JPH08139985A - Automatic focus control method and circuit, and scanning infrared imager - Google Patents
Automatic focus control method and circuit, and scanning infrared imagerInfo
- Publication number
- JPH08139985A JPH08139985A JP6272122A JP27212294A JPH08139985A JP H08139985 A JPH08139985 A JP H08139985A JP 6272122 A JP6272122 A JP 6272122A JP 27212294 A JP27212294 A JP 27212294A JP H08139985 A JPH08139985 A JP H08139985A
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- scanning
- optical system
- scanning mirror
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Focusing (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
(57)【要約】
【目的】 例えば、リモートセンシングで使用する自動
焦点制御方法と回路及び走査型赤外線映像装置に関し、
有効走査期間中は焦点が常に無限遠に合っている状態を
保つ様にすることを目的とする。
【構成】 光学系と走査鏡を用いて、外部からの赤外線
を赤外線検知器に入射させ、赤外線検知器で入射赤外線
から映像信号を取り出す走査型赤外線映像装置におい
て、走査鏡の無効走査期間中、光学系に反射手段を挿入
し、赤外線検知器自身が放射し、反射手段で反射されて
戻ってきた赤外線から取り出した赤外線検知器自身の映
像信号のレベルが、最大となる様に光学系と赤外線検知
器との間隔を自動的に制御するように構成する。
(57) [Summary] [Objective] For example, regarding an automatic focus control method and circuit used in remote sensing, and a scanning infrared imaging device,
The objective is to keep the focus always at infinity during the effective scanning period. [Configuration] In a scanning infrared imaging device, which uses an optical system and a scanning mirror to cause infrared rays from the outside to enter an infrared detector, and the infrared detector extracts an image signal from the incident infrared light, during a scanning mirror invalid scanning period, Insert the reflection means into the optical system, the infrared detector itself emits the radiation, and the infrared detector itself picks up from the infrared rays reflected by the reflection means and returned so that the level of the image signal of the infrared detector itself becomes maximum It is configured to automatically control the distance from the detector.
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、リモートセン
シングで使用する自動焦点制御方法と回路及び走査型赤
外線映像装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focus control method and circuit used in remote sensing, and a scanning infrared imager.
【0002】走査型赤外線映像装置は、例えば、航空機
や人工衛星などに搭載された観測装置によるリモートセ
ンシングや遠方監視を行なう際に用いられるが、周囲温
度の変動や振動などの影響を受けても、映像信号を取得
する間は装置の焦点が無限遠に合った状態を保っている
ことが必要である。A scanning infrared imager is used, for example, when remote sensing or remote monitoring is performed by an observation device mounted on an aircraft or an artificial satellite, but it is not affected by fluctuations in ambient temperature or vibrations. , It is necessary to keep the focus of the device at infinity while acquiring the video signal.
【0003】[0003]
【従来の技術】図5は従来例の全体系統図、図6は走査
鏡動作説明図である。以下、図5、図6の説明を行な
う。2. Description of the Related Art FIG. 5 is an overall system diagram of a conventional example, and FIG. 6 is a scanning mirror operation explanatory diagram. The description of FIGS. 5 and 6 will be given below.
【0004】図5において、無限遠からの赤外線(無限
遠だから平行光束の状態にある)はレンズL1, L2で構成
される第1の光学系を通り、走査鏡11で光路が曲げら
れ、レンズL3を通って赤外線検知器55で焦点を結ぶ。In FIG. 5, infrared rays from infinity (which are in a state of parallel light flux because of infinity) pass through a first optical system composed of lenses L 1 and L 2 , and an optical path is bent by a scanning mirror 11. Focus through infrared detector 55 through lens L 3 .
【0005】そこで、赤外線検知器は赤外線信号を電気
信号に変換して映像信号を取り出すが、この信号は映像
増幅器54を介して外部に送出して表示する。なお、赤外
線検知器55は、例えば、複数の赤外線検知素子が一列に
配置されているが、走査鏡を走査することにより、二次
元的な映像信号が得られる。Therefore, the infrared detector converts the infrared signal into an electric signal to take out a video signal, and this signal is sent to the outside through the video amplifier 54 for display. In the infrared detector 55, for example, a plurality of infrared detecting elements are arranged in a line, but a two-dimensional video signal can be obtained by scanning the scanning mirror.
【0006】さて、レンズL1, L2の部分は、入射した平
行光束の赤外線がそのままの状態で放射されるのでアフ
ォーカルレンズ系、レンズL3の部分は平行光束を焦点面
に結像させるのでイメージャレンズ系とそれぞれ云われ
ている。Since the incident parallel rays of infrared rays are radiated as they are from the lenses L 1 and L 2 , the afocal lens system and the portion of the lens L 3 form the parallel rays on the focal plane. Therefore, it is called an imager lens system.
【0007】また、走査鏡駆動部分4はクロック(以
下,駆動パルスと云う)を図示しないパルスモータ付き
の走査鏡11に送出するので、パルスモータが回転し、こ
れに対応して走査鏡も図6に示す様に走査角度が、例え
ば、±数度の範囲で直線的に変化する。Further, since the scanning mirror driving portion 4 sends a clock (hereinafter referred to as a driving pulse) to the scanning mirror 11 having a pulse motor (not shown), the pulse motor rotates, and the scanning mirror correspondingly rotates. As shown in 6, the scanning angle linearly changes within a range of ± several degrees.
【0008】なお、変化速度は有効走査期間(映像信号
を取得する期間)の間は、例えば、3パルスで点a →点
b まで走査するが、無効走査期間( 走査鏡を初期位置a
に戻す期間) の間は、例えば、1パルスと有効走査期間
の間よりも速い速度で戻すが、この時は駆動パルスの位
相を変えて駆動電流を逆転させる。During the effective scanning period (the period during which a video signal is acquired), the changing speed is, for example, 3 pulses at point a → point.
Scan up to b, but invalid scan period (scanning mirror at initial position a
During the period (return period), for example, the pulse is returned at a faster speed than during one pulse and the effective scanning period. At this time, the phase of the drive pulse is changed to reverse the drive current.
【0009】次に、赤外線検知器55における焦点の調整
は、オペレータが表示された映像を見ることにより焦点
ズレを発見し、図5中のつまみ53を手動またはリモコン
で回してギアを回転する。ここで、下部鏡胴52の外側に
切ってあるネジは上部鏡胴51の内側に切ってあるネジと
噛み合っているので、ギアを回転させることにより下部
鏡胴は回転しながら上部鏡胴51の中に入ったり、また
は、中から出たりする(上下の矢印参照) 。Next, in the adjustment of the focus in the infrared detector 55, the operator finds the focus shift by looking at the displayed image, and the knob 53 in FIG. 5 is rotated manually or by a remote controller to rotate the gear. Here, the screw cut on the outside of the lower lens barrel 52 meshes with the screw cut on the inside of the upper lens barrel 51, so by rotating the gear, the lower lens barrel rotates while the lower lens barrel rotates. Move in and out (see up and down arrows).
【0010】これにより、レンズL3と赤外線検知器55と
の間の間隔が変化するので、オペレータは表示された映
像がはっきり見える状態でつまみを固定していた。しか
し、この様な方法では温度変動、機械的ズレなどでレン
ズL3 (焦点調整に最も影響が大きい) が最適位置からズ
レる度にオペレータが焦点を合わせる必要があった。As a result, the distance between the lens L 3 and the infrared detector 55 changes, so that the operator fixed the knob while the displayed image was clearly visible. However, in such a method, the operator needs to focus each time the lens L 3 (which has the greatest influence on the focus adjustment) deviates from the optimum position due to temperature fluctuations, mechanical deviations, and the like.
【0011】[0011]
【発明が解決しようとする課題】上記の様に、オペレー
タが表示された映像を見て焦点ズレを発見し、レンズL3
と赤外線検知器との間の間隔を手動で調整してこのズレ
を最小にしなければならなかった。As described above, the operator finds the defocus by looking at the displayed image, and the lens L 3
This gap had to be minimized by manually adjusting the spacing between the and infrared detectors.
【0012】特に、車両に搭載した時は振動で焦点ズレ
がより頻繁に発生するので、焦点調整の回数がより多く
なると云う課題があった。本発明は、有効走査期間中は
焦点が常に無限遠に合っている状態を保つ様にすること
を目的とする。In particular, when mounted on a vehicle, there is a problem that the number of times of focus adjustment is increased because the focus shifts more frequently due to vibration. It is an object of the present invention to keep the focus always at infinity during the effective scanning period.
【0013】[0013]
【課題を解決するための手段】第1の本発明は、走査鏡
の無効走査期間中、光学系に反射手段を挿入する。そこ
で、赤外線検知器自身が放射し、該反射手段で反射され
て戻ってきた赤外線から取り出した赤外線検知器自身の
映像信号のレベルが、最大となる様に該光学系と該赤外
線検知器との間隔を自動的に制御する様にした。According to a first aspect of the present invention, a reflecting means is inserted into an optical system during an invalid scanning period of a scanning mirror. Therefore, the infrared detector itself radiates, and the level of the video signal of the infrared detector itself extracted from the infrared rays returned by being reflected by the reflecting means is maximized between the optical system and the infrared detector. The interval is automatically controlled.
【0014】第2の本発明は、外部からの赤外線を平行
光束にする第1の光学系と、該平行光束の赤外線に対し
て、鏡面角度をθ0 からθ1 まで直線的に変化すること
を繰り返す走査鏡部と、該走査鏡部で光路が曲げられた
平行光束の赤外線を結像させる第2の光学系と、結像し
た赤外線を電気信号に変換して映像信号を取り出す赤外
線検知器を有する走査型赤外線映像装置において、該走
査鏡の鏡面角度がθ1 からθ0 に戻る無効走査期間中
は、入射した平行光束の赤外線を反射させる反射手段
と、赤外線検知器自身が放射し、該反射手段で反射され
て戻ってきた赤外線から取り出した赤外線検知器自身の
映像信号のレベルが最大となる様に、該第2の光学系と
赤外線検知器との間隔を自動的に制御する自動焦点制御
手段を設ける様にした。According to a second aspect of the present invention, a first optical system for converting an infrared ray from the outside into a parallel luminous flux, and a mirror surface angle linearly changing from θ 0 to θ 1 with respect to the infrared ray of the parallel luminous flux. And a second optical system for forming an image of infrared rays of a parallel light flux whose optical path is bent by the scanning mirror section, and an infrared detector for converting the formed infrared rays into an electric signal and extracting a video signal. In the scanning infrared image device having, during the invalid scanning period when the mirror surface angle of the scanning mirror returns from θ 1 to θ 0 , a reflection means for reflecting the infrared rays of the incident parallel light flux, and the infrared detector itself emits, An automatic control that automatically controls the interval between the second optical system and the infrared detector so that the level of the video signal of the infrared detector itself extracted from the infrared light reflected by the reflecting means and returned is maximized. Focus control means is provided.
【0015】第3の本発明は、上記の反射手段を、走査
鏡の有効走査期間中は赤外線をそのまま通過させるが、
無効走査期間中は赤外線検知器自身が放射した赤外線を
反射する構造にした無限遠基準板と、走査鏡の走査動作
に同期して該無限遠基準板を回転させる駆動部分とで構
成した。According to a third aspect of the present invention, infrared rays pass through the reflecting means as they are during the effective scanning period of the scanning mirror.
During the invalid scanning period, the infinity reference plate has a structure that reflects infrared rays emitted by the infrared detector itself, and a drive portion that rotates the infinity reference plate in synchronization with the scanning operation of the scanning mirror.
【0016】第4の本発明は、走査型赤外線映像装置に
該自動焦点制御回路を設け、走査鏡の有効期間中は焦点
が常に無限遠に合っている状態を保つ構成にした。According to a fourth aspect of the present invention, the scanning infrared imager is provided with the automatic focus control circuit, and the focus is always kept at infinity during the effective period of the scanning mirror.
【0017】[0017]
【作用】第1の本発明は光学系に走査鏡の他に反射手段
を設ける。ここで、反射手段は、例えば、金属の円板に
複数の切り込み部を設けたもので、通常の映像を取得す
べき期間( 有効走査期間) 中は、入射した平行光束の赤
外線は切り込み部をそのまま通過して走査鏡で光路が曲
げられる。しかし、走査鏡が初期位置に戻る無効走査期
間中は、金属板の部分となるので赤外線は完全に反射さ
れる。In the first aspect of the present invention, the optical system is provided with the reflecting means in addition to the scanning mirror. Here, the reflecting means is, for example, a metal disk provided with a plurality of cutouts, and during the period in which a normal image is to be acquired (effective scanning period), the infrared rays of the incident parallel light flux cutouts. The optical path is bent by the scanning mirror while passing through as it is. However, during the invalid scanning period when the scanning mirror returns to the initial position, it becomes a part of the metal plate, so that the infrared rays are completely reflected.
【0018】つまり、有効走査期間中は切り込み部分、
無効走査期間中は金属板部分となる様に無限遠基準板の
回転動作を走査鏡の振動動作に同期させる。これによ
り、無効走査期間中は、極低温に冷却された赤外線検知
器自身が放射し、反射手段で反射されて戻って来た赤外
線を検知して、自分自身の映像信号を取り出す。That is, during the effective scanning period, the cut portion,
During the invalid scanning period, the rotating operation of the reference plate at infinity is synchronized with the oscillating operation of the scanning mirror so that it becomes a metal plate portion. As a result, during the invalid scanning period, the infrared ray detector itself cooled to an extremely low temperature emits the infrared ray, which is reflected by the reflecting means and returned to detect the image signal of itself.
【0019】この時、焦点が合っていないと、戻って来
た赤外線の一部分しか検知できず、映像信号のレベルが
低下するので、このレベルが最大となる様にイメージャ
レンズ系L3と赤外線検知器との間隔を自動的に制御する
様にした。At this time, if it is out of focus, only a part of the returned infrared rays can be detected, and the level of the video signal is lowered. Therefore, the imager lens system L 3 and infrared ray detection are performed so that this level becomes maximum. The distance to the vessel is automatically controlled.
【0020】第2の本発明は、第1の光学系、走査鏡
部、第2の光学系、赤外線検知器を有する走査型赤外線
映像装置に、無効走査期間中は入射した赤外線を反射さ
せる反射手段と自動焦点制御手段を設ける。A second aspect of the present invention is a reflection device for reflecting infrared rays incident on a scanning infrared image device having a first optical system, a scanning mirror section, a second optical system and an infrared detector during an invalid scanning period. Means and automatic focus control means are provided.
【0021】そして、自動焦点制御手段は、赤外線検知
器自身が放射し、反射手段を介して戻って来た赤外線か
ら取り出した自分自身の映像信号のレベルが最大となる
様に、第2の光学系と赤外線検知器との間隔を自動的に
制御する構成にした。Then, the automatic focus control means uses the second optical element so that the level of the video signal of its own extracted from the infrared rays radiated by the infrared detector itself and returned through the reflecting means is maximized. The system is configured to automatically control the distance between the system and the infrared detector.
【0022】第3の本発明は、反射手段を、無限遠基準
板と駆動部分とで構成した。第4の本発明は、走査型赤
外線映像装置に自動焦点制御回路を設けて、走査鏡の有
効走査期間中は焦点が常に無限遠に合っている状態を保
つ構成にした。In the third aspect of the present invention, the reflecting means is composed of the infinity reference plate and the driving portion. According to a fourth aspect of the present invention, the scanning infrared imager is provided with an automatic focus control circuit to keep the focus always at infinity during the effective scanning period of the scanning mirror.
【0023】[0023]
【実施例】図1は第1〜第4の本発明の実施例の要部構
成図、図2は図1の動作説明図で、(a) は有効/無効走
査期間中に赤外線検知器が送出する出力信号の説明図、
(b) は無限遠基準板の説明図である。図3は図1中の基
準板駆動部分の要部構成図、図4は図1中の最大値検出
部分の要部構成図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of the essential parts of the first to fourth embodiments of the present invention, and FIG. 2 is a diagram for explaining the operation of FIG. Explanatory diagram of output signal to be sent,
(b) is an explanatory view of an infinity reference plate. FIG. 3 is a configuration diagram of a main part of a reference plate driving part in FIG. 1, and FIG. 4 is a configuration diagram of a main part of a maximum value detection part in FIG.
【0024】ここで、レンズL1, L2は第1の光学系、走
査鏡11, 走査鏡駆動部分12は走査鏡部1の構成部分、無
限遠基準板21, 基準板駆動部分22、モータ23は反射手段
2の構成部分、最大値検出部分31, モータ32, ギア 33
は自動焦点制御手段3の構成部分である。また、全図を
通じて同一符号は同一対象物を示す。Here, the lenses L 1 and L 2 are the first optical system, the scanning mirror 11 and the scanning mirror driving portion 12 are the constituent portions of the scanning mirror portion 1, the infinity reference plate 21, the reference plate driving portion 22 and the motor. Reference numeral 23 is a component part of the reflection means 2, a maximum value detection part 31, a motor 32, a gear 33.
Is a component of the automatic focus control means 3. In addition, the same reference numerals denote the same objects throughout the drawings.
【0025】以下、図1〜図4を説明するが、上記で詳
細説明した部分については概略説明し、本発明の部分に
ついて詳細説明する。先ず、図1中の反射手段2の構成
要素である無限遠基準板21は図2(b) に示す様に、例え
ば、直径10cm程度の鏡面加工した金属板で、無効走査期
間中に入射した赤外線を反射する反射部分211 と有効走
査期間中に入射した赤外線をそのまま通過させる切り欠
き部分212 から構成されている。1 to 4, the parts described in detail above will be briefly described, and the parts of the present invention will be described in detail. First, as shown in FIG. 2 (b), the infinity reference plate 21 which is a constituent element of the reflection means 2 in FIG. 1 is, for example, a mirror-finished metal plate having a diameter of about 10 cm, which is incident during the invalid scanning period. It is composed of a reflection portion 211 that reflects infrared rays and a notch portion 212 that allows the infrared rays that have been incident during the effective scanning period to pass therethrough.
【0026】そして、図3に示す様に、無限遠基準板21
とエンコーダ221 がモータ23の軸に同心円状に取り付け
られている。今、モータ23が回転するとエンコーダ221
と無限遠基準板も回転するが、エンコーダ221 から回転
数に対応するパルスが分周部分226 に送られるが、この
パルスの周期は走査鏡駆動部分12からのクロックの周期
よりも短くなっている。Then, as shown in FIG. 3, the infinity reference plate 21
And an encoder 221 are concentrically attached to the shaft of the motor 23. Now, when the motor 23 rotates, the encoder 221
The reference plate at infinity also rotates, but a pulse corresponding to the number of rotations is sent from the encoder 221 to the frequency dividing portion 226, but the period of this pulse is shorter than the period of the clock from the scanning mirror driving portion 12. .
【0027】分周部分226 はカウンタタイプのもので、
走査鏡駆動部分からの同期信号の印加タイミングによっ
て分周比mが決まるが(mの値は、上記のパルス周期が
走査鏡駆動分からのクロックの周期と略、同じ程度にな
る様にする)、エンコーダ221 が送出したパルスをm分
周して位相検波器225 に送出する。The frequency dividing portion 226 is of a counter type,
The frequency division ratio m is determined by the application timing of the synchronizing signal from the scanning mirror driving portion (the value of m is set so that the above pulse period is approximately the same as the clock period from the scanning mirror driving portion). The pulse sent by the encoder 221 is frequency-divided by m and sent to the phase detector 225.
【0028】位相検出器225 には、走査鏡駆動部分から
のクロックも加えられているので、位相差に対応する出
力を取り出し、低域通過フィルタ224 を介して制御電圧
として電圧制御発振器223 に加える。Since the clock from the scanning mirror driving section is also added to the phase detector 225, an output corresponding to the phase difference is taken out and applied to the voltage controlled oscillator 223 as a control voltage via the low pass filter 224. .
【0029】電圧制御発振器223 は制御電圧が、例え
ば、0となる様なパルスを増幅器222を介してモータ23
に加える。これにより、モータの回転数が制御され、常
に、走査鏡の動作と同期することになり、図6に示す様
に、有効走査終了位置bから初期位置aまでの無効走査
中は反射状態になる。The voltage-controlled oscillator 223 outputs a pulse whose control voltage is, for example, 0 to the motor 23 via the amplifier 222.
Add to As a result, the rotation speed of the motor is controlled and is always synchronized with the operation of the scanning mirror, and as shown in FIG. 6, it is in the reflective state during the invalid scanning from the effective scanning end position b to the initial position a. .
【0030】さて、上記の様に、無効走査期間中は無限
遠基準板は反射状態となるきで、図1に示すアフォーカ
ルレンズL1, L2を通った平行光束の赤外線は反射され
る。一方、赤外線検知器55は、例えば、約80K の極低温
環境下にあるので、この検知器自身から約80K に対応す
る赤外線を放射するが、この赤外線はイメージャレンズ
L3、走査鏡11を介して無限遠基準板で反射され、再び赤
外線検知器に加えられて自分自身の映像信号が取り出さ
れる。そして、この映像信号は映像増幅器で増幅され、
表示系で表示される。As described above, the reference plate at infinity is in a reflecting state during the invalid scanning period, and the infrared rays of the parallel light flux passing through the afocal lenses L 1 and L 2 shown in FIG. 1 are reflected. . On the other hand, the infrared detector 55 emits infrared rays corresponding to about 80K from the detector itself because it is in an extremely low temperature environment of about 80K, for example.
L 3 is reflected by the reference plate at infinity via the scanning mirror 11 and again applied to the infrared detector to take out the image signal of itself. Then, this video signal is amplified by a video amplifier,
It is displayed in the display system.
【0031】なお、走査鏡は上記の様に走査しているの
で、走査の中心に来た時( 赤外線検知器が走査の中心に
配置されてきるとする) 、赤外線検知器は自分自身の赤
外線を受けて図2(a) の右側に示す様な下向きの映像が
得られる。Since the scanning mirror scans as described above, when the center of scanning is reached (the infrared detector is placed at the center of scanning), the infrared detector detects its own infrared rays. Upon reception, a downward image as shown on the right side of Fig. 2 (a) is obtained.
【0032】これは、走査の中心でない周辺部分、例え
ば、レンズの鏡胴や装置内部などは常温環境( 例えば、
300K )にあるのに対して、赤外線検知装置は極低温環境
下にあるので、後者のレベルは前者のレベルよりも下が
る。This is because the peripheral portion that is not the center of scanning, for example, the lens barrel or the inside of the apparatus, is at a normal temperature environment (for example,
The temperature of the latter is lower than that of the former because the infrared detector is in a cryogenic environment.
【0033】また、焦点が合っていないと、反射された
検知器自身の赤外線が広がる為、平均すると温度が高く
なって点線の様になるが、この様な状態を図1の最大値
検出部分31が検出して、映像増幅器の出力が最大となる
様にイメージャレンズL3の位置を制御する。When the focus is not in focus, the infrared rays reflected by the detector itself spread, so that the temperature rises on average and looks like a dotted line. 31 detects and controls the position of the imager lens L 3 so that the output of the video amplifier becomes maximum.
【0034】ここで、最大値検出部分は図4に示す様な
構成になっており、入力した映像増幅器の出力の一部を
A/D 変換部分311 でディジタル信号に変換して現在値レ
ジスタ312 に順次、格納する。Here, the maximum value detection part has a structure as shown in FIG. 4, and a part of the output of the input image amplifier is input.
The A / D conversion unit 311 converts it to a digital signal and stores it in the current value register 312 sequentially.
【0035】一方、最大値レジスタ314 には現在までの
ディジタル信号中の最大値が格納されており、この最大
値が比較部分313 に印加している。そこで、比較部分
は、走査鏡駆動部分から検知器像検出用同期信号が印加
した時点の現在のディジタル信号の値と最大値との大小
を比較し、比較結果に対応して増大または減少を示す信
号を駆動極性発生部分315 送出すると共に、比較結果が 現在値レジスタの出力>最大値レジスタの出力 の時は最大レジスタ314 に最大値記憶指令を送出して現
在値レジスタの出力を最大値レジスタに格納して最大値
を更新する。On the other hand, the maximum value register 314 stores the maximum value of the digital signals up to the present, and this maximum value is applied to the comparison portion 313. Therefore, the comparison portion compares the magnitude of the current digital signal and the maximum value at the time when the detector image detection synchronizing signal is applied from the scanning mirror driving portion, and indicates an increase or a decrease according to the comparison result. The signal is sent to the drive polarity generation part 315, and when the comparison result is the output of the current value register> the output of the maximum value register, the maximum value storage command is sent to the maximum register 314 to output the output of the current value register to the maximum value register. Store and update maximum value.
【0036】駆動極性発生部分315 は、入力する比較結
果に対応する極性の駆動信号を発生して図1に示すモー
タ32に印加するので、モータは駆動信号の極性に対応し
て回転方向を変化し、赤外線検知器自身の映像信号の電
圧が下方に最大となり、イメージャレンズL3の焦点が赤
外線検知器上で結ぶ様になる。Since the drive polarity generating section 315 generates a drive signal having a polarity corresponding to the input comparison result and applies it to the motor 32 shown in FIG. 1, the motor changes its rotation direction in accordance with the polarity of the drive signal. However, the voltage of the video signal of the infrared detector itself becomes maximum downward, and the focus of the imager lens L 3 comes to be focused on the infrared detector.
【0037】つまり、赤外線検知器の像が最大となる様
にイメージャレンズが駆動され、装置全体として、常
に、無限遠に焦点が合った赤外線映像が得られる。That is, the imager lens is driven so that the image of the infrared detector is maximized, and an infrared image focused at infinity is always obtained as the entire apparatus.
【0038】[0038]
【発明の効果】上記で詳細説明した様に本発明によれ
ば、有効走査期間中は焦点が常に無限遠に合っている状
態を保つ様にすることができると云う効果がある。As described in detail above, according to the present invention, it is possible to keep the focus always at infinity during the effective scanning period.
【図1】第1〜第4の本発明の実施例の要部構成図であ
る。FIG. 1 is a main part configuration diagram of an embodiment of first to fourth embodiments of the present invention.
【図2】図1の動作説明図で、(a) は有効/無効走査期
間中に赤外線検知器が送出する出力信号の説明図、(b)
は無限遠基準板の説明図である。2 is an explanatory diagram of the operation of FIG. 1, (a) is an explanatory diagram of an output signal sent by an infrared detector during a valid / invalid scanning period, (b)
FIG. 3 is an explanatory diagram of an infinity reference plate.
【図3】図1中の基準板駆動部分の要部構成図である。FIG. 3 is a main part configuration diagram of a reference plate driving portion in FIG. 1.
【図4】図1中の最大値検出部分の要部構成図である。FIG. 4 is a main part configuration diagram of a maximum value detection part in FIG. 1.
【図5】従来例の全体系統図である。FIG. 5 is an overall system diagram of a conventional example.
【図6】走査鏡動作説明図である。FIG. 6 is an explanatory diagram of a scanning mirror operation.
1 走査鏡部 2 反射手段 3 自動焦点制御手段 11 走査鏡11 12 走査鏡駆動部分 21 無限遠基
準板 22 基準板駆動部分 23, 32 モー
タ 31 最大値検出部分 33 ギアDESCRIPTION OF SYMBOLS 1 Scanning mirror section 2 Reflecting means 3 Automatic focus control means 11 Scanning mirror 11 12 Scanning mirror drive section 21 Infinity reference plate 22 Reference plate drive section 23, 32 Motor 31 Maximum value detection section 33 Gear
Claims (4)
外線を赤外線検知器に入射させ、該赤外線検知器で入射
赤外線から映像信号を取り出す走査型赤外線映像装置に
おいて、 該走査鏡の無効走査期間中、該光学系に反射手段を挿入
し、赤外線検知器自身が放射し、該反射手段で反射され
て戻ってきた赤外線から取り出した赤外線検知器自身の
映像信号のレベルが、最大となる様に該光学系と該赤外
線検知器との間隔を自動的に制御する様にしたことを特
徴とする自動焦点制御方法。1. A scanning infrared imager, wherein an infrared ray from the outside is made incident on an infrared detector using an optical system and a scanning mirror, and an image signal is taken out from the incident infrared ray at the infrared detector. During the scanning period, the reflection means is inserted into the optical system, the infrared detector itself emits the radiation, and the level of the image signal of the infrared detector itself extracted from the infrared rays reflected by the reflection means and returned to the maximum level. The automatic focus control method is characterized in that the distance between the optical system and the infrared detector is automatically controlled.
の光学系と、該平行光束の赤外線に対して、鏡面角度を
θ0 からθ1 まで直線的に変化することを繰り返す走査
鏡部と、該走査鏡部で光路が曲げられた平行光束の赤外
線を結像させる第2の光学系と、結像した赤外線を電気
信号に変換して映像信号を取り出す赤外線検知器を有す
る走査型赤外線映像装置において、 該走査鏡の鏡面角度がθ1 からθ0 に戻る無効走査期間
中は、入射した平行光束の赤外線を反射させる反射手段
と、赤外線検知器自身が放射し、該反射手段で反射され
て戻ってきた赤外線から取り出した赤外線検知器自身の
映像信号のレベルが最大となる様に、該第2の光学系と
赤外線検知器との間隔を自動的に制御する自動焦点制御
手段を設けたことを特徴とする自動焦点制御回路。2. A first parallel beam of infrared rays from the outside
Optical system, a scanning mirror section that repeats linearly changing the mirror surface angle from θ 0 to θ 1 with respect to the infrared rays of the parallel light flux, and infrared rays of the parallel light flux whose optical path is bent by the scanning mirror section. In the scanning infrared image device having a second optical system for forming an image and an infrared detector for converting the formed infrared light into an electric signal to take out an image signal, the mirror surface angle of the scanning mirror is from θ 1 to θ 0. During the invalid scanning period, the image signal of the infrared ray detector itself emitted from the infrared ray detector emitted by the reflecting means and the infrared ray detector itself for reflecting the incident infrared ray of the parallel light flux and reflected by the reflecting means. The automatic focus control circuit is provided with an automatic focus control means for automatically controlling the distance between the second optical system and the infrared detector so that the level of (1) is maximized.
間中は赤外線をそのまま通過させるが、無効走査期間中
は赤外線検知器自身が放射した赤外線を反射する構造に
した無限遠基準板と、走査鏡の走査動作に同期して該無
限遠基準板を回転させる駆動部分とから構成されたこと
を特徴とする請求項2の自動焦点制御回路。3. An infinity reference plate having a structure in which the reflection means allows infrared rays to pass through during the effective scanning period of the scanning mirror, but reflects the infrared rays emitted by the infrared detector itself during the invalid scanning period. 3. The automatic focus control circuit according to claim 2, further comprising: a drive portion for rotating the reference plate at infinity in synchronization with the scanning operation of the scanning mirror.
該自動焦点制御回路を設け、走査鏡の有効期間中は焦点
が常に無限遠に合っている状態を保つ構成にしたことを
特徴とする走査型赤外線映像装置。4. The scanning infrared imager according to claim 1, wherein the automatic focus control circuit is provided, and the focus is always kept at infinity during the effective period of the scanning mirror. Scanning infrared imager.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6272122A JPH08139985A (en) | 1994-11-07 | 1994-11-07 | Automatic focus control method and circuit, and scanning infrared imager |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6272122A JPH08139985A (en) | 1994-11-07 | 1994-11-07 | Automatic focus control method and circuit, and scanning infrared imager |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH08139985A true JPH08139985A (en) | 1996-05-31 |
Family
ID=17509402
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6272122A Withdrawn JPH08139985A (en) | 1994-11-07 | 1994-11-07 | Automatic focus control method and circuit, and scanning infrared imager |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH08139985A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1100254A1 (en) * | 1999-11-12 | 2001-05-16 | Noritsu Koki Co., Ltd. | Apparatus for reading images from photographic film |
| CN100344143C (en) * | 1999-11-12 | 2007-10-17 | 诺日士钢机株式会社 | Apparatus for reading images from photographic film |
| CN103916599A (en) * | 2014-03-25 | 2014-07-09 | 中国科学院长春光学精密机械与物理研究所 | Rapid focusing method for remote sensing camera exterior imaging |
-
1994
- 1994-11-07 JP JP6272122A patent/JPH08139985A/en not_active Withdrawn
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1100254A1 (en) * | 1999-11-12 | 2001-05-16 | Noritsu Koki Co., Ltd. | Apparatus for reading images from photographic film |
| CN100344143C (en) * | 1999-11-12 | 2007-10-17 | 诺日士钢机株式会社 | Apparatus for reading images from photographic film |
| CN103916599A (en) * | 2014-03-25 | 2014-07-09 | 中国科学院长春光学精密机械与物理研究所 | Rapid focusing method for remote sensing camera exterior imaging |
| CN103916599B (en) * | 2014-03-25 | 2017-06-09 | 中国科学院长春光学精密机械与物理研究所 | A kind of quick focus adjustment method for the imaging of remote sensing camera outdoor scene |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0874218B1 (en) | Surveying instrument | |
| JP5753409B2 (en) | Panorama image creation method and three-dimensional laser scanner | |
| US20020044276A1 (en) | Millimeter wave scanning imaging system | |
| US11733357B2 (en) | 3-dimensional measuring device | |
| JPH0746833B2 (en) | Imaging device | |
| EP0207153B1 (en) | Multiple field of view sensor | |
| JP2008014864A (en) | Surveying instrument | |
| US3862423A (en) | Scanning thermography | |
| JPH08139985A (en) | Automatic focus control method and circuit, and scanning infrared imager | |
| JP3288454B2 (en) | Rotary laser device | |
| DK156781B (en) | OPTICAL SCANNING AND / OR BUILDING IMAGE DEVICE | |
| IL149092A (en) | Real time millimeter wave scanning imager | |
| US3946155A (en) | Optical scanning systems | |
| JP2620543B2 (en) | Imaging device | |
| JP3330917B2 (en) | Rotating laser device | |
| JPH09264793A (en) | Infrared camera | |
| JPH0627389A (en) | Optical observation device | |
| JP3193956B2 (en) | Infrared thermal imaging device | |
| JPH09130679A (en) | Infrared imaging device | |
| JP3432949B2 (en) | Lightwave search device | |
| JPH0451110A (en) | Position detection system for scanning rotary mirror | |
| GB2202105A (en) | Thermal imaging system | |
| JPH10111921A (en) | Infrared imaging device | |
| JPH05306957A (en) | Infrared thermal imaging device | |
| JPH0652196B2 (en) | Infrared thermal imager |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020115 |