1 is the same as in Fig. 3. Similarly, it shows the case of shortening to Δt 3 .
第7図は第6図と同様な事故時、第4図と同様に開閉器
DMも再々閉路時間を短縮した場合を示している。第8図
は、区間L6の事故が回復性で瞬時除去された場合のタイ
ムチャートで開閉器DM3〜開閉器DM6は開放される事なく
従つて、L4〜L9の区間はいずれも1秒の停電で済む事と
なる。Fig. 7 shows a switchgear similar to Fig. 4 in the event of an accident similar to Fig. 6.
The DM also shows the case where the closing time is shortened again. Figure 8 is eventually switches DM 3 ~ switchgear DM 6 at a time chart when an accident of the section L 6 is instantaneously removed by the recovery sub connexion without being opened, the interval L 4 ~L 9 Also, a one second power failure will suffice.
本発明は従来から広く実施されている順送課電方式に関
するもので、既設の順送方式による開閉器DM設備をその
まま活用し、途中に事故検出設備(事故検出リレーRy+
しゃ断開閉器制御装置CBR)を有するしゃ断開閉器PCBを
設ける事で停電時間とその範囲を極力少なくしようとす
るものである。従つて、しゃ断開閉器PCBの制御方式に
関する内容は新設時に配慮すれば良く、例えば第2図,
第3図,第5図,第6図、及び第8図は既設開閉器DMを
そのままとしてしゃ断開閉器PCBを新しく追加挿入する
丈で実施出来る方法である。The present invention relates to a progressive power supply system that has been widely used in the past, and the existing switch DM equipment based on the progressive system is used as it is, and accident detection equipment (accident detection relay Ry +
It aims to reduce the power failure time and its range as much as possible by providing a break switch PCB having a break switch controller CBR). Therefore, the content of the control method for the circuit breaker PCB should be taken into consideration when installing a new device, for example, as shown in Fig. 2,
FIGS. 3, 5, 6, and 8 show a method that can be carried out with a length in which a new interrupting switch PCB is newly inserted while leaving the existing switch DM as it is.
第4図、及び第7図の開閉器DMの再々閉路時にX時限を
短縮する方法は開閉器制御装置DMR(開閉器DMの制御
部)を改善する必要がある。もちろん、既設の開閉器及
び開閉器群を本発明にそつて改修してもも実施出来る事
明白である。The method of shortening the X time limit when the switch DM is reclosed in FIGS. 4 and 7 requires improvement of the switch control device DMR (control part of the switch DM). Of course, it is obvious that the existing switches and switch groups can be implemented even if they are modified according to the present invention.
又従来の開閉器DM方式では、その数が多くなると事故区
間を切離す迄に長時間のくり返し制御を必要とする事か
ら開閉器DM数には限界があつたが、本発明は上述したよ
うに開閉器DM群を幾つかのグループに分け、その等のグ
ループ接続点にしゃ断開閉器PCBを設けるものであるか
ら、全体として事故区間判別のための制御は従来方式よ
り大巾に短縮される事となる。Further, in the conventional switch DM system, the number of switch DMs has a limit because the repeated control for a long time is required until the accident section is separated when the number is large, but the present invention has been described above. Since the switch DM group is divided into several groups and the break switch PCBs are provided at the connection points of these groups, the control for the fault section determination as a whole is greatly shortened compared to the conventional method. It will be a thing.
本発明の実施例について第1図の系統で説明したが上記
説明から明らかなように散在する開閉器DMの中に任意に
しゃ断開閉器PCBを挿入し電源端から直列に2ケ以内の
しゃ断開閉器PCBが挿入されるように配設すればよい事
である。Although the embodiment of the present invention has been described with reference to the system of FIG. 1, as is apparent from the above description, the interrupting switch PCBs are arbitrarily inserted in the scattered switch DMs and the interrupting switch within 2 lines in series from the power source end. It is only necessary to arrange so that the container PCB is inserted.
第9図は1フィーダの枝分れした点にしゃ断開閉器PCB
を設置した場合を示す適用例でFCBから非電源端へは2
個のしゃ断開閉器PCBが直列となつておりいずれの事故
区間においても第1図の場合と同様な動作が期待され
る。又しゃ断開閉器PCBは2個以上直列に設置していて
もこれを他の開閉器DMと同様な動作とする事の出来るも
のであれば任意に切替えすれば(直列に2個となるよう
に)良い事明白である。特に、配電線は負荷融通等のた
め延長配管等あるのでこれによる効果は大きい。Fig. 9 shows a circuit breaker PCB at the branch point of one feeder
In the application example that shows the case where the
The individual break switch PCBs are connected in series, and the same operation as in the case of Fig. 1 is expected in any accident section. Also, even if two or more disconnecting switch PCBs are installed in series, if they can be operated in the same way as other switch DMs, they can be arbitrarily switched (two in series). Good things are obvious. In particular, the distribution line has an extension pipe or the like for accommodating the load and the like, and this has a great effect.
次に上記実施例においてしゃ断開閉器PCBは短絡電流を
しゃ断するしゃ断器でなくても、地絡事故のみを対象と
する場合は、所期の動作責務を有する開閉器であつても
よい。以下地絡事故のみを対象とする場合と、短絡をも
対象とするしゃ断器方式の場合についてしゃ断開閉器PC
Bとしゃ断開閉器制御装置CBR,事故検出リレーRy等の各
しゃ断開閉器部分について詳細に述べる。記実施例を地
絡事故の保護リレー装置に適用した場合の具体的な装置
の構成について以下説明する。Next, in the above-mentioned embodiment, the breaking switch PCB does not have to be a circuit breaker for breaking a short-circuit current, but may be a switch having a desired operation responsibility when only a ground fault is targeted. The following is a case in which only the ground fault accident is targeted and the case of the circuit breaker system that also targets short circuit.
Detailed description will be given of each of the breaker switch parts such as B, the breaker switch controller CBR, and the accident detection relay Ry. A specific configuration of the device when the above embodiment is applied to a ground fault accident protection relay device will be described below.
第10図は、本発明を適用した一実施例の柱上しゃ断開閉
器回りの全体構成を示す。図においてしゃ断開閉器PCB
は柱上しゃ断開閉器で閉路用コイルCCを励磁すると、主
接点11(11a,11b,11c)がばね12に逆らつて閉路し、フ
ツク13にストツパ14が引掛つて閉路状態を保持するよう
になつている。一方、開放用コイルTCを励磁するとスト
ツパ14が外れて主接点11はばね12に引き戻されて開放状
態となる。FIG. 10 shows the overall structure around a pole break switch according to an embodiment of the present invention. In the figure the break switch PCB
When the closing coil CC is excited by the pole break switch, the main contact 11 (11a, 11b, 11c) is closed against the spring 12 and the stopper 14 is hooked on the hook 13 to maintain the closed state. I'm running. On the other hand, when the opening coil TC is excited, the stopper 14 is disengaged and the main contact 11 is pulled back by the spring 12 to open.
接点15は主接点と開閉を共にする補助接点である。Trは
制御用電源変圧器で、しゃ断開閉器しゃ断開閉器PCBの
A側配電線A1,A3に接続され6.6KVの配電電位から例えば
100Vの制御用電源を得ている。RECは整流装置で制御装
置CONT及び閉路用コイルCC、開放用コイルTCの制御電源
を供給する。配電線と大地間に挿入された電圧変成器PD
は配電系統の零相電圧Voをコンデンサー分圧により得て
いる。The contact 15 is an auxiliary contact that opens and closes with the main contact. Tr is a power supply transformer for control, which is connected to the A-side distribution lines A1 and A3 of the cut-off switch and the cut-off switch PCB from the distribution potential of 6.6KV.
It has a 100V control power supply. REC is a rectifying device that supplies control power to the control device CONT, the closing coil CC, and the opening coil TC. Voltage transformer PD inserted between distribution line and ground
Obtains the zero-phase voltage Vo of the distribution system by dividing the voltage on the capacitor.
ZCTは配電線に流れる零相電流Ioを取出す零相変流器で
ある。電圧変成器PDと零相変圧器ZCTの出力VoとIoは制
御装置CONTに導かれ、ここにおいて地絡事故の有無判定
に用いられる。CX,TXはしゃ断開閉器PCBの閉路および開
放指令出力用補助リレーで、各々の接点CX−1,TX−aに
よつてしゃ断開閉器は開閉制御される。ZCT is a zero-phase current transformer that extracts the zero-phase current Io flowing in the distribution line. The outputs Vo and Io of the voltage transformer PD and the zero-phase transformer ZCT are guided to the control device CONT, where they are used to determine the presence / absence of a ground fault. CX and TX are auxiliary relays for closing and opening command output of the breaking switch PCB, and the breaking switch is controlled to open and close by the respective contacts CX-1 and TX-a.
第11図に制御装置CONTの機能ブロツク図を示す。第11図
において、Vo,Ioを入力とする地絡方向リレーDGは配電
線に発生した地絡事故がZCTよりも反電源端側のとき動
作し、電源端側のときは動作しないような方向性をもつ
た地絡事故検出リレーである。協調用タイマTLはDGが動
作してから整定時間Tの後動作信号を出す。Fig. 11 shows a functional block diagram of the control unit CONT. In Fig. 11, the ground fault direction relay DG with Vo and Io as inputs operates in the direction where the ground fault occurred on the distribution line is on the side opposite to the power source side than ZCT, and not on the power source side. It is a ground fault accident detection relay that has characteristics. The cooperation timer TL outputs an operation signal after the settling time T after the DG operates.
LOC及び1NH1は開閉器が過大電流をしゃ断する能力がな
く、或る大きさ以上の事故電流時には変電所出口のFCB
にそのしゃ断をゆだねるときに必要な部分で、第10図で
は図示していないがしゃ断開閉器PCB部に取付け、これ
に流れる電流を変成する変流器をセンサーとしたIを入
力してLOCが電流の大きさが一定値以上のとき出力信号
を出して、1NH1でDGリレーからの動作信号をロツクする
ようになつている。この場合には、変電所のFCBの動作
に委ねることとする。LOC and 1NH 1 do not have the ability of the switch to block excessive current, and when the fault current exceeds a certain level, FCB at the substation exit
Although not shown in Fig. 10, it is attached to the circuit breaker switch PCB, which is a necessary part when the disconnection is given, and I is used as a sensor for the current transformer that transforms the current flowing through it. It outputs an output signal when the magnitude of the current exceeds a certain value, and locks the operation signal from the DG relay with 1NH 1 . In this case, the substation's FCB operation will be entrusted.
当該しゃ断開閉器PCBが開放すべきか否かの判断はGEQ部
からのロツク信号LOCKがない事を条件に1NHzを介してし
ゃ断開閉器PCB開放用のTXリレーに開放指令TXを出力す
る。これによりしゃ断開閉器PCBが開放すると補助接点1
5が開路する。To judge whether or not the break switch PCB should be opened, the open command TX is output to the TX relay for opening the break switch PCB via 1NHz on condition that there is no lock signal LOCK from the GEQ section. As a result, when the circuit breaker PCB opens, auxiliary contact 1
5 opens.
また、第10図の実施例では、A側にのみPD,ZCT、および
PTを設けたものについて示したが、これはB側でも、双
方でもよい。また、地絡検出リレーとして方向特性を有
するDGリレーとしたが樹枝状の配電線においては単なる
I1の大きさで動作するOCGリレー(地絡過電流リレー)
でもよい。また、しゃ断開閉器PCBから見た電源端側
が、A側,B側のいずれにもなる場合(即ち、事故点以遠
の区間に対する隣接電源からの送電の場合等)には地絡
方向リレーをそれぞれの方向用に設けておけば、よい。
したがつて、本発明の適用はしゃ断容量の大きな開閉器
においては、地絡事故から短絡事故への進展事故に対し
てもそのまま適用でき、かつ、停電時間を大幅に短縮で
きる。Also, in the embodiment of FIG. 10, only PD, ZCT, and
Although the PT is provided, it may be provided on the B side or both sides. Also, a DG relay with directional characteristics was used as the ground fault detection relay, but it is only
OCG relay operating at I 1 size (ground fault overcurrent relay)
But it's okay. In addition, when the power supply end side viewed from the break switch PCB is either A side or B side (that is, when power is transmitted from the adjacent power supply to the section beyond the accident point), the ground fault direction relays are respectively It should be provided for the direction of.
Therefore, the application of the present invention can be applied to a switch having a large breaking capacity as it is even for a progress accident from a ground fault accident to a short-circuit accident, and the power outage time can be greatly shortened.
以上の実施例では、地絡事故についてのみ説明したが、
短絡事故に対してもそのまま適用することが可能であ
る。次に短絡電流をもしや断出来るしゃ断器をしゃ断開
閉器PCBに適用した場合について以下説明する。In the above examples, only the ground fault accident was explained,
It can be applied to a short circuit accident as it is. Next, the case where a circuit breaker capable of breaking short circuit current is applied to the circuit breaker PCB will be described below.
第12図は本実施例が適用された柱上しゃ断器回りの全体
構成を示す図である。第10図は実施例と略同一の構成を
有しており、異なる点は短絡事故検出が併設されている
ことにあり、線電流検出用の変成器CTが設置されてい
る。また、制御装置CONT′は第10図のものとは異なる構
成であり、第13図にその詳細ブロツク図を示す。FIG. 12 is a diagram showing an overall configuration around a pole breaker to which this embodiment is applied. FIG. 10 has substantially the same configuration as that of the embodiment, except that a short-circuit accident detection is provided side by side, and a transformer CT for line current detection is installed. Further, the control unit CONT 'has a configuration different from that of FIG. 10, and its detailed block diagram is shown in FIG.
第13図に示すように、変成器CTで検出された線電流Iは
過電流リレーOCに入力されている。この過電流リレーOC
は線電流が予め設定されている電流値よりも大きな値と
なつたとき、動作信号を出力するようになつている。TL
Rは電圧Vの大きさに応じてその時限が変化する可変タ
イマーで、過電流リレーよりの動作信号が入力したと
き、電圧Vが零ボルトの時は瞬時に、電圧Vが大きな時
はそれに比例した出力信号の遅延時間をもたせてある。As shown in FIG. 13, the line current I detected by the transformer CT is input to the overcurrent relay OC. This overcurrent relay OC
Is designed to output an operation signal when the line current has a value larger than a preset current value. TL
R is a variable timer whose time limit changes according to the magnitude of voltage V. When an operating signal from an overcurrent relay is input, it is instantaneous when voltage V is zero volt, and proportional to it when voltage V is large. The output signal has a delay time.
又、過電流リレーOCと可変タイマーTLRからなる事故検
出リレーは全体として次の動作時性を有するリレーであ
つてもよい。Further, the accident detection relay including the overcurrent relay OC and the variable timer TLR may be a relay having the following operational characteristics as a whole.
即ち、線電流と電圧Vを入力として、そのインピーダン
ス が設定値を越えた時、その大きさによつて動作信号の出
力時限を可変とするインピーダンスリレーであつてもよ
い。That is, the line current and voltage V are input, and the impedance May be an impedance relay in which the output time limit of the operation signal is variable depending on the magnitude of the value.
これは配電線が末端に行くに従つて細線化している事に
着目したもので、変電所から遠くなる末端部にて短絡事
故が発生すると、事故点での電圧はほぼ0ボルトに低下
するが、変電所に近づくに従つて電圧が大きくなる。し
かし事故電流の大きさは同一であるため各しゃ断開閉器
PCB設置点のリレー動作時間を残留電圧に比例して変化
させれば事故点に近いリレー程早く動作する事となる。This is focused on the fact that the distribution line becomes thinner as it goes to the end. If a short-circuit accident occurs at the end far from the substation, the voltage at the accident point will drop to almost 0 volt. , The voltage increases as it approaches the substation. However, since the magnitude of the fault current is the same, each breaking switch
If the relay operating time at the PCB installation point is changed in proportion to the residual voltage, the relay closer to the accident point will operate faster.
上記インピーダンスリレーZRyはリレー設置点から事故
点迄のインピーダンスに比例して動作時間を可変しよう
とするものである。The impedance relay ZRy attempts to vary the operation time in proportion to the impedance from the relay installation point to the accident point.
上記インピーダンスリレーZRyの動作信号は地絡方向リ
レーDGの動作信号との論理和をとるORゲートを介して直
ちに開放指令を出力するようになつている。1NHは当該P
CBが開放すべきか否かの判断をSEQ部で行ない、ロツク
信号LOCKがない事を条件に開放指令TXを出力する。The operation signal of the impedance relay ZRy is adapted to immediately output an opening command via an OR gate which takes the logical sum of the operation signal of the impedance relay ZRy and the operation signal of the ground fault direction relay DG. 1NH is the P
The SEQ section determines whether or not the CB should be released, and outputs the release command TX on condition that there is no lock signal LOCK.
以上の説明では電源側から直列に2個以内のしゃ断開閉
器PCBを設けるとしたが、これを3個以上としても次の
ような配慮をすれば良い。即ち非電源端から電源端へ近
くなるに従つて事故検出リレー動作時間を段々早くして
おけば先ず事故点に最も近いしゃ断開閉器PCBが開放す
るが追いかけて事故点に2番目に近いしゃ断開閉器PCB
も開放する場合としない場合が考えられる。In the above description, it is assumed that no more than two circuit breaker PCBs are provided in series from the power supply side, but the following consideration may be taken even if the number of circuit breaker PCBs is three or more. That is, if the operation time of the accident detection relay is gradually shortened as the non-power source end is approached to the power source end, the cut-off switch PCB closest to the accident point opens first, but the chasing switch closes to the accident point second Container pcb
It may or may not be opened.
もし、追いかけて2台のしゃ断開閉器PCBが直列に開放
しても本発明によれば、第1図の系統図で説明した第2
図〜第8図と同じ動作をする事となり、3個以上直列配
置しても良い事明白である。According to the present invention, even if two chasing switch PCBs are opened in series if chasing after the second switch described in the system diagram of FIG.
It is clear that the same operation as in FIGS. 8 to 8 is performed and three or more units may be arranged in series.
以上説明したように本発明によれば既存の時限順送課電
方式による開閉器DMはそのままとして途中に保護リレー
要素をもつたしゃ断開閉器を設置する事により事故発生
時における当該区間から電源側区間の停電を極小化出来
る他、回復性の瞬時事故時に全系統にわたつて極めて短
時間の停電のみで済む効果を有する。As described above, according to the present invention, the switch DM having the protection relay element is installed on the way while leaving the switch DM by the existing time-sequential power-supplying system as it is, so that the section from the power source side to the power source side when the accident occurs In addition to minimizing power outages in sections, it has the effect of requiring only a very short power outage over the entire system in the event of a recoverable instantaneous accident.
更に、他の大きな特長はパイロツトワイヤー等の通信手
段を一切設ける事なく効果を発揮出来る点である。Another major feature is that the effect can be exhibited without providing any communication means such as a pilot wire.
第1図は本発明が適用されてなる一実施例の配電線装置
の全体構成図、第2図〜第8図は本発明の動作を示すタ
イムチヤート、第9図は本発明が適用される他の実施系
統図を示す。第10図〜第13図は具体的な制御装置の構成
を示す。 L1〜L9……配電区間、FCB……引出口しや断器、PCB1,PC
B2……しゃ断開閉器、CBR……しゃ断開閉器用制御装
置、Ry1,Ry2……事故検出リレー。FIG. 1 is an overall configuration diagram of a distribution line device of an embodiment to which the present invention is applied, FIGS. 2 to 8 are time charts showing the operation of the present invention, and FIG. 9 is an application of the present invention. The other execution system diagram is shown. 10 to 13 show a concrete configuration of the control device. L 1 to L 9 …… Distribution section, FCB …… Outlet and breaker, PCB 1 , PC
B 2 ...... Breaking switch, CBR ...... Control device for breaking switch, Ry 1 , Ry 2 ...... Accident detection relay.
Claims (7)
該第一または第二の配電線の電力状態を検出する電力検
出手段とを備え、前記第一または第二の配電線には該配
電線の電力異常の発生後、該配電線の閉路状態を維持す
る配電線閉路保持期間が経過した後に、該配電線を開路
する遮断装置が接続されることを特徴とする配電線保護
装置において、前記第一、または第二の配電線の事故状
態を検出する配電線事故状態検出手段と、該配電線事故
状態検出手段からの事故信号に応じて前記開閉器を開路
する配電線回路手段と、前記開閉器の開路後、前記電力
検出手段からの電力検出信号に応じて前記配電線閉路保
持期間以内に前記開閉器を閉路することを特徴とする配
電線保護装置。1. A switch for opening and closing first and second distribution lines,
And a power detection means for detecting the power state of the first or second distribution line, the closed state of the distribution line in the first or second distribution line after the occurrence of power abnormality of the distribution line. In a distribution line protection device, which is characterized in that a breaker for opening the distribution line is connected after a maintenance period for maintaining the distribution line closed, a fault condition of the first or second distribution line is detected. Distribution line accident state detection means, distribution line circuit means for opening the switch according to an accident signal from the distribution line accident state detection means, and power detection from the power detection means after the switch is opened. A distribution line protection device, characterized in that the switch is closed within the distribution line closing holding period according to a signal.
前記第一または第二の配電線には該配電線に電力が供給
された後、該配電線の開路状態を維持する配電線開路保
持期間が経過した後に、該配電線を閉路する遮断装置が
接続され、前記開閉器の閉鎖後、前記配電線開路保持期
間中に、前記配電線事故状態検出手段により事故状態が
検出されない場合は前記開閉器の閉路状態を維持するこ
とを特徴とする配電線保護装置。2. The distribution line protection device according to claim 1,
A disconnecting device that closes the distribution line is supplied to the first or second distribution line after the power is supplied to the distribution line, and after a distribution line opening holding period for maintaining the open state of the distribution line has elapsed. The distribution line, which is connected, maintains the circuit closed state of the switch when the distribution line accident state detection means does not detect an accident state during the distribution line open circuit holding period after the switch is closed. Protective device.
前記配電線開路保持期間中に前記配電線事故状態検出手
段により事故状態の検出があった場合、前記配電線閉路
保持期間の経過後に前記開閉器を閉路することを特徴と
する配電線保護装置。3. The distribution line protection device according to claim 2,
A distribution line protection device, characterized in that, when the distribution line accident state detecting means detects an accident state during the distribution line open circuit holding period, the switch is closed after the distribution line circuit closing holding period has elapsed.
前記配電線開路保持期間経過後に前記配電線事故状態検
出手段により事故状態が検出された場合でも、前記閉路
状態を維持することを特徴とする配電線保護装置。4. The distribution line protection device according to claim 2,
A distribution line protection device, which maintains the closed state even when an accident state is detected by the distribution line accident state detection means after the passage of the distribution line open circuit holding period.
特定の期間経過後、前記第一または第二の配電線に電力
が供給されない場合に前記開閉器を閉路することを特徴
とする配電線保護装置。5. The distribution line protection device according to claim 1,
A distribution line protection device which closes the switch when electric power is not supplied to the first or second distribution line after a specific period has elapsed.
該第一または第二の配電線の電力状態を検出する電力検
出手段とを備え、前記第一または第二の配電線には該配
電線に電力が供給された後、該配電線の開路状態を維持
する配電線開路保持期間が経過した後に、該配電線を閉
路する遮断装置が接続されることを特徴とする配電線保
護装置において、前記第一または第二の配電線の事故状
態を検出する配電線事故状態検出手段と、該配電線事故
状態検出手段からの事故状態検出に応じて前記開閉器を
開放した後、該開閉器を閉路する配電線開閉手段と、該
配電線開閉手段により前記開閉器が閉路された後、前記
配電線開路保持期間の間、前記配電線事故状態検出手段
により事故状態が検出されない場合は前記開閉器の閉路
状態を維持することを特徴とする配電線保護装置。6. A switch for opening and closing the first and second distribution lines,
An electric power detection means for detecting the electric power state of the first or second distribution line, and after the electric power is supplied to the first or second distribution line, the open state of the distribution line In a distribution line protection device, a disconnecting device that closes the distribution line is connected after the distribution line opening holding period for maintaining the above is detected, and an accident state of the first or second distribution line is detected. The distribution line accident state detecting means, the distribution line opening / closing means for closing the switch after the switch is opened in response to the accident state detection from the distribution line accident state detecting means, and the distribution line opening / closing means. After the switch has been closed, during the holding period of the distribution line opening, the closed state of the switch is maintained when the distribution line accident state detecting means does not detect an accident state. apparatus.
器グループを構成することを特徴とする配電線保護装置
において、該配電線保護装置は順送式開閉器の動作機能
と、グループ間接続点用開閉器の動作機能とを備え該機
能を任意に選択切替え出来ることを特徴とする配電線保
護装置。7. A distribution line protection device, which is connected to another switch via a distribution line to form a switch group, wherein the distribution line protection device has an operation function of a progressive switch. A distribution line protection device having an operation function of a switch for connecting points between groups and capable of arbitrarily selecting and switching the function.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63323347A JPH0767236B2 (en) | 1988-12-23 | 1988-12-23 | Distribution line protection device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63323347A JPH0767236B2 (en) | 1988-12-23 | 1988-12-23 | Distribution line protection device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH02174521A JPH02174521A (en) | 1990-07-05 |
| JPH0767236B2 true JPH0767236B2 (en) | 1995-07-19 |
Family
ID=18153780
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP63323347A Expired - Fee Related JPH0767236B2 (en) | 1988-12-23 | 1988-12-23 | Distribution line protection device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0767236B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008072852A (en) * | 2006-09-14 | 2008-03-27 | Toshiba Corp | Switch control device and switchgear |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5788826A (en) * | 1980-11-19 | 1982-06-02 | Mitsubishi Electric Corp | Protecting interlocking device for breaker |
-
1988
- 1988-12-23 JP JP63323347A patent/JPH0767236B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH02174521A (en) | 1990-07-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Antonova et al. | Distributed generation and its impact on power grids and microgrids protection | |
| US4477855A (en) | Protecting system for transmission lines | |
| EP0771059B1 (en) | Method and apparatus for transferring between electrical power sources with adaptive blocks transfer until load voltage decays to safe value | |
| MXPA96005115A (en) | Method and apparatus for transfer between sources of electrical energy that block adaptative transfer until the voltage of charge achieves a secure value | |
| JPH05137250A (en) | Distribution line stop minimization system | |
| CN100466415C (en) | The Method of Microcomputer Controlling the Backup Power Supply Automatically Putting In | |
| CN219740033U (en) | Power-on control circuit of alternating current side of energy storage system | |
| RU2317622C1 (en) | METHOD AND DEVICE FOR CONTROLLING FEEDER SWITCH OF AC, 27.5 AND 2 × 27.5 kV TRACTION SUBSTATIONS | |
| JPH0767236B2 (en) | Distribution line protection device | |
| JP2720048B2 (en) | Distribution line protection relay device and distribution line device | |
| JP3169976B2 (en) | Distribution line ground fault protection system | |
| JP3248962B2 (en) | How to protect the inverter distribution system | |
| JPH10174293A (en) | Switching circuit of capacitor for power factor improvement in interconnected operation | |
| CN208001183U (en) | Backup auto-activating device and system | |
| JP3760759B2 (en) | Overcurrent relay device | |
| Brewis et al. | Theory and practical performance of interlocked overcurrent busbar zone protection in distribution substations | |
| JP3081494B2 (en) | Automatic section switch | |
| JP3156999B2 (en) | Distribution line protection system | |
| SU748672A1 (en) | Device for disconnection of electric equipment at short-circuiting in ac network | |
| JP2592815B2 (en) | High voltage load switch | |
| CN216793465U (en) | Device for reducing excitation surge current of transformer | |
| JP2561133Y2 (en) | Switch | |
| JP3086955B2 (en) | Method and apparatus for minimizing electrode interruption in power system | |
| JPH0795725A (en) | Distribution line protection device and method | |
| JPH1014100A (en) | Ground self-breaking type automatic section switch |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070719 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080719 Year of fee payment: 13 |
|
| LAPS | Cancellation because of no payment of annual fees |