JPH08113653A - Granulation method for super absorbent polymer powder - Google Patents
Granulation method for super absorbent polymer powderInfo
- Publication number
- JPH08113653A JPH08113653A JP25071494A JP25071494A JPH08113653A JP H08113653 A JPH08113653 A JP H08113653A JP 25071494 A JP25071494 A JP 25071494A JP 25071494 A JP25071494 A JP 25071494A JP H08113653 A JPH08113653 A JP H08113653A
- Authority
- JP
- Japan
- Prior art keywords
- water
- weight
- powder
- acrylic acid
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 40
- 229920000247 superabsorbent polymer Polymers 0.000 title claims abstract description 33
- 238000005469 granulation Methods 0.000 title abstract description 27
- 230000003179 granulation Effects 0.000 title abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 93
- 229920005989 resin Polymers 0.000 claims abstract description 57
- 239000011347 resin Substances 0.000 claims abstract description 57
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 claims abstract description 46
- 239000000839 emulsion Substances 0.000 claims abstract description 23
- 238000002156 mixing Methods 0.000 claims abstract description 17
- 239000002250 absorbent Substances 0.000 claims abstract description 16
- 238000001035 drying Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 abstract description 42
- 238000009826 distribution Methods 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- 238000010521 absorption reaction Methods 0.000 description 22
- 239000007787 solid Substances 0.000 description 18
- 239000007764 o/w emulsion Substances 0.000 description 17
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 14
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 13
- 239000008187 granular material Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000000377 silicon dioxide Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 7
- 239000002504 physiological saline solution Substances 0.000 description 6
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010557 suspension polymerization reaction Methods 0.000 description 3
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229920006035 cross-linked graft co-polymer Polymers 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 239000003232 water-soluble binding agent Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
(57)【要約】
【目的】 強い造粒強度、適当な粒径および狭い粒度分
布を有する造粒物を効率的に生成し得る高吸水性樹脂粉
末の造粒方法を提供する。
【構成】 高吸水性樹脂粉末100重量部に対し、無機
粉末0.1〜10重量部、エチレン‐アクリル酸共重合
体の粉末またはエマルション0.05〜10重量部およ
び前記樹脂粉末の含水率が20〜70重量%となるよう
な量の水、を混合し、次いで該混合物を乾燥させること
を特徴とする、高吸水性樹脂粉末の造粒法。(57) [Abstract] [PROBLEMS] To provide a method for granulating a super absorbent polymer powder capable of efficiently producing a granulated product having a strong granulation strength, an appropriate particle size and a narrow particle size distribution. Constitution: 0.1 to 10 parts by weight of inorganic powder, 0.05 to 10 parts by weight of ethylene-acrylic acid copolymer powder or emulsion and 100 parts by weight of water-absorbent resin powder and the water content of the resin powder are A method for granulating a highly water-absorbent resin powder, which comprises mixing water in an amount of 20 to 70% by weight, and then drying the mixture.
Description
【0001】〔発明の背景〕BACKGROUND OF THE INVENTION
【産業上の利用分野】本発明は、高吸水性樹脂粉末から
粒状体を製造する方法に関する。さらに詳しくは、本発
明は、大きい粒子強度と適度の粒径を有し、かつ粒度分
布の狭い高吸水性樹脂造粒物を与える造粒法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing granules from superabsorbent resin powder. More specifically, the present invention relates to a granulation method which gives a highly water-absorbent resin granulated product having a large particle strength and an appropriate particle size and having a narrow particle size distribution.
【0002】[0002]
【従来の技術】近年、高吸水性樹脂は、紙おむつ、生理
用品、使い捨て雑巾などの衛生用品や保水剤、土壌改良
剤などの農園芸用品、更には汚泥の凝固剤、建材の結露
防止剤や油類の脱水剤等の種々の用途に用いられてい
る。2. Description of the Related Art In recent years, superabsorbent resins have been used for sanitary items such as disposable diapers, sanitary items, disposable rags, and water retention agents, agricultural and horticultural items such as soil conditioners, coagulants for sludge, and dew condensation inhibitors for building materials. It is used for various purposes such as dehydrating agents for oils.
【0003】これらの中でも、特に生理用品、おむつな
どの衛生用品の分野での高吸水性樹脂の需要が増大して
いる。Among these, there is an increasing demand for highly water-absorbent resins, especially in the field of sanitary products such as sanitary products and diapers.
【0004】従来、アクリル系樹脂等の高吸水性樹脂
は、一般に逆相懸濁重合、逆相乳化重合、水溶液重合等
の重合方法によって重合体を合成した後、これをそのま
ま乾燥するか、または乾燥した後粉砕することにより製
造されている。Conventionally, a super absorbent polymer such as an acrylic resin is generally prepared by synthesizing a polymer by a polymerization method such as reverse phase suspension polymerization, reverse phase emulsion polymerization or aqueous solution polymerization, and then drying the polymer as it is, or It is manufactured by crushing after drying.
【0005】然しながら、上記の方法により製造された
高吸水性樹脂粉末は、一般に粒度分布が広く、微粉をか
なりの割合で含んでいる。このため、次に挙げるような
問題が生じている。 (イ) 粉塵が発生し易く、このため作業環境の悪化や
製品収率の低下を招きやすい。 (ロ) 他の材料を混合する際の混合性、分散性が悪
い。 (ハ) 液体と接触した時に所謂「ままこ」を作成しや
すい。 (ニ) 流動性が悪く、このため、ホッパーでのブリッ
ジ形成や、フラッシュ現象などがおこりやすい。However, the highly water-absorbent resin powder produced by the above method generally has a wide particle size distribution and contains a considerable amount of fine powder. For this reason, the following problems occur. (A) Dust is liable to be generated, which easily deteriorates the working environment and lowers the product yield. (B) Poor mixability and dispersibility when mixing other materials. (C) It is easy to create a so-called "mamako" when it comes into contact with a liquid. (D) Since the fluidity is poor, bridge formation in the hopper and flash phenomenon are likely to occur.
【0006】これらの問題に対する解決方法として、微
粉を除去したのち、有機バインダーを使用して顆粒化さ
せる方法(特開昭63−154766号公報、特開平2
−308820号公報)、界面活性剤存在下に無機粉末
を添加する方法(特開昭62−132936号公報、特
開平2−284927号公報、特公平3−26204号
公報)等が提案されている。As a solution to these problems, a method in which fine powder is removed and then granulated with an organic binder (Japanese Patent Laid-Open No. 63-154766, Japanese Patent Laid-Open No. 2-154766).
No. 308820), a method of adding an inorganic powder in the presence of a surfactant (JP-A-62-132936, JP-A-2-284927, JP-B-3-26204) and the like. ..
【0007】これらは、いずれも、それなりの解決を与
えたものであるとはいえ、本発明者らの知る限りでは、
何らかの問題点を包蔵していると思われる。Although all of these have provided some solutions, to the knowledge of the inventors,
It seems to contain some problems.
【0008】すなわち、微粉の除去による方法は、その
ために新たに分離装置が必要となり、分離した微粉を処
分しなければならないことから、いずれにしても経済的
に有利とは言い難い。そして、有機溶媒系バインダーを
使用する方法には、造粒後の乾燥工程における引火の危
険性や、乾燥が不充分な時には製品中に残存する有機溶
剤による人体の健康への悪影響が懸念される。That is, the method of removing fine powder requires a new separation device for that purpose, and the separated fine powder must be disposed of. Therefore, it is not economically advantageous in any case. And, in the method of using an organic solvent-based binder, there is a risk of ignition in the drying step after granulation and, when the drying is insufficient, adverse effects on human health due to the organic solvent remaining in the product. ..
【0009】これに対し、水溶性バインダーを用いた場
合には、有機溶剤系のバインダー使用時の上記のような
問題は生じないが、被造粒物が高吸水性で急速に水性液
を吸収するという性質のために、水性液の均一な分散や
混合が困難で高密度の大きな塊りを生じ易く、均質な造
粒物を得ることが困難である。従って、造粒後、粉砕等
によって、適当な粒径にする必要がある。On the other hand, when the water-soluble binder is used, the above problems when using an organic solvent-based binder do not occur, but the granulated material has a high water absorption property and rapidly absorbs the aqueous liquid. Due to this property, it is difficult to uniformly disperse and mix the aqueous liquid, easily generate large lumps of high density, and it is difficult to obtain a homogeneous granulated product. Therefore, after granulation, it is necessary to pulverize or the like to obtain an appropriate particle size.
【0010】また、界面活性剤存在下に無機粉末を添加
する方法では、実質的に不溶性の無機微粉末を添加する
際の添加むらが生じ易く、それに伴なう粒径、嵩密度等
における品質むらが生じ易く、更に、得られる顆粒状物
の機械的強度が弱いので、容易に破壊してしまう等の問
題があるようである。In addition, in the method of adding the inorganic powder in the presence of the surfactant, unevenness of addition tends to occur when the substantially insoluble inorganic fine powder is added, and the quality in terms of particle size, bulk density, etc. is accompanied. Since unevenness is likely to occur and the mechanical strength of the obtained granular material is weak, there seems to be a problem that it is easily broken.
【0011】上記のものの他に、吸水性樹脂粉末の表面
に水溶液を噴霧して造粒させる方法(特開昭61−97
333号公報)、吸水性樹脂を含む液に乾燥樹脂を混合
し、撹拌しながら乾燥機内で加熱乾燥させる方法(特開
昭57−117551号公報)等が提案されている。し
かしながら、特開昭61−97333号公報記載のもの
は、液滴の大きさ、噴霧方法等の少しのばらつきによ
り、粒度分布の広い粒状ポリマーとなる問題があるよう
である。また、特開昭57−117551号公報記載の
ものは、粒子を撹拌しながら乾燥させる際に、粒子同志
の摩擦の為に再び微粉が生成して、結果的に均一な造粒
物をつくることが困難であるようである。In addition to the above, a method of granulating by spraying an aqueous solution on the surface of the water-absorbent resin powder (JP-A-61-97)
333), a method in which a dry resin is mixed with a liquid containing a water-absorbent resin, and the mixture is heated and dried in a drier with stirring (JP-A-57-117551). However, the one described in JP-A-61-97333 seems to have a problem that it becomes a granular polymer having a wide particle size distribution due to slight variations in the size of the droplets, the spraying method and the like. Further, in the one described in JP-A-57-117551, when the particles are dried with stirring, fine particles are again generated due to friction between the particles, and as a result, a uniform granulated product is produced. Seems to be difficult.
【0012】[0012]
【発明が解決しようとする課題】上述のように、従来、
高吸水性樹脂粉末には、粉末粒径の不均一並びに微粉の
高含有に起因する、粉塵の発生や低流動性、他の材料と
の混合・分散性不良といった種々の問題点があった。こ
れらの問題点に対する解決策として提案されている上記
の種々の造粒方法にも、有機溶剤使用に伴なう人体健康
への悪影響に対する懸念や、粒度が均一な造粒物を得る
ことが困難である、といった問題点が伴う。SUMMARY OF THE INVENTION As described above,
The highly water-absorbent resin powder has various problems such as generation of dust, low fluidity, and poor mixing/dispersing property with other materials due to non-uniformity of powder particle size and high content of fine powder. Even in the above-mentioned various granulation methods proposed as solutions to these problems, it is difficult to obtain granules having a uniform particle size and concern about adverse effects on human health due to the use of organic solvents. There are problems such as
【0013】従って、本発明は上記の問題点を伴なわな
いで、大きい粒子強度と適度の粒径を有し、かつ粒度分
布の狭い造粒物を効率的に生成し得る高吸水性樹脂粉末
の造粒法を提供することを目的とするものである。Therefore, the present invention does not have the above-mentioned problems, and is a highly water-absorbent resin powder having a large particle strength and an appropriate particle size and capable of efficiently producing a granulated product having a narrow particle size distribution. The purpose of the present invention is to provide a granulation method.
【0014】[0014]
〔発明の概要〕 <要旨>本発明は、高吸水性樹脂に一定量の無機粉末、
一定量のエチレン‐アクリル酸共重合体および一定量の
水を混合し、次いでこの混合物を乾燥させる方法により
上記目的が達成されるという事実の発見に基くものであ
る。[Summary of the Invention] <Summary> The present invention provides a highly water-absorbent resin containing a certain amount of inorganic powder,
It is based on the discovery of the fact that the above objective is achieved by a method in which a certain amount of ethylene-acrylic acid copolymer and a certain amount of water are mixed and then the mixture is dried.
【0015】すなわち、本発明による高吸水性樹脂粉末
の造粒法は、高吸水性樹脂粉末100重量部に対し、無
機粉末0.1〜10重量部、エチレン‐アクリル酸共重
合体の粉末またはエマルション0.05〜10重量部お
よび前記樹脂粉末の含水率が20〜70重量%となるよ
うな量の水、を混合し、次いで該混合物を乾燥させるこ
と、を特徴とするものである。 <効果>本発明の造粒法によれば、大きい粒子強度と適
当な粒径を有し、粒度分布幅の狭い高吸水性樹脂造粒物
を高収率で得ることができる。本発明による造粒物は、
実質的に有機溶剤を含まない系で造粒されたものなの
で、衛生的で安全であり、更に、造粒前後で高吸水性樹
脂の吸水性能の実質的低下が見られないものである。That is, the method of granulating the super absorbent polymer powder according to the present invention is as follows: 0.1 to 10 parts by weight of inorganic powder, ethylene-acrylic acid copolymer powder or 100 parts by weight of super absorbent polymer powder or 0.05 to 10 parts by weight of an emulsion and water in an amount such that the water content of the resin powder is 20 to 70% by weight are mixed, and then the mixture is dried. <Effect> According to the granulation method of the present invention, a highly water-absorbent resin granulated product having a large particle strength and an appropriate particle size and a narrow particle size distribution width can be obtained in a high yield. The granulated product according to the present invention,
Since it is granulated in a system containing substantially no organic solvent, it is hygienic and safe, and further, the water absorption performance of the super absorbent polymer is not substantially reduced before and after granulation.
【0016】従って、本発明の造粒法により得られた製
品は、衛生用品、農園芸用品などの種々の用途に好適に
使用することができるものである。 〔発明の具体的説明〕 <高吸水性樹脂>本発明の造粒法が適用される高吸水性
樹脂粉末は特に限定されず、本発明は、任意の高吸水性
樹脂に適用可能である。具体例としては、ポリアクリル
酸ソーダ等のアクリル酸塩系重合体架橋物、アクリル酸
エステル‐酢酸ビニル共重合体架橋物のケン化物、デン
プン‐アクリル酸塩グラフト共重合体架橋物、デンプン
‐アクリロニトリルグラフト共重合体架橋物のケン化
物、無水マレイン酸グラフトポリビニルアルコール架橋
物が挙げられる。本発明の効果が特に顕著にみられるの
はポリアクリル酸ソーダ等のアクリル酸塩系重合体架橋
物である。Therefore, the product obtained by the granulation method of the present invention can be suitably used for various purposes such as sanitary products and agricultural and horticultural products. [Detailed Description of the Invention] <Superabsorbent Resin> The superabsorbent resin powder to which the granulation method of the present invention is applied is not particularly limited, and the present invention is applicable to any superabsorbent resin. Specific examples thereof include cross-linked acrylic acid salt polymers such as sodium polyacrylate, saponified products of cross-linked acrylic acid ester-vinyl acetate copolymer, cross-linked products of starch-acrylic acid salt graft copolymer, starch-acrylonitrile. Examples include saponified products of cross-linked graft copolymers and cross-linked products of maleic anhydride-grafted polyvinyl alcohol. The effect of the present invention is particularly remarkable in a cross-linked acrylate polymer such as sodium polyacrylate.
【0017】高吸水性樹脂粉末は、逆相懸濁重合、逆相
乳化重合、水溶液重合等の方法によって重合体を合成し
た後、そのまま乾燥し、または乾燥後、粉砕し、あるい
は樹脂中の官能基と反応性を有する2個以上の官能基を
有する架橋剤で表面架橋することにより一般に製造され
るが、本発明が適応される高吸水性樹脂は、これらの方
法により製造されたものに限定されることはなく、任意
の方法により製造されたものである。The highly water-absorbent resin powder is obtained by synthesizing a polymer by a method such as reverse phase suspension polymerization, reverse phase emulsion polymerization, aqueous solution polymerization, etc., and then drying it as it is, or after drying and pulverizing, It is generally produced by surface-crosslinking with a crosslinking agent having two or more functional groups reactive with a group, but the superabsorbent resin to which the present invention is applicable is limited to those produced by these methods. It is not produced, and is produced by any method.
【0018】高吸水性樹脂は、平均粒径が10〜500
μm、特に50〜300μm、のものが好ましい。この
粒径はJIS規格の標準フルイを用い、質量基準の粒径
分布を求め、質量基準の50%粒子径を求めることによ
って測定したものである。 <無機粉末>本発明においては、高吸水性樹脂粉末を造
粒化するにあたって無機粉末を混合させる。無機粉末を
混合させると、得られる高吸水性樹脂粒子に適度な強度
が付与され、また造粒物の吸水速度の増大が認められ
る。本発明で使用される好ましい無機粉末としては、例
えば二酸化珪素、酸化アルミニウム、二酸化チタン、リ
ン酸カルシウム、炭酸カルシウム、タルク、リン酸マグ
ネシウム、硫酸カルシウム、珪藻土、ベントナイト、ゼ
オライト、その他の金属酸化物等が挙げられる。特に二
酸化珪素、酸化アルミニウム、二酸化チタンが好まし
い。これら無機粉末の粒子径は、一般に0.001〜2
00μm、特に0.01〜100μm、であることが好
ましい。この粒径は、コールターカウンター等によって
測定されたものである。The super absorbent polymer has an average particle size of 10 to 500.
It is preferable that the thickness is μm, particularly 50 to 300 μm. The particle size is measured by using a JIS standard sieve to obtain a mass-based particle size distribution and a mass-based 50% particle size. <Inorganic powder> In the present invention, the inorganic powder is mixed when granulating the super absorbent polymer powder. When the inorganic powder is mixed, appropriate strength is imparted to the superabsorbent resin particles obtained, and the water absorption rate of the granulated product is increased. Examples of preferred inorganic powders used in the present invention include silicon dioxide, aluminum oxide, titanium dioxide, calcium phosphate, calcium carbonate, talc, magnesium phosphate, calcium sulfate, diatomaceous earth, bentonite, zeolite, and other metal oxides. Be done. Particularly, silicon dioxide, aluminum oxide and titanium dioxide are preferable. The particle size of these inorganic powders is generally 0.001 to 2
It is preferably 00 μm, particularly 0.01 to 100 μm. This particle size is measured by a Coulter counter or the like.
【0019】無機粉末の添加量は、高吸水性樹脂粉末1
00重量部に対して、一般に0.1〜10重量部、好ま
しくは0.5〜5重量部、である。無機粉末の添加量が
0.1重量部より少ない場合は効果が十分に発現せず、
10重量部より多い場合は吸水性能に悪影響を及ぼすの
で好ましくない。 <エチレン‐アクリル酸共重合体>本発明による造粒法
においては、エチレン‐アクリル酸共重合体を混合す
る。The addition amount of the inorganic powder is 1
It is generally 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 00 parts by weight. If the addition amount of the inorganic powder is less than 0.1 part by weight, the effect is not sufficiently expressed,
If the amount is more than 10 parts by weight, the water absorption performance is adversely affected, which is not preferable. <Ethylene-acrylic acid copolymer> In the granulation method according to the present invention, an ethylene-acrylic acid copolymer is mixed.
【0020】前記無機粉末を混合した高吸水性樹脂に水
を添加し、混合しながら吸水させ、その後、乾燥させる
ことのみによっても造粒体は得られようが、生成粒子の
強度不足や、局所ブロックの発生等による造粒体粒径の
不均一といった欠点が伴いがちである。本発明に従って
エチレン‐アクリル酸共重合体を混入すれば、このよう
な欠点がなく、強度が大きく粒径が均一な造粒体を得る
ことができる。Although a granulated body may be obtained only by adding water to the superabsorbent resin mixed with the inorganic powder, absorbing water while mixing, and then drying, insufficient strength of the produced particles and local It is apt to be accompanied by a defect that the particle size of the granulated product is not uniform due to the formation of blocks. By mixing the ethylene-acrylic acid copolymer according to the present invention, it is possible to obtain a granulated product which does not have such drawbacks and has a large strength and a uniform particle size.
【0021】本発明で使用するエチレン‐アクリル酸共
重合体は、数平均分子量が1,000〜100,00
0、好ましくは2,000〜50,000、更に好まし
くは5,000〜30,000、のものが良い。また、
この共重合体中のアクリル酸の含量が重量比で3〜50
wt%、好ましくは5〜30wt%、のものが良い。そ
して、この共重合体は、ブロック共重合体であってもよ
いが、好ましいものはランダム共重合体である。また、
本発明でいう「エチレン‐アクリル酸共重合体」は、挙
示の二単量体の外に少量の共単量体を包含するものであ
り、また、「アクリル酸」は塩の形態であるものを包含
するものである。The ethylene-acrylic acid copolymer used in the present invention has a number average molecular weight of 1,000 to 100,000.
0, preferably 2,000 to 50,000, more preferably 5,000 to 30,000. Also,
The content of acrylic acid in this copolymer is 3 to 50 by weight.
%, preferably 5 to 30 wt %. The copolymer may be a block copolymer, but a random copolymer is preferable. Also,
The "ethylene-acrylic acid copolymer" in the present invention includes a small amount of a comonomer in addition to the above-mentioned two monomers, and "acrylic acid" is in the form of a salt. It includes things.
【0022】本発明で使用するエチレン‐アクリル酸共
重合体は、水添加造粒工程に先立って、いずれも微細な
高吸水性樹脂および無機粉末と均一な混合物を形成すべ
きであるところから、それに適した形態であるべきであ
る。すなわち、具体的には、その形態は、粉末状および
エマルション、特に水性エマルションである。The ethylene-acrylic acid copolymer used in the present invention should form a uniform mixture with the fine superabsorbent resin and the inorganic powder prior to the water-added granulation step. It should be in a suitable form. That is, in particular, the forms are powders and emulsions, especially aqueous emulsions.
【0023】微粉状で添加する場合は、このエチレン‐
アクリル酸共重合体は、粒径が0.01〜1000μ
m、特に1〜100μm、のものが好ましい。When added in the form of fine powder, this ethylene-
The acrylic acid copolymer has a particle size of 0.01 to 1000 μm.
m, especially 1 to 100 μm is preferable.
【0024】一方、エマルション状で添加する場合は、
その水分を造粒用の水分の一部または全部で充当するこ
とになる。On the other hand, when it is added as an emulsion,
The water is used as a part or all of the water for granulation.
【0025】エチレン‐アクリル酸共重合体の水性エマ
ルションは、如何なる方法によって製造したものであっ
てもよく、また、このエマルションは安定なエマルショ
ンを与えるべく乳化剤および乳化助剤を含んだものであ
ってもよい。エチレン‐アクリル酸共重合体を水性エマ
ルションの形で使用するときは、エマルションに含まれ
ている乳化剤および乳化助剤も造粒工程に持ちきたされ
ることになるが、エチレン‐アクリル酸共重合体をエマ
ルションに慣用されるような乳化剤および乳化助剤の種
類および(または)量は造粒化および(または)生成造
粒体の用途に格別な障害を与えることは実際上は認めら
れない。The aqueous emulsion of ethylene-acrylic acid copolymer may be prepared by any method, and the emulsion contains an emulsifying agent and an emulsifying aid to give a stable emulsion. Good. When the ethylene-acrylic acid copolymer is used in the form of an aqueous emulsion, the emulsifier and the emulsification aid contained in the emulsion are also brought to the granulation process. The types and/or amounts of emulsifiers and emulsification auxiliaries, such as are customary for emulsions, are practically not found to give any particular impediment to the granulation and/or use of the resulting granulate.
【0026】エチレン‐アクリル酸共重合体は、それを
粉末状で使用するときも、あるいはエマルションとして
使用するときも、エチレン‐アクリル酸共重合体のみの
重量として高吸水性樹脂粉末100重量部に対し、0.
05〜10重量部、好ましくは0.5〜5重量部、の量
で使用される。0.05重量部未満では、造粒強度が弱
くなったり、局所ブロックが生じ、乾燥後粒子の大きな
塊状物が生じたりする場合がある。一方、10重量部超
過では、適当な粒子径のものが得られなかったり、吸水
性能が低下する場合がある。 <水分量>本発明の方法において添加されるべき水の量
は、高吸水性樹脂粉末の性能によっても左右されるが、
好適には、樹脂粉末の含水率〔含水率(%)=含水量/
(高吸水性樹脂粉末重量+含水量)×100〕が20%
〜70%、さらに好適には30〜60%、となるような
量である。上記含水率が20%未満では造粒効率や造粒
物強度が低下する場合があり、70%超過では、局所ブ
ロックの発生、乾燥効率の低下、造粒物の吸水性能の低
下、等の問題が生じる場合がある。The ethylene-acrylic acid copolymer is added to 100 parts by weight of the superabsorbent resin powder as the weight of the ethylene-acrylic acid copolymer alone, regardless of whether it is used as a powder or as an emulsion. On the other hand, 0.
It is used in an amount of 05 to 10 parts by weight, preferably 0.5 to 5 parts by weight. If it is less than 0.05 parts by weight, the granulation strength may be weakened, or local blocks may be generated, and large agglomerates of particles may be generated after drying. On the other hand, if the amount exceeds 10 parts by weight, a particle having an appropriate particle size may not be obtained or the water absorption performance may decrease. <Water Content> The amount of water to be added in the method of the present invention depends on the performance of the super absorbent polymer powder,
Preferably, the water content of the resin powder [water content (%)=water content/
(Highly water-absorbent resin powder weight + water content) x 100] is 20%
˜70%, more preferably 30 to 60%. If the water content is less than 20%, the granulation efficiency and the strength of the granulated product may decrease. If the water content exceeds 70%, local blocks may occur, the drying efficiency may decrease, and the water absorption performance of the granulated product may decrease. May occur.
【0027】この少なくとも一部をエチレン‐アクリル
酸共重合体の水性エマルションから供給してもよいこと
は前記したところである。 <造粒/混合および乾燥>本発明の方法によって、高吸
水性樹脂粉末、無機粉末、エチレン‐アクリル酸共重合
体および水を混合する場合には、混合順序は任意であ
る。しかし、好ましい順序は、粉末成分を混合してから
水を添加することである。たとえば、高吸水性樹脂粉末
に無機粉末を混合し、それに粉末状のエチレン‐アクリ
ル酸共重合体を混合し、次いで水を添加する。エチレン
‐アクリル酸共重合体が水性エマルションの場合は、水
の添加が不要となることがあることはいうまでもない。As mentioned above, at least a part of this may be supplied from an aqueous emulsion of ethylene-acrylic acid copolymer. <Granulation/Mixing and Drying> When the superabsorbent resin powder, the inorganic powder, the ethylene-acrylic acid copolymer and water are mixed by the method of the present invention, the mixing order is arbitrary. However, the preferred order is to mix the powder ingredients before adding water. For example, the super absorbent polymer powder is mixed with the inorganic powder, the powdery ethylene-acrylic acid copolymer is mixed therewith, and then water is added. It goes without saying that when the ethylene-acrylic acid copolymer is an aqueous emulsion, the addition of water may be unnecessary.
【0028】高吸水性樹脂は、無機粉末を混合するため
の装置としては2種以上の粉体を機械的に混合または分
散出来るものであれば、任意の周知の混合装置を使用す
ることができる。使用可能な混合装置の例としては、リ
ボンブレンダー、ヘンシェルミキサー、スーパーミキサ
ー、ナウターミキサー、パドル型混合機等が挙げられ
る。As the superabsorbent resin, any known mixing device can be used as a device for mixing the inorganic powders as long as it can mechanically mix or disperse two or more kinds of powders. .. Examples of usable mixing devices include a ribbon blender, a Henschel mixer, a super mixer, a Nauter mixer, and a paddle type mixer.
【0029】微粉末状のエチレン‐アクリル酸共重合体
を用いる場合には、高吸水性樹脂粉末に無機粉末を混合
する際と同様に混合すれば良く、従って、高吸水性樹脂
粉末に微粉末状のエチレン‐アクリル酸共重合体を混合
する装置としては、高吸水性樹脂粉末に無機粉末を混合
する際に用いる同様の装置が使用することができる。When an ethylene-acrylic acid copolymer in the form of fine powder is used, it may be mixed in the same manner as when the inorganic powder is mixed with the superabsorbent resin powder. As a device for mixing the ethylene-acrylic acid copolymer in the form of a block, the same device used for mixing the inorganic powder with the superabsorbent resin powder can be used.
【0030】無機粉末および微粉末状のエチレン‐アク
リル酸共重合体を混合した高吸水性樹脂粉末に、あるい
は無機粉末を混合した高吸水性樹脂粉末に、水あるいは
水性すなわち水中油滴型のエチレン‐アクリル酸共重合
体のエマルションを滴下、混合する装置としては、双腕
型ニーダー、パドル型混合機またはヘンシェルミキサ
ー、スーパーミキサー等が挙げられ、好ましくは、双腕
型ニーダや、パドル型混合機が用いられる。Water or water, that is, oil-in-water type ethylene, is added to a superabsorbent resin powder prepared by mixing an inorganic powder and a fine powdery ethylene-acrylic acid copolymer, or a superabsorbent resin powder prepared by mixing an inorganic powder. -As an apparatus for dropping and mixing an emulsion of an acrylic acid copolymer, a double-arm kneader, a paddle-type mixer or a Henschel mixer, a super mixer and the like can be mentioned, preferably a double-arm kneader and a paddle-type mixer. Is used.
【0031】上記の混合によって得られた高吸水性樹脂
粉末複合体を次に適当な含水率(通常15%以下、好ま
しくは10%以下)まで乾燥させるが、その乾燥方法は
特に限定されるものではなくて、高吸水性樹脂粉末、無
機粉末およびエチレン‐アクリル酸共重合体の機能を阻
害しない方法ならばどのような方法も採用可能である。The superabsorbent resin powder composite obtained by the above mixing is then dried to an appropriate water content (usually 15% or less, preferably 10% or less), but the drying method is not particularly limited. Instead, any method can be adopted as long as it does not impair the functions of the super absorbent polymer powder, the inorganic powder and the ethylene-acrylic acid copolymer.
【0032】具体的には、適当な乾燥装置、例えばパド
ル型乾燥機、ロータリー型乾燥機または流動層乾燥機等
を利用して、例えば80℃から180℃、好ましくは1
00℃から150℃、の範囲の乾燥温度で乾燥させるこ
とができる。Specifically, using an appropriate drying device such as a paddle type drier, a rotary type drier or a fluidized bed drier, for example, 80° C. to 180° C., preferably 1
It can be dried at a drying temperature ranging from 00°C to 150°C.
【0033】上記の造粒工程での好ましい態様の例とし
ては、、高吸水性樹脂粉末に、無機粉末をリボンブレン
ダーで混合後、水中油滴型エチレン‐アクリル酸共重合
体エマルションをパドル型混合機にて滴下混合し、しか
るのち、ロータリー型乾燥機にてこれを乾燥させて造粒
物を得る方法が挙げられる。As an example of a preferred embodiment in the above-mentioned granulation step, as the super absorbent polymer powder, the inorganic powder is mixed with a ribbon blender, and then the oil-in-water type ethylene-acrylic acid copolymer emulsion is mixed with the paddle type. A method of dropping the mixture in a machine and then drying the mixture in a rotary dryer to obtain a granulated product can be mentioned.
【0034】乾燥後の造粒物は、適当な粒径に整えるた
めに必要に応じて粉砕および分級を行なうことができ
る。The dried granulated product can be pulverized and classified as necessary to adjust the particle size to an appropriate value.
【0035】[0035]
アクリル酸124.5gを500ccビーカーに取り、
これを35℃以下の冷却下25%の苛性ソーダ水溶液1
93.4gで中和し、70%に部分中和されたアクリル
酸モノマーを得た。これに0.05gの過硫酸カリウム
(KPS)および0.07gのN,N′‐メチレンビス
アクリルアミドを加え、よく混合し、調製液とした後、
15分間N2バブリングを行なった。Take 124.5g of acrylic acid in a 500cc beaker,
This is cooled to 35° C. or less and 25% caustic soda aqueous solution 1
Neutralization with 93.4 g gave a partially neutralized acrylic acid monomer to 70%. To this, 0.05 g of potassium persulfate (KPS) and 0.07 g of N,N'-methylenebisacrylamide were added and mixed well to prepare a preparation solution.
N 2 bubbling was performed for 15 minutes.
【0036】別に、1リットル容のセパラブルフラスコ
にシクロヘキサン350gを入れ、ソルビタンモノステ
アレート1.75gを溶解し、次いで20℃にて、N2
バブリングを15分間行なった後、前記アクリル酸部分
中和モノマー調製液を撹拌下に全量を滴下した。次いで
50℃/時の昇温速度で系内を75℃に昇温し、さらに
1時間、温度を75℃に維持して重合を完結させた後、
バス温を100℃にして、シクロヘキサンと水を共沸さ
せて脱水した。得られた脱水ポリマー150gを1リッ
トルナス型フラスコに入れ、これにシクロヘキサン18
0gを加えてスラリーとした。このスラリーを撹拌しな
がら、水28g及びγ‐グリシドキシプロピルトリメキ
シシラン1.2gを添加し、室温で30分間撹拌した。
次いで、105℃のバス中に30分間浸漬し、同バス温
度を保持しながら減圧して蒸発乾固させ、平均粒径14
0μmのパール状ポリアクリル酸ソーダ架橋物を得た。
尚、この樹脂の含水率は約3%であった。高吸水性樹脂製造例2 〔静置水溶液重合によるポリアク
リル酸ソーダ架橋物の製造〕 製造例1と同様の操作により、部分中和アクリル酸/K
PS/N,N′‐メチレンビスアクリルアミドの混合水
溶液を調製した。ポリエステルシートで完全に上面をシ
ールした平底ステンレス製バット(150mm×200
mm)の上面シートに孔をあけ、ゴム管を通して系内に
充分にN2置換した。Separately, 350 g of cyclohexane was placed in a 1-liter separable flask to dissolve 1.75 g of sorbitan monostearate, and then at 20° C., N 2 was added.
After bubbling for 15 minutes, the total amount of the acrylic acid partially neutralized monomer preparation liquid was added dropwise with stirring. Then, the temperature inside the system was raised to 75° C. at a heating rate of 50° C./hour, and the temperature was maintained at 75° C. for an additional 1 hour to complete the polymerization.
The bath temperature was set to 100° C., and cyclohexane and water were azeotropically distilled for dehydration. 150 g of the obtained dehydrated polymer was placed in a 1 liter eggplant-shaped flask, and cyclohexane 18
0 g was added to make a slurry. While stirring this slurry, 28 g of water and 1.2 g of γ-glycidoxypropyltrimethyloxysilane were added, and the mixture was stirred at room temperature for 30 minutes.
Then, it is immersed in a bath at 105° C. for 30 minutes, reduced in pressure while maintaining the bath temperature, and evaporated to dryness to give an average particle size of 14
A 0 μm pearl-shaped sodium polyacrylate crosslinked product was obtained.
The water content of this resin was about 3%. Superabsorbent Resin Production Example 2 [ Production of polysodium acrylate crosslinked product by stationary aqueous solution polymerization] By the same operation as in Production Example 1, partially neutralized acrylic acid/K
A mixed aqueous solution of PS/N,N'-methylenebisacrylamide was prepared. Flat bottom stainless steel vat (150 mm x 200
(mm) the top sheet was perforated and the system was thoroughly replaced with N 2 through a rubber tube.
【0037】前記混合水溶液を前記バットに注いでから
バットを70℃の温浴に浸し、重合操作を行なった。約
10分後に最高温度110℃を示した。以後、70℃の
温浴に浸した状態で2時間保持した後20℃迄冷却し
て、シート状のアクリル酸塩系重合体架橋物(ポリアク
リル酸ソーダ架橋物)を得た。After pouring the mixed aqueous solution into the vat, the vat was immersed in a hot bath at 70° C. for polymerization. A maximum temperature of 110° C. was exhibited after about 10 minutes. Thereafter, the sheet was kept in a hot bath at 70° C. for 2 hours and then cooled to 20° C. to obtain a sheet-shaped acrylic acid polymer cross-linked product (sodium polyacrylate cross-linked product).
【0038】この重合体をバットから取り出し、細片に
した後、真空乾燥機にて90℃で約3時間乾燥させた。The polymer was taken out of the vat, formed into small pieces, and dried in a vacuum dryer at 90° C. for about 3 hours.
【0039】このようにして乾燥した細片を粉砕機によ
り粉砕し、40〜325メッシュの粒度のポリアクリル
酸ソーダ架橋物を分取した。尚、この樹脂の含水率は、
約3%であった。実施例1 高吸水性樹脂製造例1で得た高吸水性樹脂100部に対
し、微粉末シリカ(富士シリシア化学社製、「サイリシ
ア#770」、平均粒径6μm)1部をリボンブレンダ
ーにより混合後、エチレン‐アクリル酸共重合体固型分
3.0重量%の水中油滴型エマルション(エチレン‐ア
クリル酸共重合体成分:平均分子量20,000、アク
リル酸重量比18%)64部をパドル型混合機を用いて
滴下しながら混合した(添加された水の量は、高吸水性
樹脂粉末の含水率が40重量%となる量に相当する)。
続いて、ロータリー型乾燥機にて、キャリアガスを流し
ながら120℃の雰囲気下で造粒物を含水率が3%にな
るまで乾燥させて、造粒物Aを得た。実施例2 高吸水性樹脂製造例1で得た高吸水性樹脂100部に替
えて、高吸水性樹脂製造例2で得た高吸水性樹脂100
部を用いる以外は実施例1と全く同様の方法によって、
造粒物Bを得た。添加された水の量は高吸水性樹脂粉末
の含水率が40重量%となる量に相当する。実施例3 エチレン‐アクリル酸共重合体固型分3.0重量%の水
中油滴型エマルション64部に替えて、エチレン‐アク
リル酸共重合体固型分0.8重量%の水中油滴型エマル
ション62部を用いた以外は実施例1と全く同様の方法
によって、造粒物Cを得た。添加された水の量は高吸水
性樹脂粉末の含水率が40重量%となる量に相当する。実施例4 エチレン‐アクリル酸共重合体固型分3.0重量%の水
中油滴型エマルション64部に替えて、エチレン‐アク
リル酸共重合体固型分7.3重量%の水中油滴型エマル
ション67部を用いた以外は実施例1と全く同様の方法
によって、造粒物Dを得た。添加された水の量は高吸水
性樹脂粉末の含水率が40重量%となる量に相当する。実施例5 エチレン‐アクリル酸共重合体を、平均分子量30,0
00、アクリル酸重量比18%のものに替えた以外は実
施例1と全く同様の方法によって、造粒物Eを得た。添
加された水の量は高吸水性樹脂粉末の含水率が40重量
%となる量に相当する。実施例6 エチレン‐アクリル酸共重合体を、平均分子量20,0
00、アクリル酸重量比7.0%に替えた以外は実施例
1と全く同様の方法によって、造粒物Fを得た。添加さ
れた水の量は高吸水性樹脂粉末の含水率が40重量%と
なる量に相当する。実施例7 エチレン‐アクリル酸共重合体固型分3.0重量%の水
中油滴型エマルション64部に替えて、エチレン‐アク
リル酸共重合体固型分3.8重量%の水中油滴型エマル
ション51部を用いた以外は実施例1と全く同様の方法
によって、造粒物Gを得た。添加された水の量は高吸水
性樹脂粉末の含水率が35重量%となる量に相当する。実施例8 エチレン‐アクリル酸共重合体固型分3.0重量%の水
中油滴型エマルション64部に替えて、エチレン‐アク
リル酸共重合体固型分2.5重量%の水中油滴型エマル
ション78部を用いた以外は実施例1と全く同様の方法
によって、造粒物Hを得た。添加された水の量は高吸水
性樹脂粉末の含水率が45重量%となる量に相当する。実施例9 微粉末シリカの量を0.5部に替えた以外は、実施例1
と全く同様の方法によって、造粒物Iを得た。添加され
た水の量は高吸水性樹脂粉末の含水率が40重量%とな
る量に相当する。実施例10 微粉末シリカの量を5部に替えた以外は、実施例1と全
く同様の方法によって、造粒物Jを得た。添加された水
の量は高吸水性樹脂粉末の含水率が40重量%となる量
に相当する。実施例11 高吸水性樹脂製造例1で得た高吸水性樹脂100部に対
し、微粉末シリカ(富士シリシア化学社製、「サイリシ
ア#770」、平均粒径6μm)1部およびエチレン‐
アクリル酸共重合体微粉末(平均分子量10,000、
アクリル酸重量比5%、平均粒径10μm)1部をリボ
ンブレンダーにより混合後、水62部をパドル型混合機
を用いて滴下しながら混合した(添加された水の量は、
高吸水性樹脂粉末の含水率が40重量%となる量に相当
する)。続いて、ソリッドエアーにて、キャリアガスを
流しながら、150℃で20分間乾燥させて造粒物Kを
得た。比較例1 高吸水性樹脂製造例1で得た高吸水性樹脂100部に対
し、微粉末シリカ(富士シリシア化学社製、「サイリシ
ア#770」、平均粒径6μm)1部をリボンブレンダ
ーにより混合後、水62部をパドル型混合機を用いて滴
下しながら混合した(添加された水の量は、高吸水性樹
脂粉末の含水率が40重量%となる量に相当する)。続
いて、ロータリー型重合乾燥機にて、キャリアガスを流
しながら120℃の雰囲気下でで2時間乾燥させて、造
粒物Lを得た。比較例2 エチレン‐アクリル酸共重合体固型分3.0重量%の水
中油滴型エマルション64部に替えて、樹脂固型分3.
0重量%のPVA水溶液(PVA:ケン化度88%、P
VA含有率94%)64部を用いた以外は実施例1と同
様の方法によって、造粒物Mを得た。添加された水の量
は高吸水性樹脂粉末の含水率が40重量%となる量に相
当する。比較例3 微粉末シリカを混合しないこと以外は実施例1と全く同
様の方法によって造粒物Nを得た。比較例4 微粉末シリカの量を15部に替えた以外は実施例1と全
く同様の方法によって造粒物Oを得た。比較例5 エチレン‐アクリル酸共重合体固型分3.0重量%の水
中油滴型エマルション64部に替えて、エチレン‐アク
リル酸共重合体固型分19.1重量%の水中油滴型エマ
ルション76部を用いた以外は実施例1と全く同様の方
法によって、造粒物Pを得た。添加された水の量は高吸
水性樹脂粉末の含水率が40重量%となる量に相当す
る。比較例6 エチレン‐アクリル酸共重合体固型分3.0重量%の水
中油型エマルション64部に替えて、エチレン‐アクリ
ル酸共重合体固型分12.1重量%の水中油滴型エマル
ション16部を用いた以外は実施例1と全く同様の方法
によって、造粒物Qを得た。添加された水の量は高吸水
性樹脂粉末の含水率が15重量%となる量に相当する。比較例7 エチレン‐アクリル酸共重合体固型分3.0重量%の水
中油滴型エマルション64部に替えて、0.22重量%
の水中油滴型エマルション872部を用いた以外は実施
例1と全く同様の方法によって、造粒物Rを得た。添加
された水の量は高吸水性樹脂粉末の含水率が90重量%
となる量に相当する。比較例8 高吸水性樹脂製造例1で得た高吸水性樹脂粉末100部
に対し、エチレン‐アクリル酸共重合体固型分3.0重
量%の水中油滴型エマルション64部をパドル型混合機
を用いて滴下しながら混合した。続いて、微粉末シリカ
1部をリボンブレンダーで混合したが、微粉末シリカが
分散せずに塊状物が多数出来た。添加された水の量は高
吸水性樹脂粉末の含水率が40重量%となる量に相当す
る。 〔結果〕上記の高吸水性樹脂製造例、実施例および比較
例で得られた高吸水性樹脂粉末およびその造粒物につい
て、以下の測定を行なった。 <造粒収率>分級篩にて80#オーバー品の重量比を造
粒収率とした。 <塊状率>10mmφ以上の塊状物の重量比を塊状率と
した。 <衝撃強度>造粒品(80#オーバーかつ20#アンダ
ー品)20gを内容積50ccの円筒形容器に入れ、さ
らに直径10mmのプラスチック製ボール1個を入れ、
振盪器により5分間激しく振盪した後、造粒品中の80
#アンダーの重量比率を衝撃強度とした。 <圧縮強度>造粒品(80#オーバーかつ20#アンダ
ー品)を金属プレート上に、造粒品が重ならない様に均
一に散布し、その上に金属プレートを重ね、10kg/
cm2 の荷重を加えた後、造粒品中の80#アンダーの
重量比率を圧縮強度とした。 <吸水能>造粒物1gを400メッシュのナイロン袋
(10cm×10cm)に入れ、1リットルの0.9%
生理食塩水に30分浸漬する。30分後ナイロン袋を引
き上げ、15分水切り後、重量測定をし、ブランク補正
をして、造粒物1gが吸収した0.9%生理食塩水の重
量を吸水能とした。 <吸水速度(常圧)>図1に示される装置を用いて測定
した。1.0gの造粒物1を小穴のあいた支持板2の上
の不織布3上におく。下面より0.9%生理食塩水4を
接触させた時に造粒物1が10分間に0.9%生理食塩
水を吸水する量を吸水速度(常圧)とした。 <吸水速度(加圧)>図2に示される装置を用いて測定
した。1.0gの造粒物1を小穴のあいた支持板2の上
の不織布3上におく。さらに、周囲にガイド10を設
け、造粒物におもり11(12g/cm2 相当)をの
せ、下面より0.9%生理食塩水4を接触させた時に造
粒物1が20分間に0.9%生理食塩水を吸水する量を
吸水速度(加圧)とした。The thus dried fine pieces were crushed by a crusher, and a cross-linked product of sodium polyacrylate having a particle size of 40 to 325 mesh was collected. The water content of this resin is
It was about 3%. Example 1 Superabsorbent Resin 100 parts of superabsorbent resin obtained in Production Example 1 was mixed with 1 part of finely powdered silica (Fuji Silysia Chemical Ltd., “Sylysia #770”, average particle size 6 μm) with a ribbon blender. After that, paddle 64 parts of an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0% by weight (ethylene-acrylic acid copolymer component: average molecular weight 20,000, acrylic acid weight ratio 18%). The mixture was added dropwise using a mold mixer (the amount of added water corresponds to an amount at which the water content of the super absorbent polymer powder is 40% by weight).
Subsequently, the granulated product was dried in a rotary dryer while flowing a carrier gas under an atmosphere of 120° C. until the water content became 3% to obtain a granulated product A. Example 2 Superabsorbent Resin 100 Superabsorbent Resin 100 obtained in Production Example 1 was replaced with Superabsorbent Resin 100 obtained in Superabsorbent Resin Production Example 2.
By the same method as in Example 1 except that parts are used,
Granulated product B was obtained. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Example 3 Replacing 64 parts of an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0% by weight with an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 0.8% by weight A granulated product C was obtained by the same method as in Example 1 except that 62 parts of the emulsion was used. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Example 4 64 parts of an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0 wt% was replaced with an ethylene-acrylic acid copolymer solid content of 7.3 wt% oil-in-water emulsion. A granulated product D was obtained in the same manner as in Example 1 except that 67 parts of the emulsion was used. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Example 5 An ethylene-acrylic acid copolymer having an average molecular weight of 3,0
Granule E was obtained in the same manner as in Example 1 except that the amount of acrylic acid was changed to 00 and the weight ratio of acrylic acid was 18%. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Example 6 An ethylene-acrylic acid copolymer having an average molecular weight of 20,0
Granules F were obtained in the same manner as in Example 1 except that the weight ratio of acrylic acid and acrylic acid was changed to 00 and 7.0%, respectively. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Example 7 An oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0 wt% and an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.8 wt% were used instead of 64 parts of the oil-in-water emulsion. A granulated product G was obtained in the same manner as in Example 1 except that 51 parts of the emulsion was used. The amount of water added corresponds to the amount that the water content of the super absorbent polymer powder is 35% by weight. Example 8 64 parts of oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0 wt% was replaced with 64 parts of an ethylene-acrylic acid copolymer solid content of oil-in-water emulsion of 2.5 wt %. A granulated product H was obtained in the same manner as in Example 1 except that 78 parts of the emulsion was used. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 45% by weight. Example 9 Example 1 except that the amount of finely divided silica was changed to 0.5 part.
Granules I were obtained by the same method as described above. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Example 10 A granulated product J was obtained in the same manner as in Example 1 except that the amount of finely divided silica was changed to 5 parts. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Example 11 Superabsorbent Resin 1 part of finely powdered silica ("Sylysia #770" manufactured by Fuji Silysia Chemical Ltd., average particle size 6 µm) and ethylene-
Acrylic acid copolymer fine powder (average molecular weight 10,000,
Acrylic acid weight ratio 5%, average particle size 10 μm) 1 part was mixed by a ribbon blender, and then 62 parts of water was added dropwise using a paddle type mixer (the amount of water added was
It corresponds to the amount of water content of the super absorbent polymer powder of 40% by weight). Then, the carrier gas was made to flow with solid air and dried at 150° C. for 20 minutes to obtain a granulated product K. Comparative Example 1 Superabsorbent Resin 100 parts of the superabsorbent resin obtained in Production Example 1 was mixed with 1 part of finely powdered silica (Fuji Silysia Chemical Ltd., “Sylysia #770”, average particle size 6 μm) with a ribbon blender. After that, 62 parts of water was mixed while being dropped using a paddle type mixer (the amount of added water corresponds to an amount at which the water content of the super absorbent polymer powder is 40% by weight). Then, it was dried in a rotary polymerization dryer under a 120° C. atmosphere for 2 hours while flowing a carrier gas to obtain a granulated product L. Comparative Example 2 Ethylene-acrylic acid copolymer solid content was changed to 64 parts of oil-in-water emulsion of 3.0% by weight, and resin solid content of 3.
0% by weight PVA aqueous solution (PVA: saponification degree 88%, P
A granulated product M was obtained by the same method as in Example 1 except that 64 parts of VA content 94%) was used. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Comparative Example 3 A granulated product N was obtained in the same manner as in Example 1 except that finely divided silica was not mixed. Comparative Example 4 A granulated product O was obtained in the same manner as in Example 1 except that the amount of finely divided silica was changed to 15 parts. Comparative Example 5 Instead of 64 parts of an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0% by weight, an ethylene-acrylic acid copolymer solid content of 19.1% by weight was added. A granulated product P was obtained in the same manner as in Example 1 except that 76 parts of the emulsion was used. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. Comparative Example 6 Instead of 64 parts of an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0% by weight, an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 12.1% by weight was used. A granulated product Q was obtained in the same manner as in Example 1 except that 16 parts were used. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 15% by weight. Comparative Example 7 0.22% by weight in place of 64 parts of an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0% by weight
A granulated product R was obtained in the same manner as in Example 1 except that 872 parts of the oil-in-water emulsion of 1 was used. The amount of water added is such that the water content of the super absorbent polymer powder is 90% by weight.
Is equivalent to Comparative Example 8 Superabsorbent Resin 100 parts of the superabsorbent resin powder obtained in Production Example 1 was mixed with 64 parts of an oil-in-water emulsion having an ethylene-acrylic acid copolymer solid content of 3.0% by weight in a paddle type mixture. The mixture was added dropwise using a machine. Subsequently, 1 part of fine powder silica was mixed with a ribbon blender, but many fine particles were formed without dispersing the fine powder silica. The amount of water added corresponds to the amount by which the water content of the super absorbent polymer powder becomes 40% by weight. [Results] The following measurements were carried out on the superabsorbent resin powders obtained in the above-mentioned superabsorbent resin production examples, examples and comparative examples and the granulated products thereof. <Granulation Yield> The weight ratio of 80#-oversized product was determined as the granulation yield using a classification sieve. <Agglomeration rate> The weight ratio of the agglomerates having a diameter of 10 mm or more was defined as the agglomeration rate. <Impact strength> 20 g of granulated product (80# over and 20# under product) is put in a cylindrical container having an internal volume of 50 cc, and one plastic ball having a diameter of 10 mm is further put therein,
Shake vigorously for 5 minutes on a shaker, then
The weight ratio of #under is the impact strength. <Compressive strength> The granulated product (80# over and 20# under product) is evenly dispersed on the metal plate so that the granulated product does not overlap, and the metal plate is placed on top of it and 10 kg/
After applying a load of cm 2 , the weight ratio of 80# under in the granulated product was taken as the compressive strength. <Water absorption capacity> 1 g of the granulated product is put into a 400 mesh nylon bag (10 cm x 10 cm) and 0.9% of 1 liter
Immerse in physiological saline for 30 minutes. After 30 minutes, the nylon bag was pulled up, drained for 15 minutes, weighed, blank-corrected, and the weight of 0.9% physiological saline absorbed by 1 g of the granulated product was defined as the water absorption capacity. <Water absorption rate (normal pressure)> The water absorption rate was measured using the apparatus shown in FIG. 1.0 g of the granulated product 1 is placed on the non-woven fabric 3 on the support plate 2 having small holes. The water absorption rate (normal pressure) was defined as the amount of the granulated product 1 absorbing 0.9% physiological saline in 10 minutes when brought into contact with 0.9% physiological saline 4 from the lower surface. <Water absorption rate (pressurization)> It was measured using the apparatus shown in FIG. 1.0 g of the granulated product 1 is placed on the non-woven fabric 3 on the support plate 2 having small holes. Further, when a guide 10 was provided around the granulated product, a weight 11 (corresponding to 12 g/cm 2 ) was placed on the granulated product, and when 0.9% physiological saline 4 was brought into contact with the granulated product from the lower surface, the granulated product 1 was adjusted to 0. The amount of water absorbed by 9% physiological saline was defined as the water absorption speed (pressurization).
【0040】実施例1〜11および比較例1〜7で得ら
れた造粒物の造粒収率、塊状率、衝撃強度、圧縮強度、
吸水能、吸水速度(常圧)および吸水速度(加圧)およ
び高吸水性樹脂製造例1または2で得られたポリアクリ
ル酸ソーダ架橋物粉末の吸水能、吸水速度(常圧)およ
び吸水速度(加圧)を上記の方法により測定した結果
は、表1に示される通りである。Granulation yield, lump ratio, impact strength, compression strength of the granules obtained in Examples 1 to 11 and Comparative Examples 1 to 7,
Water absorption capacity, water absorption speed (normal pressure) and water absorption speed (pressurized), and water absorption capacity, water absorption speed (normal pressure) and water absorption speed of the crosslinked polyacrylic acid soda powder obtained in Production Example 1 or 2 The results of measuring (pressurization) by the above method are as shown in Table 1.
【0041】[0041]
【表1】 [Table 1]
【0042】[0042]
【表2】 [Table 2]
【0043】[0043]
【発明の効果】本発明の造粒法によれば、強い造粒強度
と適当な粒径を有し、粒度分布幅の狭い高吸水性樹脂造
粒物が高収率で得られ、衛生的で安全性が高く、更に、
造粒前後で高吸水性樹脂の吸水性能の実質的低下が見ら
れない造粒物が得られることは、「発明の概要」の項に
おいて前記したところである。According to the granulation method of the present invention, a highly water-absorbent resin granulated product having a strong granulation strength and an appropriate particle size and a narrow particle size distribution width can be obtained in a high yield, and is hygienic. Is highly safe, and
The fact that a granulated product in which the water absorption performance of the super absorbent polymer is not substantially reduced before and after granulation can be obtained is as described above in the section "Outline of the Invention".
【0044】従って、本発明の造粒法により得られた製
品は衛生用品、農園芸用品などの種々の用途に好適に使
用することができる。Therefore, the product obtained by the granulation method of the present invention can be suitably used for various purposes such as sanitary products and agricultural and horticultural products.
【図1】造粒物の吸水速度(常圧)を測定する装置の概
略図である。FIG. 1 is a schematic view of an apparatus for measuring a water absorption rate (normal pressure) of a granulated material.
【図2】造粒物の吸水速度(加圧)を測定する装置の概
略図である。FIG. 2 is a schematic view of an apparatus for measuring a water absorption rate (pressurization) of a granulated material.
1 造粒物(1g) 2 小穴のあいた支持板 3 不織布 4 0.9%食塩水 5 ビューレット 6 ゴム栓 7 バルブ 8 バルブ 9 空気入口 10 ガイド 11 おもり 1 Granule (1 g) 2 Support plate with small holes 3 Nonwoven fabric 4 0.9% saline solution 5 Burette 6 Rubber stopper 7 Valve 8 Valve 9 Air inlet 10 Guide 11 Weight
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊 藤 久 男 三重県四日市市東邦町1番地 三菱化学株 式会社四日市総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hisao Ito 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Co., Ltd. Yokkaichi Research Institute
Claims (4)
機粉末0.1〜10重量部、エチレン‐アクリル酸共重
合体の粉末またはエマルション0.05〜10重量部お
よび前記樹脂粉末の含水率が20〜70重量%となるよ
うな量の水、を混合し、次いで該混合物を乾燥させるこ
とを特徴とする、高吸水性樹脂粉末の造粒法。1. To 100 parts by weight of superabsorbent resin powder, 0.1 to 10 parts by weight of inorganic powder, 0.05 to 10 parts by weight of ethylene-acrylic acid copolymer powder or emulsion and water content of the resin powder. A method for granulating a super absorbent polymer powder, which comprises mixing water in an amount such that the ratio is 20 to 70% by weight, and then drying the mixture.
である、請求項1に記載の高吸水性樹脂粉末の造粒法。2. The method for granulating a super absorbent polymer powder according to claim 1, wherein the ethylene-acrylic acid copolymer is in the form of fine powder.
マルションである、請求項1に記載の高吸水性樹脂粉末
の造粒法。3. The method for granulating a super absorbent polymer powder according to claim 1, wherein the ethylene-acrylic acid copolymer is an aqueous emulsion.
し、この混合物にエチレン‐アクリル酸共重合体および
水を混合する、請求項1〜3のいずれか1項に記載の高
吸水性樹脂粉末の造粒法。4. The highly water-absorbent resin according to claim 1, wherein an inorganic powder is mixed with the highly water-absorbent resin powder, and the ethylene-acrylic acid copolymer and water are mixed with the mixture. Of powdery resin powder.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25071494A JPH08113653A (en) | 1994-10-17 | 1994-10-17 | Granulation method for super absorbent polymer powder |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25071494A JPH08113653A (en) | 1994-10-17 | 1994-10-17 | Granulation method for super absorbent polymer powder |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH08113653A true JPH08113653A (en) | 1996-05-07 |
Family
ID=17211962
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25071494A Pending JPH08113653A (en) | 1994-10-17 | 1994-10-17 | Granulation method for super absorbent polymer powder |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH08113653A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006101271A1 (en) * | 2005-03-25 | 2006-09-28 | Nippon Shokubai Co., Ltd. | Method of manufacturing water-absorbent resin agglomerates, and water-absorbent resin agglomerates |
| KR20170089817A (en) * | 2014-10-08 | 2017-08-04 | 주식회사 엘지화학 | Preparation method of super absorbent polymer granule |
| EP3009474B1 (en) | 2014-10-16 | 2017-09-13 | Evonik Degussa GmbH | Method for the production of water soluble polymers |
| US10662296B2 (en) | 2015-10-14 | 2020-05-26 | Lg Chem, Ltd. | Super absorbent polymer granules and preparation method thereof |
| EP3502168B1 (en) * | 2017-06-30 | 2020-12-30 | LG Chem, Ltd. | Method for preparing super absorbent resin, and super absorbent resin obtained by same method |
| WO2023100479A1 (en) | 2021-11-30 | 2023-06-08 | 住友精化株式会社 | Water absorbent resin particles and absorbent |
-
1994
- 1994-10-17 JP JP25071494A patent/JPH08113653A/en active Pending
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006101271A1 (en) * | 2005-03-25 | 2006-09-28 | Nippon Shokubai Co., Ltd. | Method of manufacturing water-absorbent resin agglomerates, and water-absorbent resin agglomerates |
| JP2008533213A (en) * | 2005-03-25 | 2008-08-21 | 株式会社日本触媒 | Method for producing water-absorbent resin granulated product and water-absorbent resin granulated product |
| KR20170089817A (en) * | 2014-10-08 | 2017-08-04 | 주식회사 엘지화학 | Preparation method of super absorbent polymer granule |
| US10040911B2 (en) | 2014-10-08 | 2018-08-07 | Lg Chem, Ltd. | Method of preparing superabsorbent polymer granules |
| EP3009474B1 (en) | 2014-10-16 | 2017-09-13 | Evonik Degussa GmbH | Method for the production of water soluble polymers |
| US10662296B2 (en) | 2015-10-14 | 2020-05-26 | Lg Chem, Ltd. | Super absorbent polymer granules and preparation method thereof |
| US10927223B2 (en) | 2015-10-14 | 2021-02-23 | Lg Chem, Ltd. | Super absorbent polymer granules and preparation method thereof |
| EP3502168B1 (en) * | 2017-06-30 | 2020-12-30 | LG Chem, Ltd. | Method for preparing super absorbent resin, and super absorbent resin obtained by same method |
| US11028237B2 (en) | 2017-06-30 | 2021-06-08 | Lg Chem, Ltd. | Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby |
| WO2023100479A1 (en) | 2021-11-30 | 2023-06-08 | 住友精化株式会社 | Water absorbent resin particles and absorbent |
| KR20240117097A (en) | 2021-11-30 | 2024-07-31 | 스미토모 세이카 가부시키가이샤 | Absorbent resin particles and absorbents |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5369148A (en) | Method for continuous agglomeration of an absorbent resin powder and apparatus therefor | |
| EP0450922B1 (en) | Method for production of fluid stable aggregate | |
| JP6931744B2 (en) | Manufacturing method of water-absorbent resin | |
| JP4587327B2 (en) | Swellable hydrogel-forming polymer with high permeability | |
| JP5977839B2 (en) | Polyacrylic acid (salt) water-absorbing resin and method for producing the same | |
| US7553903B2 (en) | Swellable hydrogel-forming polymers having a low fraction of fines | |
| JPH07242709A (en) | Preparation of water-absorbent resin | |
| CN107722329A (en) | Polyacrylic acid water-absorbent resin, composition and its manufacture method | |
| JPH0710923B2 (en) | Super absorbent polymer granulation method | |
| JP6577572B2 (en) | Method for producing particulate water-absorbing agent mainly composed of polyacrylic acid (salt) water-absorbing resin | |
| JP2017502094A (en) | Method for producing absorbent polymer particles by suspension polymerization | |
| CN102066431A (en) | Method for continuously producing water-absorbing polymer particles | |
| JP2018510950A (en) | Method for producing superabsorbent particles | |
| CN110372891A (en) | The manufacturing method of polyacrylic water-absorbing resin | |
| JPH07224204A (en) | Production of water-absorbing resin | |
| JPH02284927A (en) | Granulation of highly water-absorbing resin | |
| CN111116947A (en) | Method for producing polyacrylic acid water-absorbent resin | |
| JPH04246403A (en) | Production of highly water-absorptive resin | |
| JPH0790108A (en) | Granulation method of super absorbent polymer | |
| CN108164740A (en) | Manufacturing method with high rate of liquid aspiration water-absorbing resins | |
| JP7342035B2 (en) | How to pneumatically transport superabsorbent particles | |
| JPH08113653A (en) | Granulation method for super absorbent polymer powder | |
| CN108192013A (en) | The manufacturing method of polyacrylic acid water-absorbent resin | |
| CN107828079A (en) | Water-absorbing resins and its manufacture method | |
| US20240253012A1 (en) | Poly(meth)acrylic acid (salt) water-absorbing resin and absorbent article |