JPH0770441B2 - Solid electrolytic capacitor - Google Patents
Solid electrolytic capacitorInfo
- Publication number
- JPH0770441B2 JPH0770441B2 JP16221886A JP16221886A JPH0770441B2 JP H0770441 B2 JPH0770441 B2 JP H0770441B2 JP 16221886 A JP16221886 A JP 16221886A JP 16221886 A JP16221886 A JP 16221886A JP H0770441 B2 JPH0770441 B2 JP H0770441B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolytic
- electrolytic capacitor
- electrode
- tcnq
- phenylpyridinium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Pyridine Compounds (AREA)
- Oscillators With Electromechanical Resonators (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体電解質を用いた固体電解コンデンサの改
良に関するものである。TECHNICAL FIELD The present invention relates to an improvement of a solid electrolytic capacitor using a solid electrolyte.
〔発明の背景〕 固体電解コンデンサは、陽極酸化皮膜を有するアルミニ
ウムなどの誘電体皮膜生成金属に固体電解質を付着した
構造を有している。この種のコンデンサには、従来まで
は殆ど二酸化マンガンが固体電解質として用いられて来
た。BACKGROUND OF THE INVENTION A solid electrolytic capacitor has a structure in which a solid electrolyte is attached to a dielectric film-forming metal such as aluminum having an anodized film. Until now, manganese dioxide has mostly been used as a solid electrolyte in this type of capacitor.
しかしながら、二酸化マンガンを電極上に形成させる際
に、一般に硝酸マンガン溶液に浸漬させた後加熱分解を
行うため、陽極酸化皮膜が損傷をうけること、加えて二
酸化マンガンによる陽極酸化皮膜の修復性が乏しいとい
う欠点があった。However, when manganese dioxide is formed on the electrode, it is generally soaked in a manganese nitrate solution and then thermally decomposed. There was a drawback.
上記の欠点を改善させる目的で固体電解質として有機半
導体、主として7,7,8,8−テトラシアノキノジメタン(T
CNQ)の塩を用いることが提案されている。Organic semiconductors, mainly 7,7,8,8-tetracyanoquinodimethane (T
It has been proposed to use CNQ) salts.
TCNQ錯体は、TCNQをアクセプターとし、ドナー材として
はキノリン(Qn)、テトラチアフルバレン(TTF)、N
−メチルフェナジン(NMP)、テトラセレナフルバレン
(TSF)などがこれまで検討されており、更に新しいド
ナー材についての研究も精力的に行われているが、まだ
充分満足できるものは得られていない。The TCNQ complex uses TCNQ as an acceptor and quinoline (Q n ), tetrathiafulvalene (TTF), N as a donor material.
-Methylphenazine (NMP), tetraselenafulvalene (TSF), etc. have been studied so far, and research on new donor materials has been energetically conducted, but satisfactory results have not been obtained yet. .
特に耐熱性の点に関しては、従来検討されてきたTCNQ錯
体はいずれも問題を抱えている。即ち、固体電解コンデ
ンサに於ては、コンデンサの製造処理過程に於て、ハン
ダ処理等の熱に曝される機会が多いこと、及び電源回路
に於てトランスの近くに配置されること等の点から、電
解質は熱的に安定でなくてはならないが、従来のTCNQ錯
体はいずれもこの点で不安要素がある。In particular, in terms of heat resistance, all TCNQ complexes that have been studied so far have problems. In other words, solid electrolytic capacitors are often exposed to heat such as soldering in the manufacturing process of capacitors and that they are placed near the transformer in the power supply circuit. Therefore, the electrolyte must be thermally stable, but all conventional TCNQ complexes have anxiety in this respect.
本発明は、固体電解コンデンサが有する上記した如き諸
問題を全く有さない、新規で且つ有用な固体電解コンデ
ンサを提供することにある。The present invention is to provide a new and useful solid electrolytic capacitor which does not have the above-mentioned problems of the solid electrolytic capacitor at all.
本発明は、表面に陽極酸化皮膜を有する弁作用金属から
なる陽極用電極と、該電極に対向して構成された陰極用
電極との間に介在された電解質として、N−アルキル−
4−フェニルピリジニウムカチオンをドナー材としたTC
NQ錯体を用いることを特徴とする固体電解コンデンサで
ある。The present invention provides an N-alkyl-based electrolyte as an electrolyte interposed between an electrode for an anode made of a valve metal having an anodized film on the surface and an electrode for a cathode arranged to face the electrode.
TC with 4-phenylpyridinium cation as donor material
A solid electrolytic capacitor characterized by using an NQ complex.
ドナー材としての特徴は、イオン化ポテンシャルが適度
に小さいこと、π電子系の広がりが大きくそのイオンが
安定化すること、分極率が高いことなどが挙げられる。The characteristics of the donor material are that the ionization potential is appropriately small, the π-electron system spreads widely, the ions are stabilized, and the polarizability is high.
これらの諸条件を全て満たすことは分子設計の上で重要
な因子であるが、全てを満たすには、非常な困難を伴
う。また種々のドナー材からなるTCNQ錯体を電解コンデ
ンサへ適応するには電極との接着に問題があり、極めて
微細な結晶粒を有するもので且つ金属酸化物とのなじみ
が良好のTCNQ錯体が望ましい。Satisfying all of these conditions is an important factor in molecular design, but it is extremely difficult to satisfy all of them. Further, in order to apply TCNQ complexes composed of various donor materials to electrolytic capacitors, there is a problem in adhesion to electrodes, and TCNQ complexes having extremely fine crystal grains and having good compatibility with metal oxides are desirable.
また電気伝導性も低温から高温まであまり変化せず、高
温になっても分解しないTCNQ錯体が要求される。In addition, the TCNQ complex that does not change its electric conductivity from low temperature to high temperature and decomposes even at high temperature is required.
本発明者らは鋭意研究を重ね、上記の要求を充分満足し
得るTCNQ錯体のドナー材を新たに見出し、本発明に到達
した。即ち、本発明は特に製品化した後、プリント基板
にハンダ付けする際に、充分高い温度でのリフローで行
っても対応出来得る有機半導体を用いている点に特徴を
有する。The inventors of the present invention have conducted extensive studies, and have newly found a donor material for a TCNQ complex that can sufficiently satisfy the above requirements, and arrived at the present invention. That is, the present invention is characterized in that an organic semiconductor that can be used even when it is reflowed at a sufficiently high temperature when it is soldered to a printed circuit board after being commercialized is used.
N−アルキル−4−フェニルピリジニウムTCNQ錯体は、
例えば下記の如く表わされる。The N-alkyl-4-phenylpyridinium TCNQ complex is
For example, it is represented as follows.
(式中、nは0.5≦n≦2なる任意の数を表わす。) N−アルキル−4−フェニルピリジニウムTCNQ錯体は、
比較的高い温度の融点および分解点を有している。例え
ばN−イソブチル−4−フェニルピリジニウムTCNQ錯体
は、融解開始点が250℃、また分解点が281℃であり、N
−n−ブチルイソキノリンTCNQ錯体の融解開始点217.5
℃、分解点267.1℃に比べいずれも高い値を示してい
る。このようにN−アルキル−4−フェニルピリジニウ
ムTCNQ錯体は極めて熱的に安定な錯体である。 (In the formula, n represents an arbitrary number of 0.5 ≦ n ≦ 2.) The N-alkyl-4-phenylpyridinium TCNQ complex is
It has a relatively high melting point and decomposition point. For example, N-isobutyl-4-phenylpyridinium TCNQ complex has a melting start point of 250 ° C. and a decomposition point of 281 ° C.
Melting point of n-butylisoquinoline TCNQ complex 217.5
Both values are higher than the ℃ and decomposition point of 267.1 ℃. Thus, the N-alkyl-4-phenylpyridinium TCNQ complex is an extremely thermally stable complex.
また、N−アルキル−4−フェニルピリジニウムTCNQ錯
体は、電導性についても電解コンデンサ用の固体電解質
として充分適応出来得るものである。例えば、N−イソ
ブチル−4−フェニルピリジニウムTCNQ錯体粉末を400k
g加圧してペレット状にしたときの比抵抗値は1〜12Ω
・cmであった。Also, the N-alkyl-4-phenylpyridinium TCNQ complex can be sufficiently applied as a solid electrolyte for electrolytic capacitors in terms of electrical conductivity. For example, 400k N-isobutyl-4-phenylpyridinium TCNQ complex powder
The specific resistance value when pressed into pellets is 1 to 12Ω.
・ It was cm.
TCNQとN−アルキル−4−フェニルピリジニウムカチオ
ンの錯体は高温まで安定であるがゆえに、電極との接合
技術に於て有利な利点をもたらす。即ち、高沸点で極性
の高い溶媒に溶かすことが可能であり、浸漬、乾燥時に
極めて速やかに電極表面上での再結晶化が起こる。また
アルミニウム電解コンデンサのように細かくエッチング
された電極面の凹凸の中にも無理なく含浸される。これ
は結晶化速度との条件がらみの問題もあるが、結晶の微
細化、高密度化と共に、含浸状態が良好になるのは言う
までもない。The complex of TCNQ and N-alkyl-4-phenylpyridinium cations is stable up to high temperature and thus provides an advantageous advantage in the bonding technique with electrodes. That is, it can be dissolved in a solvent having a high boiling point and a high polarity, and recrystallization on the electrode surface occurs very quickly during immersion and drying. Also, it is reasonably impregnated into the unevenness of the electrode surface that is finely etched like an aluminum electrolytic capacitor. Although this has a problem in that the conditions such as the crystallization rate are not taken into consideration, it goes without saying that the impregnation state becomes better as the crystal becomes finer and the density becomes higher.
なお、本発明の固体電解コンデンサに用いられる陽極用
電極はアルミニウム箔に限定されるものではなく、他の
弁当用金属も当然ながら使用可能であり、また粉末燒結
電極を用いても同様な効果が得られることは言うまでも
ない。The anode electrode used in the solid electrolytic capacitor of the present invention is not limited to the aluminum foil, and other metal for lunch can be used as a matter of course, and the same effect can be obtained by using the powder sintered electrode. It goes without saying that you can get it.
本発明の固体電解コンデンサに使用する4−フェニルビ
リジニウムカチオンのN位につくアルキル基の炭素数と
しては1〜10が良好で、それ以上になると不安定であ
り、また、コスト的にみても不都合な点が多い。The carbon number of the alkyl group at the N-position of the 4-phenylpyridinium cation used in the solid electrolytic capacitor of the present invention is preferably 1 to 10 and is higher than that, it is unstable, and in terms of cost. However, there are many disadvantages.
以下、本発明の具体的実施例について説明する。Hereinafter, specific examples of the present invention will be described.
実施例1 N−イソアミル−4−フェニルピリジニウムTCHQ錯体を
180℃に熱したニトロベンゼン溶液に過飽和溶解させ
た。次に40倍にエッチング処理したアルミニウム箔を50
v化成し、陽極用電極とした。該電極を、上記溶液を180
℃にした中に浸漬し、ゆっくりと引き上げ、230℃で乾
燥させた。この操作を4回行い含浸を終了させた。次に
陰極としてカーボンを塗布し、その上に銀ペーストを塗
布し、リード線をはんだ付けして外装したコンデンサ試
料(試料群A)を作製した。Example 1 N-isoamyl-4-phenylpyridinium TCHQ complex
It was supersaturated in a nitrobenzene solution heated to 180 ° C. Next, 50 times the aluminum foil that has been etched 40 times
v It was formed into a cathode electrode. The electrode is charged with the above solution 180
It was immersed in the solution kept at ℃, slowly pulled up, and dried at 230 ℃. This operation was repeated 4 times to complete the impregnation. Next, carbon was applied as a cathode, silver paste was applied thereon, and lead wires were soldered to prepare a capacitor sample (sample group A).
また比較のため従来例として、N−n−ブチルイソキノ
リンTCNQ錯体を同様にして、180℃に加熱したニトロベ
ンゼン中に過飽和溶解させ、同様の操作を繰り返した。
陰極およびリード線の取り付けは上記と同様に行いコン
デンサ試料(試料群B)を作製した。For comparison, as a conventional example, Nn-butylisoquinoline TCNQ complex was similarly supersaturated and dissolved in nitrobenzene heated to 180 ° C., and the same operation was repeated.
The attachment of the cathode and the lead wire was performed in the same manner as above to prepare a capacitor sample (sample group B).
また更に従来例として硝酸マンガン飽和水溶液を用い、
220℃にて60秒浸漬、加熱処理を6回繰り返した。そし
て陰極およびリード線の取り付けを上記と同様に行いコ
ンデンサ試料(試料C)を作製した。Further, as a conventional example, a saturated aqueous solution of manganese nitrate is used,
Immersion at 220 ° C. for 60 seconds and heat treatment were repeated 6 times. Then, the cathode and the lead wire were attached in the same manner as above to prepare a capacitor sample (Sample C).
何れの試料も定格25v,47μFの固体電解コンデンサであ
る。All samples are solid electrolytic capacitors rated at 25v and 47μF.
第1表に初期特性を示す。静電容量及びtanδは常温、1
20Hzに於ける値、漏れ電流は常温、定格電圧印加1分後
の値を示す。Table 1 shows the initial characteristics. Capacitance and tanδ are 1 at room temperature
The value at 20Hz and the leakage current are the values at room temperature and 1 minute after the rated voltage was applied.
さらに105℃の雰囲気で定格電圧を印加し2000時間まで
の高温負荷試験行った結果を第2表に示す。 Table 2 shows the results of a high temperature load test for up to 2000 hours with a rated voltage applied in an atmosphere of 105 ° C.
上記第1表および第2表より明らかなように本発明の固
体電解コンデンサは熱的にも安定であることが、実証さ
れた。 As is clear from Tables 1 and 2 above, it was proved that the solid electrolytic capacitor of the present invention is thermally stable.
実施例2 実施例1と同様の電極を用い陽極箔とし、それに対向し
て約10倍にエッチングしたアルミ箔を陰極とし、電解紙
をセパレーターとして巻回型コンデンサ(定格25wv−33
μF)の素子を作製した。上記素子を加熱処理し該セパ
レーターを炭化処理した後、これにN−イソブチル−4
−フェニルピリジニウムTCNQ錯体を含浸し、外装して、
コンデンサ試料群Dを作製した。Example 2 The same electrode as in Example 1 was used as an anode foil, an aluminum foil opposite to which was etched by about 10 times was used as a cathode, and electrolytic paper was used as a separator. A wound type capacitor (rated 25wv-33).
A device of μF) was produced. After heat-treating the above element and carbonizing the separator, N-isobutyl-4 was added thereto.
-Impregnated with a phenylpyridinium TCNQ complex, packaged,
A capacitor sample group D was produced.
比較のため、N−n−ブチルイソキノリンTCNQ錯体も同
様に浸漬し、試料群Eを作製した。For comparison, Nn-butylisoquinoline TCNQ complex was similarly dipped to prepare sample group E.
第3表に初期特性、及び250℃に於けるはんだリフロー
1分を行った後の特性を示す。Table 3 shows the initial characteristics and the characteristics after 1 minute of solder reflow at 250 ° C.
第3表の結果からも明らかな様にN−n−ブチルイソキ
ノリンTCNQ錯体を用いた製品は、静電容量が大幅に減少
し、tanδは逆に大幅に増大しておりリフロー時に於け
る熱ストレスによって錯体が劣化したことを示してい
る。それに対しN−イソブチル−4−フェニルピリジニ
ウムTCNQ錯体は静電容量、tanδ共に変化は少なく極め
て安定していることを示している。 As is clear from the results in Table 3, the products using the N-n-butylisoquinoline TCNQ complex had a large decrease in capacitance and tan δ on the contrary. Indicates that the complex has deteriorated. On the other hand, the N-isobutyl-4-phenylpyridinium TCNQ complex shows extremely small changes in both capacitance and tan δ and is extremely stable.
〔発明の効果〕 以上述べたように、N−アルキル−4−フェニルピリジ
ニウムカチオンのTCNQ錯体からなる固体電解質は熱的に
極めて安定で、電極と固体電解質との接合性も良好なの
で、これを電解質として用いた本発明の固体電解コンデ
ンサは従来のものと比べその電気特性が著しく改善され
且つ安定化されたものではる点に顕著な効果を奏するも
のであり、工業的且つ実用的価値大なるものがある。[Effects of the Invention] As described above, the solid electrolyte composed of the TCNQ complex of N-alkyl-4-phenylpyridinium cation is extremely stable thermally, and the bondability between the electrode and the solid electrolyte is good. The solid electrolytic capacitor of the present invention used as above has a remarkable effect in that its electric characteristics are significantly improved and stabilized as compared with the conventional one, and is of great industrial and practical value. There is.
Claims (2)
らなる陽極用電極と、該電極に対向して構成された陰極
用電極との間に介在された電解質として、N−アルキル
−4−フェニルピリジニウムカチオンをドナー材とした
TCNQ錯体を用いることを特徴とする固体電解コンデン
サ。1. An N-alkyl-4-electrolyte is used as an electrolyte interposed between an electrode for an anode made of a valve metal having an anodized film on the surface thereof and an electrode for a cathode arranged facing the electrode. Phenylpyridinium cation as donor material
A solid electrolytic capacitor characterized by using a TCNQ complex.
ある、特許請求の範囲第1項記載の固体電解コンデン
サ。2. The solid electrolytic capacitor according to claim 1, wherein the alkyl group of the donor material has 1 to 10 carbon atoms.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16221886A JPH0770441B2 (en) | 1986-07-10 | 1986-07-10 | Solid electrolytic capacitor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP16221886A JPH0770441B2 (en) | 1986-07-10 | 1986-07-10 | Solid electrolytic capacitor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6317515A JPS6317515A (en) | 1988-01-25 |
| JPH0770441B2 true JPH0770441B2 (en) | 1995-07-31 |
Family
ID=15750207
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP16221886A Expired - Lifetime JPH0770441B2 (en) | 1986-07-10 | 1986-07-10 | Solid electrolytic capacitor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0770441B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0770247B2 (en) * | 1988-03-11 | 1995-07-31 | 日本カーリット株式会社 | Heat resistant charge transfer complex |
| JP5108402B2 (en) | 2007-07-09 | 2012-12-26 | 株式会社オートネットワーク技術研究所 | Electrical junction box |
-
1986
- 1986-07-10 JP JP16221886A patent/JPH0770441B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPS6317515A (en) | 1988-01-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5790368A (en) | Capacitor and manufacturing method thereof | |
| JPH0770441B2 (en) | Solid electrolytic capacitor | |
| JPS61188806A (en) | Solid electrolyte | |
| JPS61188926A (en) | Solid electrolytic capacitor | |
| JPS61188925A (en) | Solid electrolytic capacitor | |
| JPH0482045B2 (en) | ||
| JPS63219120A (en) | Solid electrolytic capacitor | |
| JPH0455321B2 (en) | ||
| JPS6364319A (en) | Solid electrolytic capacitor | |
| JPS622519A (en) | Manufacture of solid electrolytic capacitor | |
| JPS63173314A (en) | Solid electrolytic capacitor | |
| JPS63172417A (en) | New solid electrolytic capacitor | |
| JPS61218129A (en) | Solid electrolytic capacitor | |
| JP3093810B2 (en) | Method for manufacturing solid electrolytic capacitor | |
| JPS61218127A (en) | Solid electrolytic capacitor | |
| JPS63217618A (en) | Solid electrolytic capacitor | |
| JPS61218128A (en) | Solid electrolytic capacitor | |
| JPS6232606A (en) | Solid state electrolytic capacitor | |
| JPH0410732B2 (en) | ||
| JPS61129807A (en) | Solid electrolytic capacitor | |
| KR0154126B1 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
| JPS6229125A (en) | Solid state electrolytic capacitor | |
| JPH02241014A (en) | Solid electrolytic capacitor | |
| JPH0666236B2 (en) | Solid electrolytic capacitor | |
| JPS61234023A (en) | Manufacture of solid electrolytic capacitor |