JPH0772196A - Static potential level measuring instrument - Google Patents
Static potential level measuring instrumentInfo
- Publication number
- JPH0772196A JPH0772196A JP24037593A JP24037593A JPH0772196A JP H0772196 A JPH0772196 A JP H0772196A JP 24037593 A JP24037593 A JP 24037593A JP 24037593 A JP24037593 A JP 24037593A JP H0772196 A JPH0772196 A JP H0772196A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- potential level
- electrostatic potential
- static potential
- sensor array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003068 static effect Effects 0.000 title abstract description 28
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 238000009826 distribution Methods 0.000 claims abstract description 15
- 238000013507 mapping Methods 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims abstract description 3
- 238000005421 electrostatic potential Methods 0.000 claims description 53
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 230000005611 electricity Effects 0.000 description 16
- 239000000758 substrate Substances 0.000 description 15
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 235000012431 wafers Nutrition 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 5
- 238000003379 elimination reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007786 electrostatic charging Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000009828 non-uniform distribution Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Elimination Of Static Electricity (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、静電位センサアレイを
用いて半導体ウェハやマスク板、液晶ディスプレイ用基
板等の被測定物表面の静電位レベルを測定してその分布
状態を表示する静電位レベル測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic potential sensor for measuring the electrostatic potential level on the surface of an object to be measured such as a semiconductor wafer, a mask plate and a liquid crystal display substrate by using an electrostatic potential sensor array and displaying the distribution state. Level measuring device.
【0002】[0002]
【従来の技術】近年の半導体や液晶ディスプレイの製造
技術の急速な進歩、特に集積回路技術の発展は、ICや
LSI,ディスプレイ等の高密度化、高集積化、省電力
化を可能にし、これらの電子部品の経済性向上、高速化
を可能にしている。これに伴い、素子間のパターンは微
細化の一途を辿っており、静電気による絶縁破壊や微粒
子の沈着汚染は品質管理上の大きな問題となりつつあ
る。2. Description of the Related Art In recent years, rapid progress in manufacturing technology of semiconductors and liquid crystal displays, particularly development of integrated circuit technology, has enabled high density, high integration and power saving of ICs, LSIs, displays, etc. It is possible to improve the economic efficiency and speed up electronic parts of. Along with this, the pattern between elements is becoming finer, and dielectric breakdown due to static electricity and deposition contamination of fine particles are becoming a major problem in quality control.
【0003】IC等の製造工場内のクリーンルームで
は、静電気帯電現象に起因する種々の障害が生じている
が、これらの障害は以下の5つに大別される。 (1)素子の破壊と性能劣化 (2)微粒子沈着による半導体ウェハ、マスク板、ガラ
ス基板等の表面汚染 (3)液晶ディスプレイの製造工程のうちスペーサ粒子
散布工程において、表面静電位の不均一性によるスペー
サ粒子の不均一分布 (4)上記(1)〜(3)に起因する素子の誤動作 (5)製品の歩留まり低下In a clean room in a factory for manufacturing ICs and the like, various troubles caused by the electrostatic charging phenomenon occur, and these troubles are roughly classified into the following five. (1) Destruction of elements and deterioration of performance (2) Surface contamination of semiconductor wafers, mask plates, glass substrates, etc. due to fine particle deposition (3) Non-uniformity of surface electrostatic potential in spacer particle spraying step in manufacturing process of liquid crystal display Non-uniform distribution of spacer particles due to (4) Malfunction of element due to (1) to (3) above (5) Product yield reduction
【0004】上述したような背景から、静電気の除去技
術はますます重要になってきており、本出願人も、平成
5年7月27日付けにて静電気除去装置の一つを提案し
た。この静電気除去の前提として、対象物表面の静電位
レベルを正確に測定し、評価することが必要不可欠であ
る。その理由を以下に詳述する。From the background as described above, the technology for removing static electricity is becoming more and more important, and the applicant of the present application proposed one of the static electricity removing devices as of July 27, 1993. As a prerequisite for this static electricity removal, it is essential to accurately measure and evaluate the electrostatic potential level on the surface of the object. The reason will be described in detail below.
【0005】まず、液晶ディスプレイ用基板は、1枚の
基板が1つのディスプレイユニットとなる場合が多く、
基板の一部における静電破壊や微粒子の沈着汚染はディ
スプレイユニット全体の不良を招く可能性がある。従っ
て、基板の表面全体から静電気を除去する必要があり、
そのためには基板表面の静電位レベルを測定し、静電位
分布を知る必要がある。First, in the case of a liquid crystal display substrate, one substrate often serves as one display unit.
Electrostatic destruction or deposition contamination of particles on a part of the substrate may lead to failure of the entire display unit. Therefore, it is necessary to remove static electricity from the entire surface of the substrate,
For that purpose, it is necessary to measure the electrostatic potential level on the substrate surface to know the electrostatic potential distribution.
【0006】一方、液晶ディスプレイは次第に大形化す
る傾向にあると共に、その製造工程では基板がライン上
を何度も移動することから、基板表面の一部の静電位レ
ベルを測定して除電したとしても、その部分は移動によ
って再び帯電し、結果的にある時点では基板表面の静電
位分布は不均一なものとなっている。この不均一性によ
り、スペーサ粒子散布工程においてスペーサ粒子が不均
一に分布してしまうおそれがある。従って、基板表面の
全域にわたって静電位レベルを正確に測定することが必
要であるが、製造ライン上を流れる大形のガラス基板1
枚に対し、個々に静電位センサを用いて数10ないし数
100ヵ所の静電位レベルを測定することは殆ど不可能
に近い。On the other hand, liquid crystal displays tend to become larger and larger, and the substrate moves many times on the line in the manufacturing process, so that the electrostatic potential level of a part of the substrate surface was measured to eliminate static electricity. Even then, that portion is recharged by the movement, and as a result, the electrostatic potential distribution on the substrate surface is nonuniform at a certain point. Due to this non-uniformity, the spacer particles may be non-uniformly distributed in the spacer particle spraying step. Therefore, it is necessary to accurately measure the electrostatic potential level over the entire surface of the substrate. However, the large glass substrate 1 flowing on the manufacturing line is required.
It is almost impossible to measure the electrostatic potential level at several tens to several hundreds of points by using the electrostatic potential sensor for each sheet.
【0007】また、半導体LSIの製造工程では、リソ
グラフィ工程が何回となく行われ、その都度、ガラスマ
スクパターンの転写が光露光により行われる。その際、
ガラスマスク板に静電気分布があると、光電位の部分に
粒子が付着し、マスク欠陥が生じるおそれがある。その
ため、マスク板の表面における静電位分布を求め、異常
がないことを確認した上で使用しなくてはならない。Further, in the manufacturing process of the semiconductor LSI, the lithography process is repeatedly performed, and the glass mask pattern is transferred by light exposure each time. that time,
If there is static electricity distribution on the glass mask plate, particles may adhere to the photopotential portion and a mask defect may occur. Therefore, it is necessary to obtain the electrostatic potential distribution on the surface of the mask plate and confirm that there is no abnormality before use.
【0008】更に、Si等の半導体ウェハの直径も年々
大きくなりつつあり、現在は8インチが主流であるが、
次世代には10インチまたは12インチのものが主流に
なると思われる。LSIの製造工程においても、半導体
ウェハ表面の除電は前述したような理由によって必要で
あり、更にはウェハの搬送ミスをなくすためにも不可欠
である。特に、ウェハ表面に部分的に膜や溝が形成され
ている場合、静電位レベルが部分的に高くなることがあ
るので、除電を確実に行うために静電位レベルを正確に
測定することが必要となる。Further, the diameter of semiconductor wafers such as Si is also increasing year by year, and currently 8 inches is the mainstream.
For the next generation, 10-inch or 12-inch ones will be the mainstream. In the LSI manufacturing process as well, static electricity removal on the surface of the semiconductor wafer is necessary for the reasons described above, and is also essential for eliminating wafer transfer mistakes. In particular, if a film or groove is partially formed on the wafer surface, the electrostatic potential level may increase partially, so it is necessary to accurately measure the electrostatic potential level in order to ensure static elimination. Becomes
【0009】ここで、第1表は、静電位レベルに対する
各種素子の耐圧を示している。液晶ディスプレイにもこ
れらの素子が使用されており、MOSFETのように耐
圧が10〜100〔V〕のものがアレイ状に配列されて
いるものが多い。従って、その表面全体にわたって静電
位レベルの監視及び除電が必要になる。Here, Table 1 shows the breakdown voltage of each element with respect to the electrostatic potential level. These elements are also used in a liquid crystal display, and in many cases, MOSFETs having a breakdown voltage of 10 to 100 [V] are arranged in an array. Therefore, electrostatic level monitoring and neutralization is required over the entire surface.
【0010】[0010]
【表1】 [Table 1]
【0011】上述したような必要性から、従来より、以
下に挙げるような種々の静電位レベル測定器が提供され
ている。Due to the above-mentioned needs, various electrostatic potential level measuring instruments as described below have been conventionally provided.
【0012】(a)回転セクタ形静電気測定器 この測定器は、静電界中に導体が置かれた場合に起こる
静電誘導現象を利用して静電位レベルを測定する。(A) Rotating sector static electricity measuring instrument This measuring instrument measures an electrostatic potential level by utilizing an electrostatic induction phenomenon that occurs when a conductor is placed in an electrostatic field.
【0013】(b)集電形静電気測定器 この測定器では、検出器を微弱な放射線源によって構成
することにより、その近傍にα粒子を照射して空気を
+,−にイオン化し、微弱電界を形成する。この状態で
被検出物である帯電物を微弱電界中に置くと、帯電電荷
とは反対極性のイオンが移動して電荷を運ぶ原理を応用
している。(B) Current collector type static electricity measuring device In this measuring device, the detector is constituted by a weak radiation source so that α particles are irradiated in the vicinity thereof to ionize air into + and −, and a weak electric field is generated. To form. In this state, when a charged object, which is an object to be detected, is placed in a weak electric field, the principle of applying the principle that ions having a polarity opposite to the charged charge move to carry the charge is applied.
【0014】(c)パルス同期形静電気測定器 この測定器は、被検出物である帯電物と感応電極との間
の距離を一定に保って両者を対向させ、帯電物から感応
電極に入る電束を周期的に変化させることにより、被測
定面の電位を交番電圧として取り出すものである。(C) Pulse-synchronized static electricity measuring device This measuring device is arranged so that the charged object, which is an object to be detected, and the sensitive electrode are kept at a constant distance from each other, and the two are opposed to each other. By periodically changing the bundle, the potential of the surface to be measured is taken out as an alternating voltage.
【0015】(d)誘導電位形静電気測定器 この測定器は、特に高電圧で微小電流しか検出できない
現象の静電位測定に用いられるもので、被測定物による
誘導電位を検出するものであるため、検出用電極として
は高度な絶縁が必要になる。(D) Inductive potential type static electricity measuring instrument This measuring instrument is used for electrostatic potential measurement of a phenomenon in which only a very small current can be detected especially at a high voltage, and it detects an induced potential by an object to be measured. However, a high degree of insulation is required for the detection electrode.
【0016】(e)振動容量形静電気測定器 この測定器は、周期的に容量が変化するコンデンサを入
力部に持つ変調形の電位計であり、零点ドリフトが少な
く、高感度であるという利点を持っている。(E) Vibration capacitance type static electricity measuring instrument This measuring instrument is a modulation type electrometer having a capacitor whose capacitance changes periodically and has an advantage that it has little zero-point drift and high sensitivity. have.
【0017】[0017]
【発明が解決しようとする課題】現在では、上記各種の
静電気測定器を用いて測定者が被測定物の各部の静電位
レベルを個別に測定し、これが許容範囲内にあるかどう
か等の評価を行っている。しかるに、この方法によると
静電位レベルの測定やそのデータ整理に多くの人手や時
間がかかり、測定誤差や整理ミスを生じやすいと共に、
製造ライン上において測定結果を除電処理に即座に反映
させる等の対応が難しい。従って、従来では事実上、製
造ラインにおける表面電位分布の評価や管理は不可能に
近いものであった。At present, the measurer individually measures the electrostatic potential level of each part of the object to be measured using the above-mentioned various static electricity measuring devices, and evaluates whether or not this is within an allowable range. It is carried out. However, according to this method, it takes a lot of manpower and time to measure the electrostatic potential level and organize the data, and measurement errors and misalignment are likely to occur.
It is difficult to take measures such as immediately applying the measurement result to the static elimination process on the manufacturing line. Therefore, conventionally, it was practically impossible to evaluate and manage the surface potential distribution on the manufacturing line.
【0018】本発明は上記問題点を解決するためになさ
れたもので、その目的とするところは、表面積が大きい
被測定物に対してその全域にわたる静電位レベルを自動
的に測定可能として製造ライン上における表面電位分布
の評価や管理を容易にした静電位レベル測定装置を提供
することにある。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to automatically measure the electrostatic potential level over the entire area of an object to be measured having a large surface area. An object of the present invention is to provide an electrostatic potential level measuring device that facilitates evaluation and management of the surface potential distribution above.
【0019】[0019]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、相対的に移動する被測定物の上方に配置
され、被測定物表面の多数の測定ポイントにおける静電
位レベルを測定する静電位センサアレイと、静電位セン
サアレイによる測定信号を処理し、ディスプレイ上に各
測定ポイントごとの静電位分布をマッピング表示する手
段とを備えたものである。In order to achieve the above object, the present invention is arranged above an object to be measured which moves relatively, and measures electrostatic potential levels at a large number of measurement points on the surface of the object to be measured. It is provided with an electrostatic potential sensor array and means for processing a measurement signal from the electrostatic potential sensor array and mapping and displaying the electrostatic potential distribution for each measurement point on the display.
【0020】[0020]
【作用】本発明では、被測定物に対して相対的に移動す
る静電位センサアレイにより、被測定物表面が平面的に
スキャンされ、多数の測定ポイントにおける静電位レベ
ルがそれぞれ測定される。これらの測定信号はマイクロ
コンピュータに入力され、しきい値との比較等を行った
後、ドット等を用いて表した各測定ポイントごとの静電
位分布状態がディスプレイ上にマッピング表示される。In the present invention, the surface of the object to be measured is planarly scanned by the electrostatic potential sensor array that moves relative to the object to be measured, and the electrostatic potential levels at a large number of measurement points are measured. These measurement signals are input to a microcomputer, and after comparison with a threshold value or the like, the electrostatic potential distribution state for each measurement point represented by using dots or the like is mapped and displayed on the display.
【0021】[0021]
【実施例】以下、図に沿って本発明の実施例を説明す
る。図1はこの実施例の静電位レベル測定装置の概略的
な構成を示している。図において、1は一定速度で移動
するベルトコンベアであり、このベルトコンベア1上に
は、表面各部の静電位レベル、言い換えれば表面の静電
位分布状態を測定するべき半導体ウェハやマスク板、液
晶ディスプレイ用基板等の被測定物2が載置されてい
る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of the electrostatic potential level measuring device of this embodiment. In the figure, reference numeral 1 denotes a belt conveyor which moves at a constant speed, and on the belt conveyor 1, a semiconductor wafer, a mask plate, a liquid crystal display for measuring the electrostatic potential level of each part of the surface, in other words, the electrostatic potential distribution state of the surface. An object to be measured 2 such as a substrate for measurement is placed.
【0022】ベルトコンベア1の上方には、例えば振動
容量形静電気測定器の静電位センサアレイ3が配置され
ている。なお、このセンサアレイ3は、他種の静電気測
定器のセンサアレイでも良い。上記センサアレイ3は一
軸スキャナ4に取付けられており、被測定物2が静止し
ているようなシステムでは、センサアレイ3が図の左右
方向に移動することにより被測定物2の全表面をスキャ
ンできるように配慮されている。Above the belt conveyor 1, for example, an electrostatic potential sensor array 3 of a vibration capacitance type static electricity measuring device is arranged. The sensor array 3 may be a sensor array of another type of static electricity measuring device. The sensor array 3 is attached to the uniaxial scanner 4, and in a system in which the object to be measured 2 is stationary, the sensor array 3 scans the entire surface of the object to be measured 2 by moving in the left-right direction in the drawing. It is considered to be possible.
【0023】5は測定装置本体であり、この本体5に
は、センサアレイ3による測定信号を処理し、その結果
をCRTディスプレイ6やプリンタ7に出力させると共
に、一軸スキャナ4の駆動制御を行うマイクロコンピュ
ータ(図示せず)が内蔵されている。また、測定結果は
通信インタフェイスを介して外部にデータ伝送できるよ
うになっており、測定結果を集中的に管理するほか、製
造工程におけるその後の除電工程に測定結果を利用する
ことができる。Reference numeral 5 denotes a measuring device main body. The main body 5 processes a measurement signal from the sensor array 3, outputs the result to a CRT display 6 or a printer 7, and controls the drive of the uniaxial scanner 4. A computer (not shown) is built in. Further, the measurement result can be transmitted to the outside through a communication interface, so that the measurement result can be centrally managed, and the measurement result can be used in the subsequent static elimination step in the manufacturing process.
【0024】次に、この実施例の動作を説明すると、被
測定物2の表面各部の静電位レベルは、静電位センサア
レイ3と被測定物2との相対的な移動速度と、アレイ3
の個々の位置に応じて検出される。例えば、被測定物2
が40〔cm〕角のガラス基板であってセンサアレイ3
のピッチが20〔mm〕、移動方向の検出範囲が20
〔mm〕であり、移動速度が40〔mm/sec〕であ
るとすれば、少なくとも10〔sec〕で400ポイン
トの静電位レベルを測定することができる。これらの測
定データは、本体5内のメモリに記憶され、以下に述べ
るようなマッピング処理が実行される。Next, the operation of this embodiment will be described. The electrostatic potential level of each part of the surface of the object to be measured 2 is the relative moving speed between the electrostatic potential sensor array 3 and the object to be measured 2 and the array 3.
Detected according to the individual position of the. For example, DUT 2
Is a 40 cm square glass substrate and the sensor array 3
Has a pitch of 20 [mm] and a moving range detection range of 20
If the moving speed is [mm] and the moving speed is 40 [mm / sec], the electrostatic potential level of 400 points can be measured at least 10 [sec]. These measurement data are stored in the memory in the main body 5, and the mapping process as described below is executed.
【0025】すなわち、各測定ポイントの静電位レベル
のしきい値を例えば±1〔kV〕と設定しておき、測定
した静電位レベルがしきい値を越える場合には、CRT
ディスプレイ6内のその測定ポイントにドットを表示さ
せることにより静電位レベルをマッピングする。図2は
このマッピング例である。そして、このドットの数が全
体で所定値(例えば100個)を越える場合には被測定
物2が著しく帯電していると判断し、アラーム信号を出
力させて次の製造工程に進むか否かの判断を待つように
する。That is, the threshold value of the electrostatic potential level at each measurement point is set to, for example, ± 1 [kV], and when the measured electrostatic potential level exceeds the threshold value, the CRT is set.
The electrostatic potential level is mapped by displaying a dot at that measurement point in the display 6. FIG. 2 is an example of this mapping. When the total number of dots exceeds a predetermined value (for example, 100), it is determined that the DUT 2 is significantly charged, and an alarm signal is output to determine whether to proceed to the next manufacturing process. Wait for the decision.
【0026】なお、上記マッピング結果は、必要に応じ
てプリンタ7によりハードコピーとして出力させること
もできる。また、測定ポイント数やマッピングのための
しきい値、アラーム信号を出力させるためのドット数等
は任意に設定可能である。各測定ポイントの静電位レベ
ルは、例えば1〔kV〕を越えるごとにドット数を一つ
ずつ増やすようにしても良い。これにより、ドットが密
である部分は特に静電位レベルが高いことを視覚的に認
識できるようになる。The mapping result can be output as a hard copy by the printer 7 if necessary. Further, the number of measurement points, the threshold value for mapping, the number of dots for outputting an alarm signal, etc. can be set arbitrarily. The electrostatic potential level at each measurement point may be increased by one dot each time it exceeds 1 [kV], for example. As a result, it becomes possible to visually recognize that the electrostatic potential level is particularly high in the portion where the dots are dense.
【0027】[0027]
【発明の効果】以上述べたように本発明によれば、被測
定物に対して相対的に移動する静電位センサアレイによ
り被測定物表面が平面的にスキャンされ、多数の測定ポ
イントにおける静電位レベルがそれぞれ測定されると共
に、各測定ポイントごとの静電位分布状態がディスプレ
イ上にマッピング表示されるため、比較的大形の半導体
ウェハや液晶ディスプレイ用基板等についても、短時間
かつ自動的に表面全域の静電位レベルないし静電位分布
を検出することができる。従って、帯電状態の正確な評
価が可能になり、その後の除電工程も速やかに実行でき
るようになって製造ラインへの導入も容易になる。As described above, according to the present invention, the surface of the object to be measured is planarly scanned by the electrostatic potential sensor array that moves relative to the object to be measured, and electrostatic potentials at a large number of measurement points are obtained. As each level is measured and the electrostatic potential distribution state at each measurement point is mapped on the display, even relatively large semiconductor wafers and substrates for liquid crystal displays can be automatically surfaced in a short time. It is possible to detect the electrostatic potential level or electrostatic potential distribution over the entire area. Therefore, the charged state can be accurately evaluated, and the subsequent static elimination step can be quickly performed, and the introduction to the manufacturing line is facilitated.
【図1】本発明の一実施例を示す概略的な構成図であ
る。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
【図2】静電位分布を示すマッピングの一例である。FIG. 2 is an example of mapping showing electrostatic potential distribution.
1 ベルトコンベア 2 被測定物 3 静電位センサアレイ 4 一軸スキャナ 5 測定装置本体 6 CRTディスプレイ 7 プリンタ 1 Belt Conveyor 2 Object to be Measured 3 Electrostatic Position Sensor Array 4 Uniaxial Scanner 5 Measuring Device Main Body 6 CRT Display 7 Printer
Claims (1)
され、被測定物表面の多数の測定ポイントにおける静電
位レベルを測定する静電位センサアレイと、 静電位センサアレイによる測定信号を処理し、ディスプ
レイ上に各測定ポイントごとの静電位分布をマッピング
表示する手段と、 を備えたことを特徴とする静電位レベル測定装置。1. An electrostatic potential sensor array arranged above a relatively moving object to be measured, for measuring electrostatic potential levels at a large number of measurement points on the surface of the object to be measured, and processing signals measured by the electrostatic potential sensor array. An electrostatic potential level measuring device comprising means for mapping and displaying the electrostatic potential distribution at each measurement point on the display.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24037593A JPH0772196A (en) | 1993-09-01 | 1993-09-01 | Static potential level measuring instrument |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24037593A JPH0772196A (en) | 1993-09-01 | 1993-09-01 | Static potential level measuring instrument |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0772196A true JPH0772196A (en) | 1995-03-17 |
Family
ID=17058561
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP24037593A Pending JPH0772196A (en) | 1993-09-01 | 1993-09-01 | Static potential level measuring instrument |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0772196A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001013185A (en) * | 1999-06-29 | 2001-01-19 | Hugle Electronics Inc | Electrification distribution measurement device |
| JP2004301721A (en) * | 2003-03-31 | 2004-10-28 | Sharp Corp | Judging device, judging method, judging program for realizing the judging method, and computer-readable recording medium recording the program |
| JPWO2003007330A1 (en) * | 2001-07-12 | 2004-11-04 | 株式会社日立製作所 | Sample charging measurement method and charged particle beam device |
| JP2006513429A (en) * | 2003-01-18 | 2006-04-20 | ロールス・ロイス・ピーエルシー | Electrostatic sensor |
| JP2010156682A (en) * | 2008-12-04 | 2010-07-15 | Kinki Univ | Potential measuring instrument for live object and measurement method using the same |
| JPWO2017183304A1 (en) * | 2016-04-21 | 2019-02-21 | 国立研究開発法人産業技術総合研究所 | Static electricity distribution measuring device |
-
1993
- 1993-09-01 JP JP24037593A patent/JPH0772196A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001013185A (en) * | 1999-06-29 | 2001-01-19 | Hugle Electronics Inc | Electrification distribution measurement device |
| JPWO2003007330A1 (en) * | 2001-07-12 | 2004-11-04 | 株式会社日立製作所 | Sample charging measurement method and charged particle beam device |
| JP2009032703A (en) * | 2001-07-12 | 2009-02-12 | Hitachi Ltd | Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope |
| JP2009200054A (en) * | 2001-07-12 | 2009-09-03 | Hitachi Ltd | Electron beam adjusting method, charged particle optical system control device and scanning electron microscope |
| JP2006513429A (en) * | 2003-01-18 | 2006-04-20 | ロールス・ロイス・ピーエルシー | Electrostatic sensor |
| JP2004301721A (en) * | 2003-03-31 | 2004-10-28 | Sharp Corp | Judging device, judging method, judging program for realizing the judging method, and computer-readable recording medium recording the program |
| JP2010156682A (en) * | 2008-12-04 | 2010-07-15 | Kinki Univ | Potential measuring instrument for live object and measurement method using the same |
| JPWO2017183304A1 (en) * | 2016-04-21 | 2019-02-21 | 国立研究開発法人産業技術総合研究所 | Static electricity distribution measuring device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6069017A (en) | Method for real-time in-line testing of semiconductor wafers | |
| JP2954492B2 (en) | Method for Determining the Life Constant of Surface Recombination of Minority Carriers in a Sample of Semiconductor Materials | |
| JPH08236591A (en) | Method and equipment for nontouch corona oxide semiconductorq-v movement electric charge measurement | |
| CN101517701B (en) | Substrate-like particle sensor | |
| KR100546303B1 (en) | Contact hole monitoring method of integrated circuit device using corona charge | |
| US8275564B2 (en) | Patterned wafer inspection system using a non-vibrating contact potential difference sensor | |
| US7521915B2 (en) | Wafer bevel particle detection | |
| KR100351694B1 (en) | Apparatus for measuring electric charge | |
| CN103221831A (en) | Method and apparatus for measuring electrostatic charge | |
| US6911350B2 (en) | Real-time in-line testing of semiconductor wafers | |
| JP2008304452A (en) | Semiconductor inspection system and apparatus utilizing non-vibrating contact potential difference sensor and controlled illumination | |
| JP2010243494A (en) | Contactless system and method for electrostatic sensing with high spatial resolution | |
| US6915232B2 (en) | Film thickness measuring method, relative dielectric constant measuring method, film thickness measuring apparatus, and relative dielectric constant measuring apparatus | |
| JPH0772196A (en) | Static potential level measuring instrument | |
| KR101028190B1 (en) | Sensor member, apparatus and method for inspecting printed conductor structures, method for manufacturing sensor member | |
| JPH0794562A (en) | Fine pattern measuring device | |
| JP2001013185A (en) | Electrification distribution measurement device | |
| KR100697554B1 (en) | How to measure critical dimensions | |
| JP2007240393A (en) | Surface electrometer and surface potential measuring method | |
| JPH11121320A (en) | Surface position detection method and surface position detection device | |
| JP2004279081A (en) | Capacitance sensor type measuring device | |
| TW201344821A (en) | Wafer surface charge monitoring | |
| US7271593B2 (en) | Contactless system and method for detecting defective points on a chargeable surface | |
| US6850050B2 (en) | Reticle inspection | |
| Henley et al. | A high speed flat panel in-process test system for TFT array using electro-optic effects |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020604 |