[go: up one dir, main page]

JPH0777129B2 - Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same - Google Patents

Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same

Info

Publication number
JPH0777129B2
JPH0777129B2 JP63180047A JP18004788A JPH0777129B2 JP H0777129 B2 JPH0777129 B2 JP H0777129B2 JP 63180047 A JP63180047 A JP 63180047A JP 18004788 A JP18004788 A JP 18004788A JP H0777129 B2 JPH0777129 B2 JP H0777129B2
Authority
JP
Japan
Prior art keywords
active material
nickel
nickel hydroxide
zinc
nickel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63180047A
Other languages
Japanese (ja)
Other versions
JPH0230061A (en
Inventor
政彦 押谷
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63180047A priority Critical patent/JPH0777129B2/en
Priority to DE68917045T priority patent/DE68917045T2/en
Priority to EP89303952A priority patent/EP0353837B1/en
Priority to US07/358,118 priority patent/US4985318A/en
Publication of JPH0230061A publication Critical patent/JPH0230061A/en
Priority to US08/005,157 priority patent/USRE34752E/en
Publication of JPH0777129B2 publication Critical patent/JPH0777129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケル電極用活物質及びニッケル電極とこ
れを用いたアルカリ電池に関するものである。
TECHNICAL FIELD The present invention relates to an active material for a nickel electrode, a nickel electrode, and an alkaline battery using the same.

従来技術とその問題点 一般に用いられているアルカリ電池は、焼結式電池と称
し、ニッケル粉末を穿孔鋼板等に焼結した微孔基板に水
酸化ニッケルを充填させたものである。この方式の電極
は、充填工程を何度も繰り返し非常に煩雑であり、コス
トが高い。しかも、用いる基板の多孔度が制限されるた
め、活物質の充填密度が低く、電極のエネルギー密度40
0mAh/cc程度のものしかできない。
2. Description of the Related Art Alkaline batteries generally used are referred to as "sintered batteries", in which nickel hydroxide is filled in a microporous substrate obtained by sintering nickel powder into a perforated steel plate or the like. This type of electrode is very complicated because the filling process is repeated many times, and the cost is high. Moreover, since the porosity of the substrate used is limited, the packing density of the active material is low and the energy density of the electrode is 40%.
Only about 0mAh / cc is possible.

これを改良する試みとして、非焼結式電極の開発が広く
行われている。例えば、水酸化コバルト被覆水酸化ニッ
ケル粉末に導電性付加剤として、20数wt%のグラファイ
ト粉末を混合し、シート状にした後、集電体であるニッ
ケル板に圧着して電極とする。この導電性付加剤そのも
のは、電極の容量に寄与しないため容量密度が低下し、
且つグラファイトの分解による炭酸根が多量に生成す
る。このために、密閉形ニッケルカドミウム電池の如
く、電解液量の少ない電池には使用できない。上記欠点
を克服するべく、95%の高多孔度の金属繊維基板を用い
たペースト式ニッケル電極が実用化されつつある。該電
極は、硫酸ニッケル塩水溶液と水酸化ナトリウム水溶液
から作成された水酸化ニッケル粉末活物質に、活物質間
導電性ネットワークを形成するCoO粉末を添加し、カル
ボキシメチルセルローズを水に溶解した粘調液を加えペ
ースト状態で繊維基板に充填して作成される。このもの
は、焼結式電極に比べ安価であり、エネルギー密度も50
0mAh/ccと高い。
Non-sintered electrodes have been widely developed as an attempt to improve this. For example, cobalt hydroxide-coated nickel hydroxide powder is mixed with 20% by weight of graphite powder as a conductive additive to form a sheet, which is then pressure-bonded to a nickel plate serving as a current collector to form an electrode. This conductive additive itself does not contribute to the capacity of the electrode, so the capacity density decreases,
In addition, a large amount of carbonate radicals are generated due to the decomposition of graphite. For this reason, it cannot be used in a battery with a small amount of electrolyte, such as a sealed nickel-cadmium battery. In order to overcome the above drawbacks, a paste type nickel electrode using a metal fiber substrate having a high porosity of 95% is being put to practical use. The electrode was prepared by adding nickel sulfate powder active material made from nickel sulfate aqueous solution and sodium hydroxide aqueous solution to a CoO powder forming an inter-active material conductive network, and dissolving carboxymethyl cellulose in water. It is prepared by adding a liquid and filling a fiber substrate in a paste state. This is cheaper than a sintered electrode and has an energy density of 50.
High at 0 mAh / cc.

しかし、近年のポータブルエレクトロニクス機器の軽量
化に伴い、市場ニーズとして600mAh/cc程度の高エネル
ギー密度が要求されている。これに対応するためには、
基板の多孔度に限界があることから、水酸化ニッケル粉
末そのものを高密度化する必要がある。高密度水酸化ニ
ッケル粉末は、鉄板のパーカライジング処理の原料の一
部として用いられている。その製造法は硝酸あるいは硫
酸ニッケルを弱塩基性のアンモニア水溶液中に溶解さ
せ、ニッケルアンミン錯イオンとして安定化させ、水酸
化ナトリウム水溶液を加えながら、粒子内部に空孔が発
達しないように徐々に水酸化ニッケルを析出させるもの
である。
However, as the weight of portable electronic devices has been reduced in recent years, a high energy density of about 600 mAh / cc is required as a market need. To address this,
Due to the limited porosity of the substrate, it is necessary to densify the nickel hydroxide powder itself. The high-density nickel hydroxide powder is used as a part of the raw material for the parkarizing treatment of iron plates. The production method is to dissolve nitric acid or nickel sulfate in a weakly basic aqueous ammonia solution to stabilize it as a nickel ammine complex ion, and add sodium hydroxide aqueous solution while gradually adding water so that pores do not develop inside the particles. This is to deposit nickel oxide.

この方式は、従来の中和法の如き、無秩序な析出を行な
わないために、粒界が少なく(細孔容積が少ない)結晶
性の高い高密度な水酸化ニッケルである。
This system is a high-density nickel hydroxide having high crystallinity with few grain boundaries (poor volume of pores) because it does not perform disordered precipitation unlike the conventional neutralization method.

しかしこの特異な物性故に、この粉末をそのまゝ電池用
活物質材料として用いるには、いくつかの問題点を有し
ている。
However, due to this peculiar physical property, there are some problems in using this powder as an active material for a battery.

例えば、水酸化ニッケル電極の充放電反応は、水酸化ニ
ッケルの結晶内をプロトンが自由に移動することによっ
て起る。ところが、水酸化ニッケルの高密度化に伴う結
晶の緻密性により、結晶内のプロトンの移動の自由さが
束縛される。しかも比表面積の減少により電流密度が増
大し、2段放電及び電極の膨潤と言った放電並びに寿命
特性の悪化原因あるいは利用率低下原因となる高次酸化
物γ−NiOOHが多量に生成するようになる。電極の致命
的因子であるニッケル電極のγ−NiOOH生成に伴う膨潤
機構は、高密度β−NiOOHから低密度γ−NiOOHへの密度
変化に起因するものである。γ−NiOOHの生成防止に有
効な手段として、本発明者は既に少量のカドミウムの水
酸化ニッケルへの固溶体添加を見い出したが、公害の見
地よりカドミウム以外の有効な添加剤が望まれている。
For example, the charge / discharge reaction of the nickel hydroxide electrode occurs due to free movement of protons in the nickel hydroxide crystal. However, due to the denseness of the crystal due to the densification of nickel hydroxide, the freedom of movement of protons in the crystal is restricted. In addition, the current density increases due to the decrease in the specific surface area, and a large amount of higher-order oxide γ-NiOOH is formed, which causes discharges such as two-stage discharge and electrode swelling and causes deterioration of life characteristics or a decrease in utilization rate. Become. The swelling mechanism associated with the formation of γ-NiOOH at the nickel electrode, which is a fatal factor of the electrode, is due to the density change from high density β-NiOOH to low density γ-NiOOH. As an effective means for preventing the formation of γ-NiOOH, the present inventor has already found that a small amount of cadmium is added as a solid solution to nickel hydroxide, but from the viewpoint of pollution, effective additives other than cadmium are desired.

発明の目的 本発明は、水酸化ニッケル粉末をより高密度化し、更に
高密度化に伴うγ−NiOOHの生成を毒性の少ない添加剤
によって防止し、長寿命化すると共に、活物質の利用率
を向上させたニッケル電極用活物質及びニッケル電極と
これを用いたアルカリ電池を提供することを目的とす
る。
OBJECT OF THE INVENTION The present invention densifies nickel hydroxide powder to a higher density, prevents the formation of γ-NiOOH with further densification by a less toxic additive, and prolongs the service life, while increasing the utilization rate of the active material. It is an object of the present invention to provide an improved active material for a nickel electrode, a nickel electrode, and an alkaline battery using the same.

発明の構成 本発明の第1は、亜鉛を結晶中に固溶状態で含有し、且
つ内部細孔半径が30Å以下で、全細孔容積が0.05ml/g以
下である水酸化ニッケルを主体としたニッケル電極用活
物質である。
The first aspect of the present invention is mainly composed of nickel hydroxide containing zinc in a solid solution state in a crystal, having an internal pore radius of 30Å or less and a total pore volume of 0.05 ml / g or less. It is an active material for nickel electrode.

本発明の第2は、水酸化ニッケル及び少量の亜鉛の硫酸
塩水溶液を出発原料とし、苛性ソーダもしくは苛性カリ
ウム及び硫酸アンモニウムによりPH11〜13に制御された
水溶液中で析出させることにより、亜鉛を結晶中に固溶
状態で含有し、且つ内部細孔半径が30Å以下で、全細孔
容積が0.05ml/g以下である水酸化ニッケルを主体とした
ニッケル電極用活物質の製造方法である。
A second aspect of the present invention is to use zinc hydroxide and a small amount of an aqueous solution of zinc sulfate as a starting material, and to precipitate zinc in a crystal by precipitating it in an aqueous solution controlled to PH 11 to 13 with caustic soda or potassium caustic and ammonium sulfate. A method for producing a nickel electrode active material mainly containing nickel hydroxide, which is contained in a solid solution state, has an internal pore radius of 30 Å or less, and has a total pore volume of 0.05 ml / g or less.

本発明の第3は、亜鉛を結晶中に固溶状態で含有し、且
つ内部細孔半径が30Å以下で、全細孔容積が0.05ml/g以
下である水酸化ニッケル活物質を主成分とするペースト
を、耐アルカリ性金属多孔体に充填したニッケル電極で
ある。
A third aspect of the present invention is mainly composed of a nickel hydroxide active material containing zinc in a solid solution state in a crystal, having an internal pore radius of 30Å or less and a total pore volume of 0.05 ml / g or less. Is a nickel electrode in which the alkali-resistant metal porous body is filled with the paste.

本発明の第4は、前記水酸化ニッケル活物質に、アルカ
リ電解液に溶解してコバルト錯イオンを生成するコバル
ト化合物を5〜15wt%の範囲で添加し、且つそのコバル
ト化合物が該活物質と遊離状態にあるニッケル電極であ
る。
In a fourth aspect of the present invention, a cobalt compound which dissolves in an alkaline electrolyte to form a cobalt complex ion is added to the nickel hydroxide active material in an amount of 5 to 15 wt%, and the cobalt compound serves as the active material. It is a nickel electrode in a free state.

本発明の第5は、前記水酸化ニッケル活物質に、亜鉛以
外に少量のコバルトが固溶状態で共存するニッケル電極
である。
A fifth aspect of the present invention is a nickel electrode in which, in addition to zinc, a small amount of cobalt coexists in a solid solution state with the nickel hydroxide active material.

本発明の第6は、導電性付加剤を含まずコバルト化合物
添加剤によってのみ耐アルカリ性金属多孔体と活物質間
の導電性が保たれたニッケル電極である。
A sixth aspect of the present invention is a nickel electrode which does not contain a conductive additive and in which the conductivity between the alkali resistant metal porous body and the active material is maintained only by the cobalt compound additive.

本発明の第7は、亜鉛を結晶中に固溶状態で含有すると
ともに内部細孔半径が30Å以下で、全細孔容積が0.05ml
/g以下であり且つコバルト化合物を遊離状態で添加した
水酸化ニッケル活物質を主成分とするペーストを、耐ア
ルカリ性金属多孔体に充填したニッケル電極を準備し、
該ニッケル電極を用いて化成することなく電池に組み立
て、電解液注液後一定時間放置し、該コバルト化合物を
完全に溶解−再析出させた後に初充電するアルカリ電池
の製造方法である。
The seventh aspect of the present invention is that the crystal contains zinc in a solid solution state, the internal pore radius is 30 Å or less, and the total pore volume is 0.05 ml.
/ g or less and a paste containing a nickel hydroxide active material as a main component to which a cobalt compound is added in a free state is prepared, and a nickel electrode filled in an alkali resistant metal porous body is prepared,
This is a method of manufacturing an alkaline battery in which the nickel electrode is assembled into a battery without chemical formation, the electrolyte solution is poured, the mixture is allowed to stand for a certain period of time, the cobalt compound is completely dissolved and reprecipitated, and then the initial charge is performed.

内部細孔容積を最小限にした高密度水酸化ニッケル粉末
の場合、高次酸化物γ−NiOOHが多量に発生する。しか
しながら異種金属イオン特に亜鉛イオンを水酸化ニッケ
ルの結晶中に配置すると結晶に歪みを生じるため、プロ
トンの動きに自由さが増し利用率の向上及びγ−NiOOH
の生成を減少する作用があることを見い出した。
In the case of high-density nickel hydroxide powder with a minimum internal pore volume, a large amount of higher order oxide γ-NiOOH is generated. However, when dissimilar metal ions, especially zinc ions, are placed in the nickel hydroxide crystal, distortion occurs in the crystal, which increases the freedom of movement of protons and improves the utilization rate and γ-NiOOH.
It has been found that it has the effect of reducing the production of.

一方、水酸化ニッケルの結晶外においては、コバルト化
合物添加剤を溶解させ、集電体と水酸化ニッケル粒子間
をHCoO2 -→β−Co(OH)2反応によって接続させた後に充
電する。しかる後に、充電と言う電気化学的酸化によっ
てβ−Co(OH)2→CoOOH反応によって、導電率の高いオキ
シ水酸化コバルトに変化し集電体ニッケル繊維と水酸化
ニッケル粒子間の電子の流れをスムーズにし、利用率を
増大させる作用がある。この反応メカニズムを第1図に
モデル化して示した。モデル図で示すように、この電極
の重要な点は添加剤を溶解させ、集電体ニッケル繊維と
活物質を接続させるところにある。
On the other hand, in the crystal outside of the nickel hydroxide to dissolve the cobalt compound additive, the current collector and between nickel hydroxide particles HCoO 2 - charged after → β-Co (OH) is connected by two reactions. Then, by β-Co (OH) 2 → CoOOH reaction due to electrochemical oxidation called charging, it changes into cobalt oxyhydroxide with high conductivity, and the electron flow between the current collector nickel fiber and nickel hydroxide particles is changed. It has the effect of smoothing and increasing the utilization rate. This reaction mechanism is modeled and shown in FIG. As shown in the model diagram, the important point of this electrode is to dissolve the additive and connect the current collector nickel fiber and the active material.

実施例 以下、本発明における詳細について実施例により説明す
る。
Examples Hereinafter, details of the present invention will be described with reference to examples.

硫酸ニッケルに少量の硫酸亜鉛を加えた水溶液に硫酸ア
ンモニウムを添加し、ニッケル及び亜鉛のアンミン錯イ
オンを形成させる。
Ammonium sulfate is added to an aqueous solution of nickel sulfate with a small amount of zinc sulfate to form an ammine complex ion of nickel and zinc.

この液を水酸化ナトリウム水溶液中に滴下しながら激し
い攪拌を行い、徐々に錯イオンを分解させて亜鉛の固溶
体化した水酸化ニッケル粒子を析出成長させる。PH11〜
13程度の薄いアルカリ濃度にし、温度は40〜50℃の範囲
で徐々に析出させる。析出溶液のPHによって、種々な物
性の水酸化ニッケル粒子が得られる。
This solution is dripped into an aqueous solution of sodium hydroxide and vigorously stirred to gradually decompose complex ions to precipitate and grow nickel hydroxide particles in the form of solid solution of zinc. PH11 ~
Dilute the alkali concentration to about 13, and gradually precipitate it in the temperature range of 40-50 ° C. Depending on the pH of the precipitation solution, nickel hydroxide particles having various physical properties can be obtained.

第2図に組成が水酸化ニッケルのみからなる粉末の内部
細孔容積とγ−NiOOH生成率のPH依存性の関係を示し
た。
Fig. 2 shows the relationship between the internal pore volume of the powder composed of only nickel hydroxide and the PH dependence of the γ-NiOOH production rate.

内部細孔容積は低いPHほど少なく、より高密度粉末にな
る。一方、γ−NiOOHは低いPHほど生成しやすい傾向に
ある。二つの因子を満足させる領域は、各々の変曲点に
挟まれたハッチングで示したPH11付近から13付近に至る
領域である。
The lower the internal pore volume, the lower the PH and the more dense the powder. On the other hand, γ-NiOOH tends to be generated more easily as the pH becomes lower. The region that satisfies the two factors is the region between PH11 and 13 shown by the hatching sandwiched between the inflection points.

第3図に細孔容積と比表面積の関係を示した。析出溶液
のPHを変えることによって水酸化ニッケルの細孔容積が
変化したが、同時に比表面積も変化した。A〜Eが水酸
化ニッケルのみで、Fが5%の亜鉛を固溶状態で添加し
たものであり、Gは従来法による水酸化ニッケルのみの
ものである。
Fig. 3 shows the relationship between the pore volume and the specific surface area. The pore volume of nickel hydroxide changed by changing the pH of the precipitation solution, but at the same time, the specific surface area also changed. A to E are nickel hydroxide only, F is 5% zinc added in a solid solution state, and G is only nickel hydroxide by the conventional method.

尚、従来法とは、PH14以上の高濃度アルカリに水酸化ニ
ッケル粒子を析出したものである。
The conventional method is a method in which nickel hydroxide particles are precipitated in a high-concentration alkali having a pH of 14 or higher.

いずれも比表面積の増大に伴い粒子内部の細孔容積が増
大する傾向を示している。即ち、比表面積と細孔容積の
間には相関々係があり、組成に関係なく細孔容積の少な
い高密度活物質は、比表面積が少ない。
In each case, the pore volume inside the particles tends to increase as the specific surface area increases. That is, there is a correlation between the specific surface area and the pore volume, and a high-density active material having a small pore volume has a small specific surface area regardless of the composition.

第4図に従来法による水酸化ニッケルと本発明の高密度
活物質(水酸化ニッケル)の細孔径分布の比較を窒素吸
着等温線の脱離側より算出して示した。
FIG. 4 shows a comparison of the pore size distributions of nickel hydroxide by the conventional method and the high density active material (nickel hydroxide) of the present invention calculated from the desorption side of the nitrogen adsorption isotherm.

従来法による水酸化ニッケルGは、硫酸ニッケル塩溶液
を50℃、PH=14.5の高濃度アルカリ溶液中に滴下し析出
させたものである。
Nickel hydroxide G prepared by the conventional method is obtained by dropping a nickel sulfate salt solution into a highly concentrated alkaline solution having a pH of 14.5 at 50 ° C.

これは、約65m2/gの比表面積、細孔直径15〜100Åの幅
広い範囲に渡り多量に存在する。その容積は、0.15ml/g
と粒子容積(0.41ml/g)の30〜40%にも達し、かなり空
隙の大きい粒子である。一方、本発明の高密度水酸化ニ
ッケル(F)は、その容積が0.03ml/gと小さく、G粒子
の1/4程度にすぎない。これは、F粒子がG粒子よりも2
0〜30%高密度である。即ち、活物質粒子が高密度であ
るためには、できるかぎり比表面積、及び空孔容積が小
さなものでなければならないことを示している。これら
の水酸化ニッケル粉末に、アルカリ電解液に溶解しCo
(I)錯イオンを生成する少量のコバルト化合物、Co
O、α−Co(OH)2、β−Co(OH)2あるいは酢酸コバルト等
の粉末を混合した。しかる後、1%のカルボキシメチル
セルローズの溶解した水溶液を加えて流動性のあるペー
スト液を作成した。このペースト液を多孔度95%の耐ア
ルカリ繊維基板、例えばニッケル繊維基板等に所定量充
填させ、乾燥後ニッケル電極とした。
This is present in a large amount over a wide range of specific surface area of about 65 m 2 / g and pore diameter of 15 to 100 Å. Its volume is 0.15 ml / g
And the particle volume reaches 30-40% of the particle volume (0.41 ml / g), and it is a particle with considerably large voids. On the other hand, the high density nickel hydroxide (F) of the present invention has a small volume of 0.03 ml / g, which is only about 1/4 of G particles. This means that F particles are 2 more than G particles.
0-30% high density. That is, it is shown that in order for the active material particles to have a high density, the specific surface area and the pore volume should be as small as possible. These nickel hydroxide powders are dissolved in alkaline electrolyte and Co
(I) A small amount of cobalt compound, Co, which forms complex ions
Powders of O, α-Co (OH) 2 , β-Co (OH) 2 or cobalt acetate were mixed. Thereafter, an aqueous solution in which 1% carboxymethyl cellulose was dissolved was added to prepare a fluid paste liquid. A predetermined amount of this paste solution was filled in an alkali resistant fiber substrate having a porosity of 95%, such as a nickel fiber substrate, and dried to obtain a nickel electrode.

活物質利用率並びに充放電によるγ−NiOOHの生成率を
知るために、このニッケル電極を対極として、カドミウ
ム電極をポリプロピレン不織布セパレータを介して組立
て、比重1.27の水酸化カリウム電解液を注入した。電解
液注入後、電池は添加剤であるコバルト化合物を腐食電
位で溶解させ、水酸化ニッケル粉末間を接続させるため
に、各種条件で放置した。第5図に添加剤としてCoOを
用い、比表面積65m2/gの水酸化ニッケルの電池について
の放置条件と活物質利用率の関係を示した。導電性ネッ
トワーク形成の重要な過程である放置条件は、高濃度電
解液及び高温度ほど短時間で高い利用率の得られる事を
示しており、且つ溶解したCoO量が有効に作用している
ことを示している。この原因が、添加剤の溶解析出によ
って均一分散性(より完全なネットワーク形成)に起因
している。
In order to know the utilization rate of the active material and the production rate of γ-NiOOH by charge and discharge, a cadmium electrode was assembled via a polypropylene non-woven fabric separator with this nickel electrode as a counter electrode, and a potassium hydroxide electrolytic solution having a specific gravity of 1.27 was injected. After injecting the electrolytic solution, the battery was left under various conditions in order to dissolve the cobalt compound as an additive at the corrosion potential and to connect the nickel hydroxide powders. FIG. 5 shows the relationship between the standing conditions and the active material utilization rate of a nickel hydroxide battery having a specific surface area of 65 m 2 / g using CoO as an additive. The storage condition, which is an important process of forming a conductive network, shows that a high concentration electrolyte and a high temperature can obtain a high utilization rate in a short time, and that the amount of dissolved CoO is effective. Is shown. This is due to uniform dispersibility (more complete network formation) due to dissolution precipitation of the additive.

第6図に適切な放置条件下での水酸化ニッケルの種類と
活物質利用率の関係を示した。活物質組成が水酸化ニッ
ケルのみから成るものは、比表面積と活物質利用率の間
に比例関係が存在する。この事実は、高い活物質利用率
を得るためには高い比表面積が必要であることを示して
いる。それは取りも直さず前記に述べた結果より細孔容
積の大きい低密度活物質の方が良いことを意味している
から、究極として電極の高エネルギー密度化は図れない
ことになる。しかしながら、水酸化ニッケルの結晶中に
少量の亜鉛を添加したFは、比表面積が小さいにも拘ら
ず、従来粉末Gと変わらない高い利用率を示している。
極板単位体積あたりのエネルギー密度は、従来粉末Gが
504mAh/cc、高密度粉末Fが620mAh/ccと高密度粉末Fが
従来粉末Gよりも20%程度高い値を示している。これ
は、従来粉末に比べ高密度粉末が、同一体積基板により
多く充填できることによる。活物質利用率が理論値に近
いことから、要求される600mAh/ccのエネルギー密度を
満たす高密度活物質粉末の空孔容積は、0.05ml/g以下で
なければならず、同時に空孔容積と相関々係にある比表
面積は15〜30m2/gである。亜鉛添加のこの効果は、比表
面積の減少により電解液から反応種プロトンの出入り口
が縮小するわけであるが、水酸化ニッケル結晶に歪みを
持たせることにより、固相でのプロトン移動をスムーズ
にしたものと考察される。即ち、利用率はプロトンの移
動量を意味する。これは、粒子の比表面積と結晶内部
(固相)での拡散速度の二つの因子に支配されており、
結晶が同一の場合は、比表面積に支配され、結晶が異な
る場合は内部歪みに支配されるものと考察される。活物
質が反応するためには集電体から活物質粒子表面にスム
ーズに電子を移動させる必要があり、上述したごとく遊
離状態(水酸化ニッケルに固溶することなく粒子表面に
存在)にある導電性を持ったCoOOH粒子のネットワーク
が不可欠である。第7図にCoO添加量と活物質利用率、
極板体積あたりのエネルギー密度との関係を示した。こ
のネットワークを作るCoO添加剤については、添加剤量
を増加させると、活物質利用率も増加する。しかし、添
加剤そのものは、導電性に寄与するのみで実際には放電
しないため、極板エネルギー密度は、15%付近より低下
する傾向を示している。
FIG. 6 shows the relationship between the type of nickel hydroxide and the utilization rate of the active material under the proper standing condition. When the active material composition is composed of only nickel hydroxide, there is a proportional relationship between the specific surface area and the active material utilization rate. This fact indicates that a high specific surface area is required to obtain a high active material utilization rate. This means that the low-density active material having a large pore volume is better than the result described above without repairing it, and ultimately the energy density of the electrode cannot be increased. However, F in which a small amount of zinc is added to the nickel hydroxide crystal shows a high utilization rate which is the same as that of the conventional powder G, although the specific surface area is small.
The energy density per unit volume of the electrode plate is
504 mAh / cc, high-density powder F is 620 mAh / cc, and high-density powder F is about 20% higher than conventional powder G. This is because the high-density powder can be filled in the same volume substrate more than the conventional powder. Since the active material utilization rate is close to the theoretical value, the pore volume of the high-density active material powder satisfying the required energy density of 600 mAh / cc must be 0.05 ml / g or less, and at the same time as the pore volume. The specific surface areas correlated with each other are 15 to 30 m 2 / g. The effect of the addition of zinc is that the inlet and outlet of reactive species protons from the electrolyte are reduced due to the decrease in the specific surface area, but the nickel hydroxide crystals are distorted to smooth the proton transfer in the solid phase. It is considered as something. That is, the utilization rate means the amount of proton transfer. This is governed by two factors, the specific surface area of the particles and the diffusion rate inside the crystal (solid phase),
It is considered that when the crystals are the same, the specific surface area is dominated by the specific surface area, and when the crystals are different, the internal strain is dominated by the specific surface area. In order for the active material to react, it is necessary to smoothly move electrons from the current collector to the surface of the active material particle, and as described above, the conductive state in which the electron is in the free state (existing on the particle surface without solid solution in nickel hydroxide). A network of CoOOH particles with properties is essential. Figure 7 shows the amount of CoO added and the utilization rate of active materials.
The relationship with the energy density per electrode plate volume is shown. For CoO additives that make up this network, the active material utilization rate increases as the amount of additive increases. However, since the additive itself only contributes to conductivity and does not actually discharge, the electrode plate energy density tends to be lower than around 15%.

1Cの高電流密度で充電し、充電末期の極板をX線解析に
より、粉末の種類とγ−NiOOH生成量との相関々係を調
べた。第8図にZn添加量とγ−NiOOH生成量の関係を示
した。
After charging at a high current density of 1 C, the electrode plate at the final stage of charging was examined by X-ray analysis for the correlation between the type of powder and the amount of γ-NiOOH produced. Fig. 8 shows the relationship between the amount of Zn added and the amount of γ-NiOOH produced.

水酸化ニッケルの結晶中に亜鉛を固溶状態で添加すれ
ば、添加量に反比例してγ−NiOOHの生成量が減少する
ことが分かる。
It can be seen that when zinc is added in a solid solution state to nickel hydroxide crystals, the amount of γ-NiOOH produced decreases in inverse proportion to the amount added.

第9図に各種水酸化ニッケルの充放電末期におけるγ−
NiOOHの生成比率を示した。亜鉛のγ−NiOOHの生成を抑
制する効果の度合いは、水酸化ニッケルの製造方法によ
っても影響され,第9図に示される如く、従来法で作成
した場合と異なっている。
Fig. 9 shows γ- at the end of charging / discharging of various nickel hydroxides.
The production ratio of NiOOH is shown. The degree of the effect of suppressing the production of γ-NiOOH of zinc is also influenced by the manufacturing method of nickel hydroxide, and as shown in FIG. 9, it is different from the case of the conventional method.

更に、従来法の場合は、亜鉛を7%以上添加すると水酸
化ニッケルと遊離した水酸化亜鉛の層が出現したが、本
発明であると10%程度まで遊離しなかった。亜鉛のアル
カリ水溶液中への溶解度は、PHに依存することが知られ
ており、本発明のように薄いアルカリ水溶液中ではより
固溶体化しやすいものと考えられる。遊離した水酸化亜
鉛が存在する場合、酸化コバルト添加剤の溶解−再析出
過程で、溶解した亜鉛錯イオンとコバルト錯イオンの混
合物が析出し、導電性を悪化させるため利用率が低下し
た。
Further, in the case of the conventional method, when 7% or more of zinc was added, a layer of nickel hydroxide and liberated zinc hydroxide appeared, but in the case of the present invention, it was not liberated to about 10%. It is known that the solubility of zinc in an alkaline aqueous solution depends on PH, and it is considered that it is more likely to form a solid solution in a thin alkaline aqueous solution as in the present invention. When free zinc hydroxide was present, a mixture of dissolved zinc complex ions and cobalt complex ions was precipitated during the dissolution-reprecipitation process of the cobalt oxide additive, and the conductivity was deteriorated, so that the utilization rate was lowered.

本発明の亜鉛の固溶体化をした場合、従来法に比較し生
成した可逆性の悪いγ−NiOOHがかなり放電できること
である。このことは、充放電の繰返しによるγ−NiOOH
の蓄積をより防止でき、電極の寿命をより長くすること
ができる。このように、固溶体化した添加剤の効果は、
析出条件によって変化する。しかし、少なくとも本発明
の亜鉛においては、従来の高濃度アルカリ水溶液よりも
薄いアルカリ水溶液の方が優れていることが分かる。亜
鉛を含まない高密度粉末Aの場合、多量に生成するγ−
NiOOHにより、放電々圧は高密度粉末Fと異なり、第10
図のように2段放電となる。第8図及び第9図よりγ−
NiOOH生成防止効果が亜鉛の1%添加から認められ、10
%添加で完全にγ−NiOOHは消滅する。
When the solid solution of zinc according to the present invention is used, it is possible to considerably discharge the γ-NiOOH, which has a poor reversibility as compared with the conventional method. This means that γ-NiOOH due to repeated charging and discharging
Can be further prevented and the life of the electrode can be extended. Thus, the effect of the solid solution additive is
It depends on the deposition conditions. However, it can be seen that, at least for the zinc of the present invention, the thin aqueous alkaline solution is superior to the conventional highly concentrated aqueous alkaline solution. In the case of high-density powder A containing no zinc, a large amount of γ-
Due to NiOOH, the discharge pressure is different from that of high-density powder F.
As shown in the figure, two-stage discharge is performed. Γ-from FIGS. 8 and 9
The effect of preventing the generation of NiOOH was recognized from the addition of 1% of zinc.
%, The γ-NiOOH disappears completely.

この亜鉛の効果は、他の異種元素例えばコバルトが固溶
状態で共存していても同じ効果を有する。第11図は、活
物質、充放電温度及び活物質利用率の関係を示したもの
である。亜鉛とコバルトの両者を固溶体添加したHにお
いては、亜鉛単独のFより高温下(約45℃)での充電性
能の向上が認められた。第12図にCoOOHのネットワーク
を形成させる添加剤について、活物質利用率の関係を示
した。
The effect of zinc has the same effect even when other different elements such as cobalt coexist in a solid solution state. FIG. 11 shows the relationship among the active material, the charge / discharge temperature and the active material utilization rate. In H containing both zinc and cobalt as a solid solution, an improvement in charging performance was observed at a higher temperature (about 45 ° C.) than in F containing zinc alone. Fig. 12 shows the relationship between the active material utilization rates of the additives that form the CoOOH network.

活物質利用率の順位がCoO>α−Co(OH)2>β−Co(OH)2
になる理由は、電解液への溶解性に起因すると考えられ
る。即ち、β−Co(OH)2の場合、電解液注液後溶存酸素
で酸化され褐色の溶解性の悪いCo(OH)3が形成されやす
く、一方α−Co(OH)2の場合、α−Co(OH)2→β−Co(OH)
2を経由するためにCo(OH)3がより形成されにくい。CoO
の場合、Co(OH)3〔もしくはCoHO2であらわされる〕が全
く形成しないために最も優れた添加剤といえる。より具
体的には、溶解速度の見地より、β−Co(OH)2を出発原
料に200〜800℃の高温不活性雰囲気下にて加熱生成させ
た結晶化度の低いものが望ましい。
The rank of the active material utilization rate is CoO> α-Co (OH) 2 > β-Co (OH) 2
It is considered that the reason for becoming is due to the solubility in the electrolytic solution. That is, in the case of β-Co (OH) 2 , it is easy to form brown poorly soluble Co (OH) 3 which is oxidized by dissolved oxygen after injection of the electrolytic solution, while α-Co (OH) 2 is α. −Co (OH) 2 → β−Co (OH)
Co (OH) 3 is less likely to be formed because it passes through 2 . CoO
In the case of, Co (OH) 3 [or represented by CoHO 2 ] is not formed at all, so it can be said that it is the most excellent additive. More specifically, from the viewpoint of the dissolution rate, it is desirable that β-Co (OH) 2 is used as a starting material and heated and produced in a high temperature inert atmosphere at 200 to 800 ° C. to have low crystallinity.

水酸化ニッケルをHCoO2 -イオン中に浸漬し、表面に水酸
化コバルト層形成されたを粉末をペースト充填した電極
は、CoO粉末を混合した電極よりも利用率が劣り、β−C
o(OH)2粉末を混合した電極程度であった。更に、オキシ
水酸化ニッケル粉末の表面に導電性のCoOOH層を形成さ
せた粉末(具体的には、CoO粉末を混合した電極を充放
電した後、電極から集電体であるニッケル繊維を除去し
た物)を再度ペースト充填した電極は、利用率が悪い。
即ち、活物質粉末と集電体との導電性ネットワーク(Co
OOH)は、作成された電極中で形成されることが不可欠
である。予め活物質粒子表面に形成しても、粒子間の接
続が不完全になることを示している。従って、電極を電
池として組み立てた後にCoO粉末の溶解と再析出を行な
わさせる工程が必要である。
HCoO 2 nickel hydroxide - was immersed in ion, electrode powder pasted filling the formed cobalt hydroxide layer on the surface, even inferior utilization than the electrode obtained by mixing CoO powders, beta-C
It was about the electrode mixed with o (OH) 2 powder. Further, a powder in which a conductive CoOOH layer was formed on the surface of nickel oxyhydroxide powder (specifically, after charging and discharging an electrode mixed with CoO powder, nickel fiber as a current collector was removed from the electrode). The electrode that is filled with paste again has a low utilization rate.
That is, the conductive network (Co
It is essential that OOH) be formed in the fabricated electrode. It shows that even if they are formed on the surface of the active material particles in advance, the connection between the particles becomes incomplete. Therefore, a step of dissolving and re-precipitating CoO powder after assembling the electrode as a battery is necessary.

CoO添加剤を用いて本発明により作成された電極は、導
電付加剤を用いずとも溶解−再析出工程によって理論利
用率に近い高い利用率に達することより、酸化分解に伴
う有害な炭酸根の生成がなく、密閉形ニッケルカドミウ
ムに用いられる。
The electrode prepared according to the present invention using the CoO additive reaches a high utilization rate close to the theoretical utilization rate by the dissolution-reprecipitation process without using a conductive additive, and thus the harmful carbonate group accompanying oxidative decomposition No formation, used for closed nickel cadmium.

尚、上記実施例において、基板として金属繊維焼結体を
示したが、これらに限定されるものではない。さらに、
亜鉛の添加効果は、種々の製法で作成された本発明の如
き、結晶性の高い水酸化ニッケル粒子に対しては、同様
に認められるものである。
In addition, although the metal fiber sintered body is shown as the substrate in the above embodiment, the substrate is not limited to these. further,
The effect of addition of zinc is similarly recognized for nickel hydroxide particles having high crystallinity, which are produced by various production methods as in the present invention.

発明の効果 上述した如く、本発明は水酸化ニッケル粉末をより高密
度化し、更に高密度化に伴うγ−NiOOHの生成を毒性の
少ない添加剤によって防止し、長寿命化すると共に、活
物質の利用率を向上させたニッケル電極用活物質及びニ
ッケル電極とこれを用いたアルカリ電池を提供すること
が出来るので、その工業的価値は極めて大である。
EFFECTS OF THE INVENTION As described above, the present invention densifies nickel hydroxide powder more, prevents the formation of γ-NiOOH accompanying further densification with a less toxic additive, and prolongs the life of the active material. Since it is possible to provide an active material for a nickel electrode and a nickel electrode having an improved utilization rate and an alkaline battery using the same, the industrial value thereof is extremely large.

【図面の簡単な説明】 第1図は、コバルト化合物の溶解のモデル図である。 第2図は、析出溶液PHと粒子内部細孔容積及びγ−NiOO
Hの生成率との相関を示した図である。 第3図は、水酸化ニッケル粒子の比表面積と細孔容積の
関係を示した図である。 第4図は、従来の水酸化ニッケル粉末と本発明の高密度
水酸化ニッケル粉末の細孔径分布の曲線を示した図であ
る。 第5図は、放置条件と活物質利用率の関係を示した図で
ある。 第6図は、水酸化ニッケルの種類と活物質利用率の関係
を示した図である。 第7図は、CoO添加量と活物質利用率、極板体積あたり
のエネルギー密度との関係を示した図である。 第8図は、Zn添加量とγ−NiOOHの生成量の関係を示し
たものである。 第9図は、各種水酸化ニッケルの充放電末期におけるγ
−NiOOHの生成比率を示した図である。 第10図は、γ−NiOOHの多量に生成した電極と本発明の
電極との放電々圧特性を比較した図である。 第11図は、活物質、充放電温度及び活物質利用率の関係
を示した図である。 第12図は、各種コバルト化合物添加剤と活物質の利用率
との関係を示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a model diagram of dissolution of a cobalt compound. Fig. 2 shows the precipitation solution PH, the particle internal pore volume and γ-NiOO.
It is a figure showing the correlation with the generation rate of H. FIG. 3 is a diagram showing the relationship between the specific surface area of nickel hydroxide particles and the pore volume. FIG. 4 is a diagram showing curves of pore size distributions of the conventional nickel hydroxide powder and the high-density nickel hydroxide powder of the present invention. FIG. 5 is a diagram showing the relationship between the standing condition and the active material utilization rate. FIG. 6 is a diagram showing the relationship between the type of nickel hydroxide and the active material utilization rate. FIG. 7 is a diagram showing the relationship between the amount of CoO added, the active material utilization rate, and the energy density per electrode plate volume. FIG. 8 shows the relationship between the amount of Zn added and the amount of γ-NiOOH produced. Fig. 9 shows γ at the end of charge and discharge of various nickel hydroxides.
It is a figure showing the generation ratio of -NiOOH. FIG. 10 is a diagram comparing the discharge pressure characteristics of the electrode produced in a large amount of γ-NiOOH and the electrode of the present invention. FIG. 11 is a diagram showing the relationship between the active material, the charge / discharge temperature, and the active material utilization rate. FIG. 12 is a diagram showing the relationship between various cobalt compound additives and the utilization rate of the active material.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】亜鉛を結晶中に固溶状態で含有し、且つ内
部細孔半径が30Å以下で、全細孔容積が0.05ml/g以下で
ある水酸化ニッケルを主体としたニッケル電極用活物
質。
1. A nickel electrode active material mainly comprising nickel hydroxide, which contains zinc in a crystal in a solid solution state, has an internal pore radius of 30 Å or less, and has a total pore volume of 0.05 ml / g or less. material.
【請求項2】水酸化ニッケル及び少量の亜鉛の硫酸塩水
溶液を出発原料とし、苛性ソーダもしくは苛性カリウム
及び硫酸アンモニウムによりPH11〜13に制御された水溶
液中で析出させることにより、亜鉛を結晶中に固溶状態
で含有し、且つ内部細孔半径が30Å以下で、全細孔容積
が0.05ml/g以下である水酸化ニッケルを主体としたニッ
ケル電極用活物質の製造方法。
2. Zinc is dissolved in crystals by precipitating it from an aqueous solution of nickel hydroxide and a small amount of zinc sulfate aqueous solution as a starting material, and controlling the pH to 11 to 13 with caustic soda or potassium caustic and ammonium sulfate. A method for producing a nickel electrode active material mainly containing nickel hydroxide, which is contained in a state, has an internal pore radius of 30 Å or less, and has a total pore volume of 0.05 ml / g or less.
【請求項3】亜鉛を結晶中に固溶状態で含有し、且つ内
部細孔半径が30Å以下で、全細孔容積が0.05ml/g以下で
ある水酸化ニッケル活物質を主成分とするペーストを、
耐アルカリ性金属多孔体に充填したニッケル電極。
3. A paste containing a nickel hydroxide active material as a main component, which contains zinc in a solid solution state in a crystal, has an internal pore radius of 30 Å or less, and has a total pore volume of 0.05 ml / g or less. To
Nickel electrode filled in alkali resistant metal porous body.
【請求項4】前記水酸化ニッケル活物質に、アルカリ電
解液に溶解してコバルト錯イオンを生成するコバルト化
合物を5〜15wt%の範囲で添加し、且つそのコバルト化
合物が該活物質と遊離状態にある請求項3記載のニッケ
ル電極。
4. A nickel compound, which is dissolved in an alkaline electrolyte to form a cobalt complex ion, is added to the nickel hydroxide active material in an amount of 5 to 15 wt%, and the cobalt compound is free from the active material. The nickel electrode according to claim 3, wherein
【請求項5】前記水酸化ニッケル活物質に、亜鉛以外に
少量のコバルトが固溶状態で共存する請求項3記載のニ
ッケル電極。
5. The nickel electrode according to claim 3, wherein, in addition to zinc, a small amount of cobalt coexists as a solid solution in the nickel hydroxide active material.
【請求項6】導電性付加剤を含まずコバルト化合物添加
剤によってのみ耐アルカリ性金属多孔体と活物質間の導
電性が保たれた請求項3記載のニッケル電極。
6. The nickel electrode according to claim 3, wherein the electroconductivity between the alkali-resistant metal porous body and the active material is maintained only by the cobalt compound additive without containing the electroconductive additive.
【請求項7】亜鉛を結晶中に固溶状態で含有するととも
に内部細孔半径が30Å以下で、全細孔容積が0.05ml/g以
下であり且つコバルト化合物を遊離状態で添加した水酸
化ニッケル活物質を主成分とするペーストを、耐アルカ
リ性金属多孔体に充填したニッケル電極を準備し、該ニ
ッケル電極を用いて化成することなく電池に組み立て、
電解液注液後一定時間放置し、該コバルト化合物を完全
に溶解−再析出させた後に初充電するアルカリ電池の製
造方法。
7. Nickel hydroxide containing zinc in a solid solution state in a crystal, having an internal pore radius of 30Å or less, a total pore volume of 0.05 ml / g or less, and a cobalt compound added in a free state. A paste containing an active material as a main component is prepared as a nickel electrode filled in an alkali-resistant metal porous body, and assembled into a battery without chemical conversion using the nickel electrode,
A method for producing an alkaline battery, in which the cobalt compound is allowed to stand for a certain period of time and then completely dissolved and reprecipitated, and then the battery is charged for the first time.
JP63180047A 1988-07-19 1988-07-19 Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same Expired - Lifetime JPH0777129B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63180047A JPH0777129B2 (en) 1988-07-19 1988-07-19 Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same
DE68917045T DE68917045T2 (en) 1988-07-19 1989-04-20 Nickel electrode for an alkaline battery.
EP89303952A EP0353837B1 (en) 1988-07-19 1989-04-20 A nickel electrode for an alkaline battery
US07/358,118 US4985318A (en) 1988-07-19 1989-05-30 Alkaline battery with a nickel electrode
US08/005,157 USRE34752E (en) 1988-07-19 1993-01-15 Alkaline battery with a nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180047A JPH0777129B2 (en) 1988-07-19 1988-07-19 Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same

Publications (2)

Publication Number Publication Date
JPH0230061A JPH0230061A (en) 1990-01-31
JPH0777129B2 true JPH0777129B2 (en) 1995-08-16

Family

ID=16076556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180047A Expired - Lifetime JPH0777129B2 (en) 1988-07-19 1988-07-19 Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same

Country Status (1)

Country Link
JP (1) JPH0777129B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731050B2 (en) * 1991-04-25 1998-03-25 東芝電池株式会社 Paste nickel electrode and alkaline storage battery
JP3080441B2 (en) * 1991-04-25 2000-08-28 東芝電池株式会社 Paste nickel electrode and alkaline storage battery
JP2576717B2 (en) * 1991-05-27 1997-01-29 株式会社ユアサコーポレーション Nickel electrode active material for alkaline storage batteries
US5366831A (en) * 1991-06-14 1994-11-22 Yuasa Corporation Nickel electrode for alkaline battery
US5700596A (en) * 1991-07-08 1997-12-23 Matsushita Electric Industrial Co., Ltd. Nickel hydroxide active material powder and nickel positive electrode and alkali storage battery using them
JP2530281B2 (en) * 1992-12-24 1996-09-04 古河電池株式会社 Alkaline storage battery
JP2525320B2 (en) * 1993-02-22 1996-08-21 古河電池株式会社 Positive electrode for alkaline secondary battery
JP2835282B2 (en) 1994-07-11 1998-12-14 古河電気工業株式会社 Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same
JP2802482B2 (en) 1994-10-28 1998-09-24 古河電池株式会社 Nickel electrode for alkaline secondary batteries
KR100360493B1 (en) * 1995-08-24 2003-01-24 삼성전자 주식회사 Nickel electrode, method of manufacturing the same and alkaline secondary battery employing the same
US7393612B2 (en) 1996-12-17 2008-07-01 Toshiba Battery Co., Ltd. Electrodes, alkaline secondary battery, and method for manufacturing alkaline secondary battery
WO2005045958A1 (en) 2003-11-06 2005-05-19 Matsushita Electric Industrial Co., Ltd. Alkaline battery and positive electrode material for alkaline battery
CN1947285A (en) 2004-04-23 2007-04-11 松下电器产业株式会社 Alkaline battery and method for producing positive electrode material thereof
JP4824319B2 (en) * 2005-01-21 2011-11-30 ルネサスエレクトロニクス株式会社 Failure detection apparatus and method, and signal extraction circuit
JP2009173495A (en) * 2008-01-25 2009-08-06 Univ Of Miyazaki Nickel hydroxide nanosheet and method for producing the same
JP5527630B2 (en) * 2012-04-23 2014-06-18 国立大学法人 宮崎大学 Nickel hydroxide nanosheet and method for producing the same
JP7079870B1 (en) * 2021-04-12 2022-06-02 株式会社田中化学研究所 Method for manufacturing positive electrode material for nickel-metal hydride secondary battery and positive electrode material for nickel-hydrogen secondary battery

Also Published As

Publication number Publication date
JPH0230061A (en) 1990-01-31

Similar Documents

Publication Publication Date Title
JPH0724218B2 (en) Nickel electrode for alkaline battery and battery using the same
US4985318A (en) Alkaline battery with a nickel electrode
JPH0777129B2 (en) Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JPWO2002071527A1 (en) Manufacturing method of nickel metal hydride battery
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode and alkaline storage battery using the same
JP3296754B2 (en) Nickel electrode active material for alkaline storage battery and method for producing the same
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3623320B2 (en) Nickel electrode active material and nickel electrode using the nickel electrode active material
JPH0685325B2 (en) Active material for nickel electrode, nickel electrode and alkaline battery using the same
US7147676B2 (en) Method of preparing a nickel positive electrode active material
JP2000082463A (en) Nickel positive electrode active material for alkaline battery and method for producing the same
JP2679274B2 (en) Nickel-hydrogen battery
JP3543607B2 (en) Alkaline storage battery
JPH0568068B2 (en)
JP4212129B2 (en) Nickel electrode for alkaline storage battery and method for producing the same
JPH0584026B2 (en)
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JPH0638336B2 (en) Nickel electrode for alkaline batteries
JP4467504B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery
JPH0613075A (en) Nickel electrode for alkaline storage battery
JPH0565988B2 (en)
JP2975129B2 (en) Electrodes for alkaline storage batteries

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 13

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term