[go: up one dir, main page]

JPH0772346A - Optical multiplexer / demultiplexer - Google Patents

Optical multiplexer / demultiplexer

Info

Publication number
JPH0772346A
JPH0772346A JP21856193A JP21856193A JPH0772346A JP H0772346 A JPH0772346 A JP H0772346A JP 21856193 A JP21856193 A JP 21856193A JP 21856193 A JP21856193 A JP 21856193A JP H0772346 A JPH0772346 A JP H0772346A
Authority
JP
Japan
Prior art keywords
demultiplexer
optical
optical multiplexer
optical fiber
multiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21856193A
Other languages
Japanese (ja)
Inventor
Tetsuya Suga
哲也 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP21856193A priority Critical patent/JPH0772346A/en
Publication of JPH0772346A publication Critical patent/JPH0772346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)

Abstract

(57)【要約】 【目的】本発明は、ファイバ形の光合分波器の各動作波
長における波長分離度差を低減し、広バンドパスを実現
することを目的とする。 【構成】光ファイバ1と光ファイバ1’とが並列密着さ
れ、中間部を融着延伸された光合分波器は、融着延伸部
2での光ファイバ1と光ファイバ1’の伝搬定数が異な
る。
(57) [Summary] [Object] An object of the present invention is to realize a wide bandpass by reducing the difference in wavelength separation between operating wavelengths of a fiber type optical multiplexer / demultiplexer. [Structure] An optical multiplexer / demultiplexer in which an optical fiber 1 and an optical fiber 1 ′ are closely adhered in parallel, and an intermediate portion is fusion-stretched, has a propagation constant of the optical fiber 1 and the optical fiber 1 ′ at the fusion-spreading portion 2. different.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信や光計測等に用
いられるファイバ形光合分波器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber type optical multiplexer / demultiplexer used for optical communication and optical measurement.

【0002】[0002]

【従来技術およびその課題】光合分波器の分波特性を表
すパラメータとして波長分離度がある。代表的な定義と
しては、各出射端において伝達を意図する波長と伝達を
意図しない波長のパワーの比をとって、最も小さい値を
その光合分波器の波長分離度としている。
2. Description of the Related Art A wavelength demultiplexing degree is a parameter representing the demultiplexing characteristic of an optical multiplexer / demultiplexer. As a typical definition, the ratio of the power of the wavelength intended for transmission and the power of the wavelength not intended for transmission at each emission end is taken, and the smallest value is taken as the wavelength separation degree of the optical multiplexer / demultiplexer.

【0003】従来は、伝搬定数が等しい同一ファイバを
並列密着し、中間部を加熱融着して、さらに延伸するも
のであるが、動作波長間の波長分離度に2乃至4デシベ
ル以上の差が生じていた。このため、高分離度、広バン
ドパスの光合分波器を作製することが困難であった。こ
のうち、分離度の向上のみを実現する手法としては、光
合分波器を2段にカスケードに組み合せる方法や光合分
波器の途中に薄膜フィルタを微細加工により埋め込む方
法が提案されていたが、根本的な特性改善を図るもので
はなかった。
Conventionally, the same fibers having the same propagation constant are closely adhered in parallel, the intermediate portion is heat-fused and further stretched. However, there is a difference of 2 to 4 decibels or more in the wavelength separation between the operating wavelengths. It was happening. Therefore, it has been difficult to fabricate an optical multiplexer / demultiplexer with high separation and wide bandpass. Among them, as a method of improving only the degree of separation, there has been proposed a method of combining optical multiplexers / demultiplexers in a two-stage cascade or a method of embedding a thin film filter in the middle of the optical multiplexer / demultiplexer by fine processing. , It was not intended to improve the characteristics fundamentally.

【0004】本発明は、上述の従来技術の課題を解決す
るために、各動作波長における波長分離度を略等しく、
平均化すると共に、そのピークの波形をなだらかにする
ことで、高分離度かつ広バンドパスの光合分波器を提供
することである。
In order to solve the above-mentioned problems of the prior art, the present invention makes the wavelength separation at each operating wavelength substantially equal,
It is to provide an optical multiplexer / demultiplexer with high resolution and wide bandpass by averaging and smoothing the waveform of its peak.

【0005】[0005]

【課題を解決するための手段】本発明の光合分波器は、
少なくとも2本の光ファイバが並列配置され、融着延伸
部が形成されている光合分波器において、前記2本の光
ファイバ同士の融着延伸部における伝搬定数が異なるこ
とを特徴とする光合分波器。
The optical multiplexer / demultiplexer of the present invention comprises:
In an optical multiplexer / demultiplexer in which at least two optical fibers are arranged in parallel and a fusion splicing portion is formed, the two optical fibers have different propagation constants in the fusion splicing portion. Wave instrument.

【0006】[0006]

【作用】融着延伸部において光ファイバ相互の伝搬定数
に差が生じて、各動作波長における出射特性の波長間差
が低減するために、各動作波長の波長分離度値の差が低
減すると共に波長分離度のピーク波形がなだらかにな
り、高分離度かつ広バンドパスの光合分波器の製造が可
能になる。
In the fusion splicing section, the propagation constants of the optical fibers differ from each other, and the difference in the emission characteristics between wavelengths at each operating wavelength is reduced. Therefore, the difference in the wavelength separation degree value at each operating wavelength is reduced. The peak waveform of the wavelength separation becomes gentle, and it becomes possible to manufacture an optical multiplexer / demultiplexer with high separation and wide bandpass.

【0007】[0007]

【実施例】以下図面を用いて本発明の一実施例を説明す
る。図1は本発明の一実施例の光合分波器の斜視図で、
同一の2本の光ファイバ1、1’が中間部を融着され延
伸されて融着延伸部2を形成されている。光ファイバ
1’は予め中間部の伝搬定数が変えられており、融着延
伸部2において両ファイバ1、1’の伝搬定数は異な
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of an optical multiplexer / demultiplexer according to an embodiment of the present invention.
The same two optical fibers 1 and 1'are fused and stretched at their intermediate portions to form a fused stretched portion 2. In the optical fiber 1 ', the propagation constant of the intermediate portion is changed in advance, and the propagation constants of both fibers 1, 1'in the fusion splicing section 2 are different.

【0008】図2(a)は図1に示す本発明の光合分波
器の出射特性を示しており、長波長側と短波長側の損失
で差異が低減し、波形もなだらかになっている。比較の
ために同一の2本の光ファイバを融着延伸した光合分波
器であって、融着延伸部において両光ファイバ相互の伝
搬定数に差がないものの出射特性を図2(b)に示す。
同図(b)からわかるように従来の光合分波器の出射特
性は図2(a)に示す本発明のものよりも、長波長側の
出射パワーの損失が短波長に比較して小さく、波形も急
峻である。
FIG. 2A shows the emission characteristics of the optical multiplexer / demultiplexer according to the present invention shown in FIG. 1. The difference between the loss on the long wavelength side and the loss on the short wavelength side is reduced, and the waveform is also smooth. . For comparison, it is an optical multiplexer / demultiplexer in which two identical optical fibers are fusion-stretched, and there is no difference in the propagation constants of the two optical fibers at the fusion-stretching portion. Show.
As can be seen from FIG. 2B, the emission characteristics of the conventional optical multiplexer / demultiplexer have a smaller loss of emission power on the long wavelength side than those of the present invention shown in FIG. The waveform is also steep.

【0009】図3(a)〜(e)は本発明の光合分波器
の製造方法を示す第1〜第5実施例である。同図(a)
は予め光ファイバ1’の中間部を押し合わせて太径化
し、光ファイバ1と太径化部を融着延伸させるものであ
る。同図(b)は予め光ファイバ1’の中間部をプリ延
伸して細径化し、光ファイバ1と細径化部を融着延伸さ
せるものである。同図(c)は予め光ファイバ1,1’
の中間部を太径化し、並列密着時に両ファイバを長手方
向にずらして密着部におけるクラッド径に差を持たせる
ようにして、この部分を融着延伸するものである。同図
(d)は予め光ファイバ1,1’の中間部を細径化し、
並列密着時に両ファイバを長手方向にずらして密着部に
おけるクラッド径に差を持たせるようにして、この部分
を融着延伸するものである。同図(e)は予め光ファイ
バ1の中間部を細径化し、予め光ファイバ1’の中間部
を太径化し、両ファイバを並列密着して細径化部と太径
化部を密着してこの部分を融着延伸するものである。
FIGS. 3A to 3E are first to fifth embodiments showing a method of manufacturing the optical multiplexer / demultiplexer of the present invention. The same figure (a)
Is to press the intermediate portion of the optical fiber 1'in advance to increase the diameter, and to fuse and extend the optical fiber 1 and the enlarged diameter portion. In the same figure (b), the intermediate portion of the optical fiber 1'is pre-stretched to reduce the diameter, and the optical fiber 1 and the diameter-reduced portion are fused and stretched. The figure (c) shows the optical fibers 1, 1'in advance.
The diameter of the intermediate portion is increased, and both fibers are shifted in the longitudinal direction during parallel adhesion so that the clad diameters in the adhesion portion have a difference, and this portion is fusion-stretched. In the same figure (d), the diameter of the middle part of the optical fibers 1 and 1'is reduced in advance,
When closely contacting in parallel, both fibers are shifted in the longitudinal direction so as to have a difference in the clad diameter at the contact portion, and this portion is fused and stretched. In the same figure (e), the middle part of the optical fiber 1 is thinned in advance, the middle part of the optical fiber 1'is thickened in advance, and both fibers are closely contacted in parallel so that the thinned part and the thickened part are closely contacted. The lever portion is fused and stretched.

【0010】本発明の製造方法は、図3(a)〜(e)
のように略同一の伝搬定数の光ファイバを融着または延
伸工程の前にあらかじめ光ファイバの径を増減させる処
理を行った光ファイバを用いる他に、コア径、クラッド
径、コア屈折率、クラッド屈折率等の光ファイバ固有の
パラメータが最初から異なる光ファイバを用いてもよ
い。また、加熱によって光ファイバ中間部のコアドーパ
ントを熱拡散させてコアを拡大させたもの、あるいは、
中間部にドーパントをドーピングした光ファイバを用い
てもよい。
The manufacturing method of the present invention is shown in FIGS.
In addition to using an optical fiber that has been subjected to a process of increasing or decreasing the diameter of the optical fiber in advance before the fusion or drawing process as described above, the core diameter, the clad diameter, the core refractive index, the clad It is also possible to use an optical fiber in which the parameters peculiar to the optical fiber such as the refractive index are different from the beginning. In addition, the core dopant in the middle part of the optical fiber is thermally diffused by heating to expand the core, or
You may use the optical fiber which doped the dopant in the intermediate part.

【0011】なお、上述の実施例は2本の光ファイバを
用いた光合分波器についてのものであるが、本発明はこ
れに限定されず、光ファイバの数を増やしてもよい。
Although the above-described embodiment is directed to an optical multiplexer / demultiplexer using two optical fibers, the present invention is not limited to this, and the number of optical fibers may be increased.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば光
合分波器の特性を制限していた動作波長間の特性差を容
易に改善でき、高性能な光合分波器を単体で構成するこ
とができる。
As described above, according to the present invention, it is possible to easily improve the characteristic difference between the operating wavelengths, which has limited the characteristics of the optical multiplexer / demultiplexer, and to configure a high-performance optical multiplexer / demultiplexer as a single unit. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す光合分波器の斜視図で
ある。
FIG. 1 is a perspective view of an optical multiplexer / demultiplexer showing an embodiment of the present invention.

【図2】(a)は本発明の光合分波器の出射特性図であ
る。(b)は従来の光合分波器の出射特性図である。
FIG. 2A is an emission characteristic diagram of the optical multiplexer / demultiplexer of the present invention. (B) is an emission characteristic diagram of a conventional optical multiplexer / demultiplexer.

【図3】(a)〜(e)は本発明の光合分波器の製造に
おいて、光ファイバの伝搬定数を異ならせる方法を示す
ための第1〜第5の実施例で、2本の光ファイバの形状
図である。
3 (a) to 3 (e) are first to fifth examples for showing a method of making the propagation constant of an optical fiber different in manufacturing the optical multiplexer / demultiplexer of the present invention. It is a shape figure of a fiber.

【符号の説明】[Explanation of symbols]

1,1’ 光ファイバ 2 融着延伸部 A,B 出力ポート 1, 1'optical fiber 2 fusion splicing section A, B output port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも2本の光ファイバが並列配置さ
れ、融着延伸部が形成されている光合分波器において、
前記2本の光ファイバ同士の融着延伸部における伝搬定
数が異なることを特徴とする光合分波器。
1. An optical multiplexer / demultiplexer in which at least two optical fibers are arranged in parallel and a fusion extending portion is formed,
An optical multiplexer / demultiplexer, wherein the two optical fibers have different propagation constants in the fusion splicing portion.
JP21856193A 1993-09-02 1993-09-02 Optical multiplexer / demultiplexer Pending JPH0772346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21856193A JPH0772346A (en) 1993-09-02 1993-09-02 Optical multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21856193A JPH0772346A (en) 1993-09-02 1993-09-02 Optical multiplexer / demultiplexer

Publications (1)

Publication Number Publication Date
JPH0772346A true JPH0772346A (en) 1995-03-17

Family

ID=16721877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21856193A Pending JPH0772346A (en) 1993-09-02 1993-09-02 Optical multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JPH0772346A (en)

Similar Documents

Publication Publication Date Title
CA1294805C (en) Optical fused couplers
CN109870767B (en) Grating type single-fiber three-way multiplexer
JP4047232B2 (en) Mode converter for high-order mode fiber
JPH02167506A (en) Coupling without dependence on wavelength
TWI300858B (en) Method and apparatus for tapering an optical waveguide
US7267495B2 (en) Connection method and connecting structure for photonic crystal fiber
EP0416537B1 (en) Optical fiber coupler
KR20030013324A (en) Optical fiber having a light converging function and method of manufacturing the same
US5095516A (en) Wide-band optical fiber coupler and its manufacturing method
US5101462A (en) Wide-band optical fiber coupler and its manufacturing method
JPH0389204A (en) Mono-polarized mode optical fiber and manufacture thereof
JPH0772346A (en) Optical multiplexer / demultiplexer
US6832030B2 (en) Non-sinusoidal optical fiber filters and method of making the same
CA2022367C (en) Simplified wdm fused fiber coupler design
JPH10176903A (en) Mach-Zehnder interferometer apparatus and manufacturing method thereof
EP0510513B1 (en) Optical fiber coupler and its manufacturing method
JP3392275B2 (en) Broadband optical fiber coupler
JP2749842B2 (en) Multiplexer / demultiplexer
JP3101958B2 (en) Broadband coupler and method of manufacturing the same
JP2805526B2 (en) Optical fiber core eccentricity method
JP2805533B2 (en) Fiber fusion type optical branch coupler
JPH08211247A (en) Wavelength resonance fusion-type fiber coupler
JPH1039163A (en) Optical waveguide type diffraction grating
JP2866487B2 (en) Optical fiber coupler
JPH08262242A (en) Flexible optical fiber bundle