[go: up one dir, main page]

JPH0784981A - Diagnostic processor - Google Patents

Diagnostic processor

Info

Publication number
JPH0784981A
JPH0784981A JP23274493A JP23274493A JPH0784981A JP H0784981 A JPH0784981 A JP H0784981A JP 23274493 A JP23274493 A JP 23274493A JP 23274493 A JP23274493 A JP 23274493A JP H0784981 A JPH0784981 A JP H0784981A
Authority
JP
Japan
Prior art keywords
phenomenon
value
output
weight
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23274493A
Other languages
Japanese (ja)
Other versions
JP3401858B2 (en
Inventor
Hiroyuki Kamisaka
博亨 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23274493A priority Critical patent/JP3401858B2/en
Publication of JPH0784981A publication Critical patent/JPH0784981A/en
Application granted granted Critical
Publication of JP3401858B2 publication Critical patent/JP3401858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

(57)【要約】 【目的】 診断処理に関し、ニューラルネットによる診
断システムを、比較的容易に構成できるようにした診断
処理装置を目的とする。 【構成】 重み生成部1は、複数の現象項目の各該現象
項目に対応する現象入力端子と重み出力端子とを有する
第1のニューラルネットで構成され、各該現象項目に対
応する現象の状態を所定の値で表す現象値を、該現象入
力端子へ入力することにより、各該重み出力端子に所要
の各重み値を出力する。 重み付け部2は、各該現象項
目について、当該現象値と、重み生成部1の出力する当
該重み値とから、重み付き現象値を算出し、診断部3
は、各該現象項目に対応する重み付き現象入力端子と、
所要の原因出力端子とを有する第2のニューラルネット
で構成され、各該現象項目の該重み付き現象値を、該重
み付き現象入力端子へ入力することにより、該原因出力
端子に所要の原因推定値を出力するように構成する。
(57) [Summary] [Object] With regard to diagnostic processing, it is an object of the present invention to provide a diagnostic processing device capable of relatively easily configuring a diagnostic system using a neural network. [Structure] The weight generation unit 1 is composed of a first neural network having a phenomenon input terminal and a weight output terminal corresponding to each phenomenon item of a plurality of phenomenon items, and a state of the phenomenon corresponding to each phenomenon item. By inputting a phenomenon value representing a predetermined value into the phenomenon input terminal, each required weight value is output to each weight output terminal. The weighting unit 2 calculates a weighted phenomenon value for each phenomenon item from the phenomenon value and the weight value output from the weight generation unit 1, and the diagnosis unit 3
Is a weighted phenomenon input terminal corresponding to each phenomenon item,
A second neural network having a required cause output terminal, and by inputting the weighted phenomenon value of each of the phenomenon items to the weighted phenomenon input terminal, it is possible to estimate the required cause at the cause output terminal. Configure to output a value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、病気や故障等につい
て、現象から原因を推定する診断を、ニューラルネット
によって処理するようにした装置、特に精度の高い診断
結果を得るニューラルネットを容易に構成できるように
した診断処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention easily configures a device for processing a diagnosis for estimating a cause of a disease or a failure from a phenomenon by a neural network, and particularly a neural network for obtaining a highly accurate diagnostic result. The present invention relates to a diagnostic processing device that can be performed.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】医療診断
システム等、症状から自動的に原因を推定する診断シス
テムが、いわゆるエキスパートシステムを用いて構築さ
れていることは、よく知られているとおりである。
It is well known that a diagnostic system such as a medical diagnostic system that automatically estimates the cause from a symptom is constructed using a so-called expert system. Is.

【0003】しかし、エキスパートシステムで構築する
診断システムでは、知識やルールのコーディングが必要
であって、それに多大の工数を要し、知識を増加させる
と診断速度が遅くなり、又システムが大きくなって高価
になる等の問題がある。
However, the diagnostic system constructed by the expert system requires knowledge and rule coding, which requires a great number of man-hours. If the knowledge is increased, the diagnostic speed becomes slow and the system becomes large. There are problems such as being expensive.

【0004】そこで、エキスパートシステムに代わる手
段として、ニューラルネットが利用されるようになって
いる。公知のようにニューラルネットは、図4に説明的
に示すように、例えば入力層、中間層、出力層の3層か
らなり、前の層の全ノードの出力がある重みを付けて次
の層の全ノードに入力するようにされ、それらの重みを
乗じた入力の合計が当ノードの入力になるように構成さ
れ、重みは各ノード対ごとに異なることができる。各ノ
ードは入力値で定まる所定の関数値を出力する。
Therefore, a neural network has come to be used as an alternative to the expert system. As is well known, a neural network is composed of, for example, three layers of an input layer, an intermediate layer, and an output layer as illustrated in FIG. Are configured to be input to all nodes of the node, and the sum of the inputs multiplied by these weights is configured as the input of this node, and the weights can be different for each node pair. Each node outputs a predetermined function value determined by the input value.

【0005】このようなニューラルネットで診断を行う
には、例えば各症状の現象項目(例えば発熱、咳、頭痛
等)について、例えばその症状の有無を0、1の値で表
した症状群のパターンを、ニューラルネットの入力層の
各現象項目に対応するノードに入力し、出力層の各ノー
ドを認識結果とすべき各推定原因(例えば病名等)に割
り当てて、例えば「風邪」と推定した場合には第1のノ
ードから1にできるだけ近い値を出力し、その他の他の
原因に割り当ててあるノードからは0に近い値を出力す
るように、ニューラルネットを学習させておく。
In order to make a diagnosis using such a neural network, for example, for a phenomenon item of each symptom (for example, fever, cough, headache, etc.), the presence or absence of the symptom is represented by a value of 0 or 1 Is input to the node corresponding to each phenomenon item in the input layer of the neural network, and each node in the output layer is assigned to each probable cause (eg, disease name) that should be the recognition result, for example, when a "flu" is estimated. The neural network is trained so that the first node outputs a value as close to 1 as possible, and the nodes assigned to other causes output a value close to 0.

【0006】この学習は公知のように、例えば「風邪」
と認識させたい症状のパターンで種々のバリエーション
のある多数のパターンを順次入力し、教師信号として前
記の例のような所要の出力信号を指定すると、ニューラ
ルネット内の隣接層間で各ノード間を結ぶパスの重み
を、実際の出力信号と教師信号との差に基づく、所定の
アルゴリズムに従って変更することにより両信号間の差
を減少することによって行われるので、これを必要なす
べての原因項目について行うことにより学習を完了す
る。
This learning is well known, for example, "cold".
When a number of patterns with various variations are sequentially input according to the symptom pattern to be recognized and the required output signal as in the above example is designated as the teacher signal, each node is connected between adjacent layers in the neural network. This is done for all necessary causal items because it is done by reducing the difference between the two signals by changing the path weights according to a predetermined algorithm based on the difference between the actual output signal and the teacher signal. This completes the learning.

【0007】このようにして、ニューラルネットは所望
の入力と出力の関係を自動的に学習をすることができる
が、原因推定精度を高めるためには、各推定原因ごとに
各種のパターンをできるだけ多種集めて学習させなけれ
ばならず、一般に、高い原因推定精度を得るには膨大な
データの準備と、長時間の学習が必要になり易い。
In this way, the neural network can automatically learn the desired relationship between the input and output, but in order to improve the accuracy of cause estimation, various patterns for each estimated cause should be used as much as possible. It is necessary to collect and learn, and generally, it is easy to require preparation of a huge amount of data and learning for a long time in order to obtain high cause estimation accuracy.

【0008】病気診断等の場合に、症状の有る/無しだ
けから病名を判定する方法では、全ての症状の重みを均
一に評価するため、どの症状に誤認があっても、診断結
果の精度に同じ影響を与えてしまうので、特に極めて多
数の事例を学習に用いることが必要になる。
In the case of diagnosing a disease, etc., in the method of determining the disease name based only on the presence / absence of the symptom, the weights of all the symptoms are uniformly evaluated. In particular, it is necessary to use a large number of cases for learning because they have the same effect.

【0009】しかし、例えば酪農における乳牛の病気診
断を行おうとする場合に酪農の現場の事情や、獣医師の
事情などにより、十分に多数の事例を集めることが現状
では困難である。
However, it is difficult at present to collect a sufficient number of cases depending on the situation of the dairy farm and the situation of the veterinarian when trying to diagnose a disease of a dairy cow in dairy farming.

【0010】一方、病気診断において医師は、症状の組
み合わせと、その組合せ等から経験的に持っている各々
の症状の相対的な重みとを考慮することによって、精度
高く病名を特定していると考えられるので、病名を判定
する前処理として、症状にそのような重みを付けておけ
ば、重要でない症状が含まれていても診断結果への影響
を少なくすることができる。
On the other hand, in diagnosing a disease, a doctor accurately specifies a disease name by considering the combination of symptoms and the relative weight of each symptom that he has empirically based on the combination. Therefore, if the symptom is weighted as such as the preprocessing for determining the disease name, the influence on the diagnosis result can be reduced even if the symptom is not important.

【0011】又、症状の組合せと、その各場合における
各症状に対する重み付けとの関係の情報を得るについて
は、前記例における獣医師の経験的な知識を聞き出して
整理し、適当に数値化すればよいので、酪農の現場から
膨大な症例を集めるよりは容易である。
In order to obtain information on the relationship between the combination of symptoms and the weighting for each symptom in each case, the empirical knowledge of the veterinarian in the above example should be sought out, arranged and digitized appropriately. Good, so easier than collecting a huge number of cases from a dairy farm.

【0012】本発明は、現象の重みを考慮することによ
り比較的少ない事例により原因の推定精度を高めること
のできる診断システムを、比較的容易に構成できるよう
にした診断処理装置を目的とする。
It is an object of the present invention to provide a diagnostic processing device capable of relatively easily constructing a diagnostic system capable of increasing the accuracy of estimating a cause with a relatively small number of cases by considering the weight of a phenomenon.

【0013】[0013]

【課題を解決するための手段】図1は、本発明の構成を
示すブロック図である。図は診断処理装置の構成であっ
て、重み生成部1と、重み付け部2と、診断部3とを有
する。
FIG. 1 is a block diagram showing the configuration of the present invention. The diagram shows the configuration of the diagnostic processing apparatus, which includes a weight generation unit 1, a weighting unit 2, and a diagnostic unit 3.

【0014】重み生成部1は、複数の現象項目の各該現
象項目に対応する現象入力端子と、各該現象項目に対応
する重み出力端子とを有する第1のニューラルネットで
構成され、各該現象項目に対応する現象の状態を所定の
値で表す現象値を、該現象入力端子へ入力することによ
り、各該重み出力端子に所要の各重み値を出力する。
The weight generation unit 1 is composed of a first neural network having a phenomenon input terminal corresponding to each phenomenon item of a plurality of phenomenon items and a weight output terminal corresponding to each phenomenon item. By inputting a phenomenon value representing a state of a phenomenon corresponding to a phenomenon item with a predetermined value to the phenomenon input terminal, each required weight value is output to each of the weight output terminals.

【0015】重み付け部2は、各該現象項目について、
当該現象値と、重み生成部1の出力する当該重み値とか
ら、重み付き現象値を算出する。診断部3は、各該現象
項目に対応する重み付き現象入力端子と、所要の原因出
力端子とを有する第2のニューラルネットで構成され、
各該現象項目の該重み付き現象値を、該重み付き現象入
力端子へ入力することにより、該原因出力端子に所要の
原因推定値を出力する。
The weighting unit 2 determines, for each phenomenon item,
A weighted phenomenon value is calculated from the phenomenon value and the weight value output from the weight generation unit 1. The diagnosis unit 3 is composed of a second neural network having a weighted phenomenon input terminal corresponding to each phenomenon item and a required cause output terminal,
By inputting the weighted phenomenon value of each of the phenomenon items to the weighted phenomenon input terminal, a required cause estimation value is output to the cause output terminal.

【0016】[0016]

【作用】本発明の診断処理装置により、入力として例え
ば各現象の有無を1、0で表す現象値群を入力すると、
装置では先ずその入力からは第1段のニューラルネット
により各現象項目の重み値を出力する。
With the diagnosis processing apparatus of the present invention, when a phenomenon value group representing the presence or absence of each phenomenon as 1 or 0 is input as
The apparatus first outputs the weight value of each phenomenon item from the input by the first stage neural network.

【0017】次にその重み値と現象値とから、例えば両
者の積として求める重み付き現象値を求め、それらを第
2段のニューラルネットの入力として原因の推定値を出
力する。
Next, from the weight value and the phenomenon value, for example, the weighted phenomenon value obtained as the product of the two is obtained, and the estimated value of the cause is output as the input of the second stage neural network.

【0018】その結果、各段のニューラルネットについ
ては、学習のための入出力データを揃え易く、且つ比較
的少ない事例でも精度高く所要の出力を得るように学習
が可能であり、高精度の診断処理装置を比較的容易に構
築できる。
As a result, with respect to each stage of the neural network, it is possible to easily arrange the input and output data for learning, and it is possible to perform learning so as to obtain a required output with high accuracy even in a comparatively small number of cases, so that highly accurate diagnosis can be performed. The processing device can be constructed relatively easily.

【0019】[0019]

【実施例】図2は本発明の実施例を示す図であり、病気
の診断を行うシステムとして、重み生成部1は発熱、
咳、頭痛等の病気の各症状に対応する現象入力端子を経
て第1のニューラルネットの入力層に、各症状の有/無
を1/0で表す値を入力し、出力層から各症状の重みを
出力する。
FIG. 2 is a diagram showing an embodiment of the present invention. As a system for diagnosing a disease, the weight generation unit 1 has a fever,
The values corresponding to the presence / absence of each symptom are input as 1/0 to the input layer of the first neural network via the phenomenon input terminal corresponding to each symptom of illness such as cough and headache, and the output layer of each symptom is input. Output weight.

【0020】従って、第1のニューラルネットには、現
象項目の個数に等しいノードをそれぞれ持つ入力層及び
出力層を有し、このニューラルネットに例えば図3に示
すような入出力データの組を、各種の症状のパターンに
ついて採集し、それらのデータを与えて前記のように学
習をしておく。
Therefore, the first neural network has an input layer and an output layer each having nodes equal to the number of phenomenon items, and the input / output data set as shown in FIG. Patterns of various symptoms are collected, data of them are given, and learning is performed as described above.

【0021】図2において、重み付け部2は各現象項目
について、入力の現象値と出力の重み値との積を出力す
る掛け算回路、或いは現象値が1のとき重み値をそのま
ゝ通過し、現象値が0のときは0を出力する回路からな
る各ゲート4で構成し、出力を診断部3に入力する。
In FIG. 2, the weighting unit 2 outputs, for each phenomenon item, a product of the product of the input phenomenon value and the output weight value, or passes the weight value as it is when the phenomenon value is 1, When the phenomenon value is 0, each gate 4 is composed of a circuit that outputs 0, and the output is input to the diagnosis unit 3.

【0022】診断部3は現象項目の個数に等しいノード
を持つ入力層と、図示の風邪、胃潰瘍、肺炎、あせも、
胃炎のような、所要の推定原因の個数に等しいノードを
持つ出力層の第2のニューラルネットで構成する。
The diagnosis unit 3 has an input layer having nodes equal to the number of phenomenon items, colds, gastric ulcers, pneumonia, and heat rashes shown in the figure.
It is composed of a second neural network in the output layer having nodes equal in number to the required probable causes such as gastritis.

【0023】第2のニューラルネットには、原因出力を
1とし、その原因で生じる症状について重み付けをした
現象値群データを、各原因出力について適当数採集し、
それらのデータを与えて学習を行っておく。
In the second neural network, the cause output is set to 1, and the phenomenon value group data in which the symptom caused by the cause is weighted is collected for each cause output,
Give these data and carry out learning.

【0024】以上により、本装置の全現象入力端子に症
状の有無を示す現象値を入力すると、原因出力端子の各
原因項目には0〜1の範囲の推定値が出力され、その推
定値の大きさを診断の有力データとすることができる。
As described above, when a phenomenon value indicating the presence / absence of a symptom is input to all the phenomenon input terminals of this device, an estimated value in the range of 0 to 1 is output to each cause item of the cause output terminal. The size can be used as the leading data for diagnosis.

【0025】[0025]

【発明の効果】以上の説明から明らかなように本発明に
よれば、ニューラルネットによる診断システムの構成に
おいて、ニューラルネットの学習のための入出力データ
を揃え易く、且つ比較的少ない事例でも精度高く所要の
出力を得るように学習が可能であり、高精度の診断処理
装置を比較的容易に構築できるという著しい工業的効果
がある。
As is apparent from the above description, according to the present invention, in the configuration of the diagnostic system using the neural network, the input / output data for learning of the neural network can be easily aligned, and the accuracy is high even in a relatively small number of cases. Learning is possible to obtain the required output, and there is a remarkable industrial effect that a highly accurate diagnostic processing device can be constructed relatively easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の構成を示すブロック図FIG. 1 is a block diagram showing the configuration of the present invention.

【図2】 本発明の実施例を示すブロック図FIG. 2 is a block diagram showing an embodiment of the present invention.

【図3】 重み生成の学習データを説明する図FIG. 3 is a diagram for explaining learning data for weight generation.

【図4】 ニューラルネットを説明する図FIG. 4 is a diagram illustrating a neural network.

【符号の説明】[Explanation of symbols]

1 重み生成部 2 重み付け部 3 診断部 4 ゲート 1 Weight generation unit 2 Weighting unit 3 Diagnostic unit 4 Gate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重み生成部(1)と、重み付け部(2)と、診
断部(3)とを有し、 該重み生成部(1)は、複数の現象項目の、各該現象項目
に対応する現象入力端子と、各該現象項目に対応する重
み出力端子とを有する第1のニューラルネットで構成さ
れ、 各該現象項目に対応する現象の状態を所定の値で表す現
象値を、該現象入力端子へ入力することにより、各該重
み出力端子に所要の各重み値を出力し、 該重み付け部(2)は、各該現象項目について、当該現象
値と、該重み生成部(1)の出力する当該重み値とから、
重み付き現象値を算出し、 該診断部(3)は、各該現象項目に対応する重み付き現象
入力端子と、所要の原因出力端子とを有する第2のニュ
ーラルネットで構成され、 各該現象項目の該重み付き現象値を、該重み付き現象入
力端子へ入力することにより、該原因出力端子に所要の
原因推定値を出力するように構成されていることを特徴
とする診断処理装置。
1. A weight generation unit (1), a weighting unit (2), and a diagnosis unit (3), wherein the weight generation unit (1) has a plurality of phenomenon items for each phenomenon item. A first neural network having a corresponding phenomenon input terminal and a weight output terminal corresponding to each phenomenon item, and a phenomenon value representing a state of a phenomenon corresponding to each phenomenon item with a predetermined value, By inputting to the phenomenon input terminal, each required weight value is output to each weight output terminal, and the weighting unit (2), for each phenomenon item, the phenomenon value and the weight generation unit (1). From the weight value output by
The weighted phenomenon value is calculated, and the diagnosis unit (3) is composed of a second neural network having a weighted phenomenon input terminal corresponding to each phenomenon item and a required cause output terminal. A diagnostic processing apparatus configured to output a required cause estimation value to the cause output terminal by inputting the weighted phenomenon value of an item to the weighted phenomenon input terminal.
JP23274493A 1993-09-20 1993-09-20 Diagnostic processing device Expired - Fee Related JP3401858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23274493A JP3401858B2 (en) 1993-09-20 1993-09-20 Diagnostic processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23274493A JP3401858B2 (en) 1993-09-20 1993-09-20 Diagnostic processing device

Publications (2)

Publication Number Publication Date
JPH0784981A true JPH0784981A (en) 1995-03-31
JP3401858B2 JP3401858B2 (en) 2003-04-28

Family

ID=16944088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23274493A Expired - Fee Related JP3401858B2 (en) 1993-09-20 1993-09-20 Diagnostic processing device

Country Status (1)

Country Link
JP (1) JP3401858B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288047A (en) * 2003-03-24 2004-10-14 Fujitsu Ltd Medical support system and medical support program
JP2006502481A (en) * 2002-10-03 2006-01-19 スコット・ラボラトリーズ・インコーポレイテッド Neural network in sedation and analgesia system
US7228295B2 (en) 1997-08-14 2007-06-05 Adeza Biomedical Corporation Methods for selecting, developing and improving diagnostic tests for pregnancy-related conditions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102607880B1 (en) 2018-06-19 2023-11-29 삼성전자주식회사 Electronic apparatus and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7228295B2 (en) 1997-08-14 2007-06-05 Adeza Biomedical Corporation Methods for selecting, developing and improving diagnostic tests for pregnancy-related conditions
JP2006502481A (en) * 2002-10-03 2006-01-19 スコット・ラボラトリーズ・インコーポレイテッド Neural network in sedation and analgesia system
JP2004288047A (en) * 2003-03-24 2004-10-14 Fujitsu Ltd Medical support system and medical support program

Also Published As

Publication number Publication date
JP3401858B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
Xia et al. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks
CN111046916A (en) A method and system for motor fault diagnosis based on hollow convolutional capsule network
KR102416474B1 (en) Fault diagnosis apparatus and method based on machine-learning
CN105956665B (en) A kind of method of the heuristic detecting system abnormal cause based on Dynamic Uncertain cause-and-effect diagram
CN113837000A (en) A Few-Sample Fault Diagnosis Method Based on Task Ranking Meta-Learning
WO2019176993A1 (en) Inspection system, image recognition system, recognition system, discriminator generation system, and learning data generation device
CN114298267A (en) Fault diagnosis method based on bidirectional attention generation countermeasure network and application
CN114564987B (en) Rotary machine fault diagnosis method and system based on graph data
KR20210067108A (en) Fault diagnosis apparatus and method using frequency analysis based on machine-learning
CN110689130B (en) Bearing fault diagnosis method
CN114707632B (en) Sensor fault positioning method, system, equipment and medium for sensor network
CN117312948B (en) A rotating machinery fault diagnosis method based on multi-sensor fusion and ECA-CNN
WO2020161481A1 (en) Method and apparatus for quality prediction
CN116842379A (en) A method for predicting the remaining service life of mechanical bearings based on DRSN-CS and BiGRU+MLP models
CN112966595A (en) Sensor network data abnormity judgment method based on graph neural network
CN115169660B (en) Cutter abrasion prediction method based on multi-scale space-time feature fusion neural network
EP3971779A1 (en) Method and system for identifying anomalies in x-rays
JPH0784981A (en) Diagnostic processor
EP4235507A1 (en) Automatically quantifying an uncertainty of a prediction provided by a trained regression model
CN114626407A (en) A Decoupling Recognition Method of Diesel Engine Continuous Operating Conditions Based on Graph Self-Attention Network
Yu et al. A Novel 1D‐CNN‐Based Diagnosis Method for a Rolling Bearing with Dual‐Sensor Vibration Data Fusion
KR20230045628A (en) A recording medium on which a computer program for cognitive diagnosis evaluation using a cognitive diagnosis game is recorded
JP2002169611A (en) Failure diagnosis system and automatic design method thereof
JP2002099319A (en) Plant diagnostic equipment
WO2022190966A1 (en) Inference device, model generation device, inference method, and inference program

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees