[go: up one dir, main page]

JPH08148212A - Connection member and structure and method for connecting electrode using the same - Google Patents

Connection member and structure and method for connecting electrode using the same

Info

Publication number
JPH08148212A
JPH08148212A JP29027594A JP29027594A JPH08148212A JP H08148212 A JPH08148212 A JP H08148212A JP 29027594 A JP29027594 A JP 29027594A JP 29027594 A JP29027594 A JP 29027594A JP H08148212 A JPH08148212 A JP H08148212A
Authority
JP
Japan
Prior art keywords
adhesive layer
electrode
binder
electrodes
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29027594A
Other languages
Japanese (ja)
Other versions
JP4155470B2 (en
Inventor
Isao Tsukagoshi
功 塚越
Yukihisa Hirozawa
幸寿 廣澤
Koji Kobayashi
宏治 小林
Atsuo Nakajima
敦夫 中島
Hiroshi Matsuoka
寛 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP29027594A priority Critical patent/JP4155470B2/en
Publication of JPH08148212A publication Critical patent/JPH08148212A/en
Application granted granted Critical
Publication of JP4155470B2 publication Critical patent/JP4155470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Landscapes

  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE: To make an electrically conductive material difficult to mix with an insulating material and to eliminate accurate aligning of the positions of an electrically conductive particle and an electrode so as to improve workability by providing a difference in reaction between the binder component of an electrically conductive adhesive layer and an insulate adhesive layer. CONSTITUTION: A difference is provided in reaction between the binder component 4 of an electrically conductive adhesive layer 1 constituted of an electrically conductive material 3 and a binder and an insulate adhesive layer 2. A temperature for activating the component 4 is set low and its hardening speed is set faster than the layer 2. Thus, the material 3 is first brought into contact with an electrode because of pressure application and heating during connecting of the electrode, starting the hardening reaction of the component 4 and then, because of an increase in adhesiveness following the advance of the hardening reaction, the material 3 is fixed by the component 4. Subsequently, the layer 2 charges adjacent electrodes 12-12' and following the advance of the hardening reaction, this adheres and fixes both base boards. The same results when a temperature for activating the component 4 is set high and its shardening speed is se slow compared with that of the layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品と回路板、或
いは回路板同士を接着固定すると共に、両者の電極同士
を電気的に接続する接続部材及びその接続部材を用いた
電極の接続構造・接続法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connecting member for bonding and fixing an electronic component and a circuit board, or circuit boards to each other, and electrically connecting both electrodes, and an electrode connecting structure using the connecting member.・ About connection method.

【0002】[0002]

【従来の技術】近年、電子部品の小形薄型化に伴い、こ
れらに用いる回路は高密度化、高精細化しており、この
ような電子部品と微細電極との接続は、従来のハンダや
ゴムコネクタ等では対応が困難であることから、最近で
は分解能に優れた異方導電性の接着剤や膜状物(以下、
接続部材)が多用されている。この接続部材は、導電粒
子等の導電材料を所定量含有した接着剤からなるもの
で、この接続部材を電子部品と電極や回路との間に設
け、加圧又は加熱加圧手段を講じることによって、両者
の電極同士が電気的に接続されると共に、電極に隣接し
て形成されている電極同士には絶縁性を付与して、電子
部品と回路とが接着固定されるものである。上記の接続
部材を高分解能化するための基本的な考えは、導電粒子
の粒径を隣接電極間の絶縁部分よりも小さくすること
で、隣接電極間における絶縁性を確保し、併せて導電粒
子の含有量をこの粒子同士が接触しない程度とし、且つ
電極上に確実に存在させることにより、接続部分におけ
る導通性を得ることである。
2. Description of the Related Art In recent years, as electronic parts have become smaller and thinner, circuits used therein have become higher in density and higher in definition. Such electronic parts and fine electrodes can be connected by conventional solder or rubber connectors. Since it is difficult to cope with such problems, recently, anisotropic conductive adhesives and film materials (hereinafter,
Connection member) is often used. This connecting member is made of an adhesive containing a conductive material such as conductive particles in a predetermined amount, and the connecting member is provided between the electronic component and the electrode or circuit, and by applying pressure or heating / pressurizing means. The electrodes are electrically connected to each other, and the electrodes formed adjacent to the electrodes are provided with an insulating property so that the electronic component and the circuit are bonded and fixed. The basic idea for increasing the resolution of the above-mentioned connecting member is to make the particle size of the conductive particles smaller than the insulating portion between the adjacent electrodes to ensure the insulating property between the adjacent electrodes, and also to improve the conductive particles. The content of is set to such a degree that the particles do not come into contact with each other, and the particles are surely present on the electrode to obtain conductivity in the connection portion.

【0003】[0003]

【発明が解決しようとする課題】上記の従来の方法は、
導電粒子の粒径を小さくすると、粒子表面積の著しい増
加により粒子が二次凝集を起こして連結し、隣接電極間
の絶縁性が保持出来なくなり、また、導電粒子の含有量
を減少すると、接続すべき電極上の導電粒子の数も減少
することから接触点数が不足し、接続電極間での導通が
得られなくなるため、長期の接続信頼性を保ちながら接
続部材を高分解能化することは困難であった。即ち、近
年の著しい高分解能化即ち電極面積や隣接電極間(スペ
ース)の微細化により、電極上の導電粒子が接続時の加
圧又は加熱加圧により接着剤と共に隣接電極間に流出
し、接続部材の高分解能化の妨げとなっていた。
The above-mentioned conventional method is
If the particle size of the conductive particles is reduced, the particles will undergo secondary aggregation due to the marked increase in the surface area of the particles, and the particles will be connected, making it impossible to maintain the insulation between adjacent electrodes.If the content of the conductive particles is reduced, the particles will be connected. Since the number of conductive particles on the power electrode also decreases, the number of contact points becomes insufficient, and conduction between the connection electrodes cannot be obtained, so it is difficult to improve the resolution of the connection member while maintaining long-term connection reliability. there were. That is, due to the recent remarkable high resolution, that is, the miniaturization of the electrode area and the space between adjacent electrodes (space), the conductive particles on the electrodes flow out between the adjacent electrodes together with the adhesive due to the pressure at the time of connection or the heat and pressure. This has been an obstacle to increasing the resolution of the members.

【0004】このとき、接着剤の流出を抑制するために
接着剤を高粘度とすると、電極と導電粒子との接触が不
十分となり、相対峙する電極の接続が不可能となる。一
方、接着剤を低粘度とすると、導電粒子の流出に加えて
スペース部に気泡を含み易くし、接続信頼性特に耐湿性
が低下してしまう欠点がある。このようなことから、導
電粒子含有層と絶縁性接着層とを分離した多層構成の接
続部材とし、前者の接続時における粘度を高粘度とし、
導電粒子を保持する試みも見られるが、電極と導電粒子
との接触が不十分であったり、製法が面倒であったりし
て、実用化されていない。
At this time, if the adhesive has a high viscosity in order to suppress the outflow of the adhesive, the contact between the electrodes and the conductive particles becomes insufficient, making it impossible to connect the electrodes facing each other. On the other hand, when the adhesive has a low viscosity, in addition to the outflow of the conductive particles, bubbles are likely to be included in the space portion, and the connection reliability, particularly the moisture resistance is deteriorated. From this, a conductive particle-containing layer and an insulating adhesive layer are separated into a multi-layered connecting member, and the viscosity at the time of connection is high.
Attempts have been made to retain the conductive particles, but they have not been put into practical use because the contact between the electrodes and the conductive particles is insufficient or the manufacturing method is troublesome.

【0005】また、このような微細電極や回路の接続を
可能とし、且つ接続信頼性に優れた接続部材として、面
方向の必要部に導電粒子の密集領域を有する接続部材の
提案もある。これによれば、半導体チップのようなドッ
ト状の微細電極の接続が可能となるものの、導電粒子の
密集領域とドット状電極との正確な位置合わせが必要
で、作業性に劣る欠点がある。本発明は上記の欠点を解
消するためになされたもので、導電粒子の電極上からの
流出が少なく保持可能であり、また、接続部に気泡を含
み難いことから長期の接続信頼性に優れ、導電粒子と電
極との正確な位置合わせが不要なことから作業性に優れ
た、高分解能の接続部材及び該接続部材を用いた電極の
接続構造・接続法を提供するものである。
Further, as a connection member which enables connection of such fine electrodes and circuits and is excellent in connection reliability, there is also a proposal of a connection member having a dense region of conductive particles in a necessary portion in the plane direction. According to this, although it is possible to connect a dot-shaped fine electrode such as a semiconductor chip, there is a drawback that workability is inferior because accurate alignment of the dense region of conductive particles and the dot-shaped electrode is required. The present invention has been made in order to eliminate the above drawbacks, it is possible to hold a small outflow of conductive particles from the electrode, and also excellent long-term connection reliability because it is difficult to contain bubbles in the connection portion, (EN) Provided are a high-resolution connecting member excellent in workability because accurate alignment between conductive particles and an electrode is unnecessary, and an electrode connecting structure and connecting method using the connecting member.

【0006】[0006]

【課題を解決するための手段】本発明は、導電材料及び
バインダからなり、加圧方向に導電性を有する接着層の
少なくとも片面に絶縁性の接着層を形成し、該絶縁性の
接着層と前記バインダの成分との反応性に差を設けた接
続部材、相対峙する電極列間の少なくとも一方が突出
し、前記接続部材の導電材料が相対峙する電極間に存在
し、且つ絶縁性接着層が突出電極の少なくとも基板側の
周囲を覆った電極の接続構造、並びに少なくとも一方が
突出した電極を有し、相対峙する電極列間に前記接続部
材の絶縁性接着層が突出した電極側となるように配置
し、絶縁性接着層とバインダ成分との高温側の活性化温
度以上の温度で加熱加圧する電極の接続法に関する。
According to the present invention, an insulating adhesive layer is formed on at least one side of an adhesive layer which is made of a conductive material and a binder and has conductivity in the pressing direction. A connecting member having a difference in reactivity with the component of the binder, at least one of the opposing electrode rows is projected, the conductive material of the connecting member is present between the opposing electrodes, and the insulating adhesive layer is An electrode connection structure covering at least the substrate side of the projecting electrode, and at least one projecting electrode so that the insulating adhesive layer of the connecting member is on the projecting electrode side between the electrode rows facing each other. The present invention relates to a method for connecting electrodes, which are arranged at a temperature higher than the activation temperature of the insulating adhesive layer and the binder component on the high temperature side or higher.

【0007】本発明を図面を参照しながら説明する。図
1は本発明の一実施例を説明する接続部材の断面模式図
である。本発明の接続部材は、導電材料及びバインダか
らなり、加圧方向に導電性を有する導電性接着層1の少
なくとも片面に、絶縁性接着層2を形成した多層接続部
材である。図2のように、導電性接着層1の両面に絶縁
性接着層2及び2´を形成しても良い。これらの表面に
は不要な粘着性やごみ等の付着を防止するために、図示
しないが剥離可能なセパレータが必要に応じて存在して
も良い。図3は、加圧方向に導電性を有する導電性接着
層1を説明する断面模式図である。導電性接着層1は、
導電材料3を含有したバインダ4からなる。ここに導電
材料3としては、図3(a)〜(d)のように、加圧又
は加熱加圧手段を講じることでバインダ4の厚み減少に
よって導電性を得る、即ち、バインダ4の厚み以下の小
粒径のものが好ましい。また、図3(e)〜(g)のよ
うに、バインダ4の表裏面(図示しないが一方だけでも
良い)から突出していても良い。
The present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a connecting member for explaining an embodiment of the present invention. The connecting member of the present invention is a multilayer connecting member made of a conductive material and a binder and having an insulating adhesive layer 2 formed on at least one surface of a conductive adhesive layer 1 having conductivity in the pressing direction. As shown in FIG. 2, insulating adhesive layers 2 and 2 ′ may be formed on both surfaces of the conductive adhesive layer 1. A peelable separator (not shown) may be present on these surfaces, if necessary, in order to prevent unnecessary adhesion and adhesion of dust and the like. FIG. 3 is a schematic cross-sectional view illustrating the conductive adhesive layer 1 having conductivity in the pressing direction. The conductive adhesive layer 1 is
It is composed of a binder 4 containing a conductive material 3. Here, as the conductive material 3, as shown in FIGS. 3A to 3D, the thickness of the binder 4 is reduced by applying pressure or heating / pressurizing means to obtain conductivity, that is, the thickness of the binder 4 or less. Those having a small particle size are preferred. Further, as shown in FIGS. 3E to 3G, the binder 4 may be projected from the front and back surfaces (not shown but only one may be provided).

【0008】導電材料3がバインダ4の厚み以下の場
合、バインダ4により保持されるので取扱時に導電材料
3の脱落防止が可能であり、バインダ4の表面より突出
していると、簡単な接触により電極と導通可能となり、
導電性が得易い。バインダ4に対する導電材料3の割合
は0.1〜30体積%程度が、導電異方性が得易く好ま
しい。また、厚み方向の導電性を得易くするために、バ
インダ4の厚さは膜形成の可能な範囲で薄い方がよく、
好ましくは30μm以下、より好ましくは20μm以下
である。導電材料3としては、例えば、図3(a)〜
(e)の例示のように導電粒子で形成することが、製造
が容易で入手し易いことから好ましい。また、導電材料
3は、図3(f)のようにバインダ4に貫通口を設け、
めっき等で導電体を形成したり、図3(g)のようにワ
イヤ等の導電繊維状としてもよい。
When the conductive material 3 is less than the thickness of the binder 4, the binder 4 holds the conductive material 3, so that the conductive material 3 can be prevented from falling off during handling. If the conductive material 3 projects from the surface of the binder 4, the electrode can be easily contacted. Can be conducted with
Easy to obtain conductivity. The ratio of the conductive material 3 to the binder 4 is preferably about 0.1 to 30% by volume because conductivity anisotropy is easily obtained. Further, in order to easily obtain conductivity in the thickness direction, it is preferable that the thickness of the binder 4 is as thin as possible in the film formation range.
It is preferably 30 μm or less, more preferably 20 μm or less. As the conductive material 3, for example, FIG.
It is preferable to form the conductive particles as illustrated in (e) because the production is easy and the availability is easy. Further, the conductive material 3 is provided with a through hole in the binder 4 as shown in FIG.
A conductor may be formed by plating or the like, or a conductive fiber such as a wire may be formed as shown in FIG.

【0009】導電粒子としては、Au、Ag、Pt、N
i、Cu、W、Sb、Sn、半田等の金属粒子や炭素粉
等があり、また、これら導電粒子を核材とするか、或い
は非導電性のガラス、セラミックス或いはプラスチック
のような高分子等からなる核材に前記のような材質から
なる導電層を被覆形成したものでも良い。更に、導電材
料を絶縁層で被覆してなる絶縁被覆粒子や、導電粒子と
絶縁粒子の併用なども適用可能である。粒径は、微小な
電極上に1個以上好ましくは多くの粒子数を確保するに
は小粒径粒子が好適であり、15μm以下、より好まし
くは7μm以下である。
As the conductive particles, Au, Ag, Pt, N
There are metal particles such as i, Cu, W, Sb, Sn and solder, carbon powder, etc., and these conductive particles are used as a core material, or polymers such as non-conductive glass, ceramics or plastics. It is also possible to cover the core material made of (1) with a conductive layer made of the above material. Further, insulating coated particles obtained by coating a conductive material with an insulating layer, and combined use of conductive particles and insulating particles are also applicable. The particle diameter is preferably 15 μm or less, more preferably 7 μm or less, in order to secure one or more particles, preferably a large number of particles, on a fine electrode.

【0010】これら導電粒子の中では、半田等の熱溶融
金属やプラスチック等の高分子核材に導電層を形成した
ものが、加熱加圧又は加圧により変形性を有し、積層時
に回路との接触面積が増加し、信頼性が向上するので好
ましい。特に高分子類を核とした場合、半田のように融
点を示さないので、軟化の状態を接続温度で広く制御出
来、電極の厚みや平坦性のばらつきに対応し易い接続部
材が得られるので特に好ましい。また、例えばNi、W
等の硬質金属粒子や表面に多数の突起を有する粒子の場
合、導電粒子が電極や配線パターンに突き刺さるので、
酸化膜や汚染層の存在する場合にも低い接続抵抗が得ら
れ、信頼性が向上するので好ましい。
Among these conductive particles, those in which a conductive layer is formed on a hot-melt metal such as solder or a polymer core material such as plastic have heat pressurization or deformability due to pressurization and form a circuit when laminated. The contact area is increased and the reliability is improved, which is preferable. In particular, when polymers are used as the core, they do not exhibit a melting point like solder, so the softened state can be widely controlled at the connection temperature, and it is possible to obtain a connection member that can easily cope with variations in electrode thickness and flatness. preferable. Also, for example, Ni, W
In the case of hard metal particles such as or particles having a large number of protrusions on the surface, since the conductive particles pierce the electrode or wiring pattern,
Even if an oxide film or a contaminated layer is present, low connection resistance can be obtained, and reliability is improved, which is preferable.

【0011】バインダ4は、熱や光により硬化性を示す
材料が広く適用出来、接着性を有することが好ましい。
これらは接続後の耐熱性や耐湿性に優れることから、硬
化性材料の適用が好ましい。中でもエポキシ系接着剤
は、短時間硬化が可能で接続作業性が良く、分子構造上
接着性に優れる等の特長から好ましく適用できる。エポ
キシ系接着剤は、例えば高分子量のエポキシ、固形エポ
キシと液状エポキシ、ウレタン、ポリエステル、アクリ
ルゴム、NBR、ナイロン等で変性したエポキシを主成
分とし、硬化剤や触媒、カップリング剤、充填剤等を添
加してなるものが一般的である。
As the binder 4, a material which is curable by heat or light can be widely applied and preferably has adhesiveness.
Since these have excellent heat resistance and moisture resistance after connection, application of a curable material is preferable. Among them, the epoxy adhesive is preferably applicable because it can be cured in a short time, has good workability in connection, and has excellent adhesiveness due to its molecular structure. Epoxy adhesives include, for example, high molecular weight epoxies, solid epoxies and liquid epoxies, epoxies modified with urethane, polyester, acrylic rubber, NBR, nylon, etc. as main components, and curing agents, catalysts, coupling agents, fillers, etc. Is generally added.

【0012】本発明では、バインダ成分4と絶縁性接着
層2との反応性に差を設けることを特徴とする。その望
ましい実施態様として前記バインダ成分4の活性化温度
を低温とし、即ち、硬化速度を絶縁性接着層2に比べ速
硬化とする。或いは前記バインダ成分4の活性化温度を
高温とし、硬化速度を絶縁性接着層2に比べ遅い硬化と
する。前記のバインダ成分4の活性化温度を低温とし、
絶縁性接着層2に比べ速硬化とすることで、電極接続時
の加熱加圧で先ず導電材料3が電極と接触し、バインダ
4の硬化反応が開始され、次いで硬化反応の進行に伴う
増粘により、導電材料3がバインダ成分4で固定され
る。引き続いて絶縁性接着層2は隣接電極間の12−1
2´を充填し、硬化反応の進行に伴い、両基板を接着固
定する。後者の場合、絶縁性接着層2が先に硬化膜を形
成するので気泡が発生し難く、やはり導電材料3がバイ
ンダ成分4で固定されて、両層が分離して形成可能であ
る。
The present invention is characterized by providing a difference in reactivity between the binder component 4 and the insulating adhesive layer 2. As a preferred embodiment thereof, the activation temperature of the binder component 4 is set to a low temperature, that is, the curing speed is set faster than that of the insulating adhesive layer 2. Alternatively, the activation temperature of the binder component 4 is set to a high temperature, and the curing speed is set to be slower than that of the insulating adhesive layer 2. The activation temperature of the binder component 4 is set to a low temperature,
By making the curing faster than that of the insulating adhesive layer 2, the conductive material 3 first comes into contact with the electrode by heating and pressurizing at the time of electrode connection, the curing reaction of the binder 4 is started, and then the viscosity increases with the progress of the curing reaction. Thus, the conductive material 3 is fixed by the binder component 4. Subsequently, the insulating adhesive layer 2 is formed between the adjacent electrodes 12-1.
2'is filled, and both substrates are bonded and fixed as the curing reaction proceeds. In the latter case, since the insulating adhesive layer 2 forms the cured film first, bubbles are less likely to be generated, and the conductive material 3 is fixed by the binder component 4 so that both layers can be formed separately.

【0013】バインダ成分4と絶縁性接着層2との反応
性に差を設ける方法としては、硬化剤の種類や添加量、
粒径等の選択が一般的である。硬化剤としては、接続部
材の保存性を維持するために潜在性であることが好まし
い。本発明でいう潜在性とは、反応性樹脂(例えばエポ
キシ樹脂)との共存下で30℃以下で2か月以上の保存
性を有し、加熱下で急速硬化するものを云う。また、本
発明の反応性とは、反応性樹脂と潜在性硬化剤との共存
下での活性化温度を示す。活性化温度は、反応性樹脂と
潜在性硬化剤との共存混合試料の3mgをDSC(Diff
erential Scanning Calorimeter指差走査型熱量計)を
用い、10℃/分で常温(30℃)から250℃まで上
昇させたときの発熱量の最大を示すピーク温度とする。
As a method of providing a difference in reactivity between the binder component 4 and the insulating adhesive layer 2, the kind and amount of curing agent,
It is common to select particle size and the like. The curing agent is preferably latent in order to maintain the storage stability of the connecting member. The term “latent” as used in the present invention means that it has a storage stability at 30 ° C. or lower for 2 months or more in the coexistence with a reactive resin (for example, an epoxy resin), and rapidly cures under heating. Further, the reactivity of the present invention refers to the activation temperature in the coexistence of the reactive resin and the latent curing agent. The activation temperature was 3 mg of the coexisting mixed sample of the reactive resin and the latent curing agent, and the DSC (Diff
erial scanning calorimeter (pointing scanning calorimeter) is used and the peak temperature showing the maximum calorific value when the temperature is raised from normal temperature (30 ° C) to 250 ° C at 10 ° C / min.

【0014】導電性接着層1と絶縁性接着層2との活性
化温度の差は1℃以上設けてあれば可能であり、接続時
の作業性を考慮して50℃以下とすべきである。反応性
の差を明確にして接続可能とするためには1℃以上が必
要であり、好ましい活性化温度の差は5℃以上、より好
ましくは10℃以上である。また、活性化温度の差の上
限を50℃以下とした理由は、温度差が拡大するほど接
続時の両層の硬化完了に長時間を要し実用的でないため
であり、好ましくは45℃以下、より好ましくは40℃
以下とすることで、本発明の実施がより確実となる。本
発明の接続部材の製法としては、例えば、導電性接着層
1と絶縁性接着層2とをラミネートしたり、積層して順
次塗工する等の方法が採用できる。本発明の接続部材を
用いた電極の接続構造及びその製法について、図4〜5
により説明する。
The difference in activation temperature between the conductive adhesive layer 1 and the insulating adhesive layer 2 is possible if it is set to 1 ° C. or more, and should be 50 ° C. or less in consideration of workability at the time of connection. . To clarify the difference in reactivity and enable connection, 1 ° C. or higher is required, and the preferable difference in activation temperature is 5 ° C. or higher, more preferably 10 ° C. or higher. Further, the reason why the upper limit of the activation temperature difference is set to 50 ° C. or less is that it takes a longer time to complete the curing of both layers at the time of connection as the temperature difference increases, which is not practical, and preferably 45 ° C. or less. , More preferably 40 ° C
The following makes the implementation of the present invention more reliable. As the method for producing the connecting member of the present invention, for example, a method of laminating the conductive adhesive layer 1 and the insulating adhesive layer 2 or a method of sequentially laminating and coating the layers can be adopted. 4 to 5 show an electrode connection structure using the connection member of the present invention and a manufacturing method thereof.
This will be described below.

【0015】図4に、基板11に形成された突出電極1
2と基板11´の平面電極13とが本発明の接続部材を
介して接続された構造を示す。即ち、相対峙する電極列
間の少なくとも一方が突出した電極列間の接続構造であ
って、相対峙する電極間12−13間に導電材料3が存
在し、且つ、突出電極12の周囲14よりも導電材料3
の密度が高い状態で存在し、相対峙する電極列間が接続
されている。また、絶縁性接着層2が突出電極12の少
なくとも突出する電極の周囲を覆っている。ここに平面
電極13は、基板11´面からの凹凸がないか、あって
も数μm以下と僅かな場合を云う。これらを例示する
と、アディティブ法や薄膜法で得られた電極類が代表的
である。
FIG. 4 shows the protruding electrode 1 formed on the substrate 11.
2 shows a structure in which 2 and the planar electrode 13 of the substrate 11 'are connected via the connecting member of the present invention. That is, in the connection structure between the electrode rows in which at least one of the electrode rows facing each other protrudes, the conductive material 3 exists between the electrodes 12-13 of the electrode tips facing each other, and Also conductive material 3
Exist in a high density state, and the electrode rows facing each other are connected. Moreover, the insulating adhesive layer 2 covers at least the periphery of the protruding electrode of the protruding electrode 12. Here, the flat electrode 13 has no unevenness from the surface of the substrate 11 ′, or even if there is unevenness, it is a few μm or less. To exemplify these, the electrodes obtained by the additive method or the thin film method are typical.

【0016】図5は、基板11及び15に形成された電
極が突出電極同士12及び12´の場合である。即ち、
図2で示した両面に絶縁性接着層2及び2´を有する接
続部材を介して接続した構造である。絶縁性接着層2及
び2´はそれぞれ突出電極同士12及び12´の突出す
る電極の周囲を覆っており、また、それぞれの基板面1
1及び15と接続している。図4及び5における基板と
しては、ポリイミド、ポリエステル等のプラスチックフ
ィルム、ガラスエポキシ等の複合体、シリコーン等の半
導体、ガラス、セラミックス等の無機物などを例示でき
る。突出電極は上記したほかに各種回路類や端子類も含
むことが出来る。なお、図4及び5で示した各種電極類
は、それぞれ任意に組み合わせて適用できる。本発明の
接続部材を用いた電極の接続方法は、接続部材の絶縁性
接着層2が突出電極の側となるように配置し、導電性接
着層1の活性化温度以上の温度で加熱加圧する。
FIG. 5 shows the case where the electrodes formed on the substrates 11 and 15 are the protruding electrodes 12 and 12 '. That is,
This is a structure in which both surfaces shown in FIG. 2 are connected via a connecting member having insulating adhesive layers 2 and 2 '. The insulative adhesive layers 2 and 2'cover the surroundings of the protruding electrodes of the protruding electrodes 12 and 12 ', respectively.
1 and 15 are connected. Examples of the substrate in FIGS. 4 and 5 are plastic films such as polyimide and polyester, composites such as glass epoxy, semiconductors such as silicone, and inorganic substances such as glass and ceramics. The protruding electrode may include various circuits and terminals in addition to the above. The various electrodes shown in FIGS. 4 and 5 can be applied in any combination. In the electrode connecting method using the connecting member of the present invention, the insulating adhesive layer 2 of the connecting member is arranged so as to be on the side of the protruding electrode, and heated and pressed at a temperature equal to or higher than the activation temperature of the conductive adhesive layer 1. .

【0017】[0017]

【実施例】次に実施例を説明するが、本発明はこの実施
例に限定されるものではない。 実施例1 (1)導電性接着層の作製 フィルム形成材としてフェノキシ樹脂(高分子エポキシ
樹脂)とマイクロカプセル型潜在性硬化剤を含有する液
状エポキシ樹脂(エポキシ当量185)との比率を20
/80とし、酢酸エチルの30%溶液を得た。この溶液
に粒径5±0.2μmのポリスチレン系粒子にNi/A
uの厚さ0.2/0.02μmの金属被覆を形成した導
電性粒子を5体積%添加し、混合分散した。この分散液
をセパレータ(シリコーン処理ポリエチレンテレフタレ
ートフィルム、厚み40μm)にロールコータで塗布
し、110℃で20分乾燥して、厚み5μmの導電性接
着層を得た。この接着層の活性化温度は108℃であっ
た。
EXAMPLES Next, examples will be described, but the present invention is not limited to these examples. Example 1 (1) Preparation of Conductive Adhesive Layer The ratio of a phenoxy resin (polymer epoxy resin) as a film forming material to a liquid epoxy resin containing a microcapsule type latent curing agent (epoxy equivalent 185) was 20.
/ 80 to obtain a 30% solution of ethyl acetate. In this solution, Ni / A was added to polystyrene particles having a particle size of 5 ± 0.2 μm.
5% by volume of electroconductive particles having a metal coating of 0.2 / 0.02 μm in thickness of u were added and mixed and dispersed. This dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 110 ° C. for 20 minutes to obtain a conductive adhesive layer having a thickness 5 μm. The activation temperature of this adhesive layer was 108 ° C.

【0018】(2)絶縁性接着層の形成及び接続部材の
作製 (1)の導電性接着層から導電性粒子を除去し、マイク
ロカプセル型潜在性硬化剤の被膜厚みを増大し、活性化
温度を119℃とし、厚み15μmのシートを前記の
(1)と同様に絶縁性接着層を作製した。先ず、(1)
の導電性接着層の面と(2)の接着層の面とをゴムロー
ル間で圧延しながらラミネートした。以上で図1の二層
構成の多層接続部材を得た。 (3)接続 ポリイミドフィルム上に高さ18μmの銅の回路を有す
る二層FPC回路板(回路ピッチは100μm、電極幅
50μmの平行回路の電極)と、厚さ1.1mmのガラス
上に厚さ0.2μm(ITO、表面抵抗20Ω/□)の
酸化インジウムの薄膜回路を有する平面電極との接続を
行った。先ず、平面電極側に導電性接着層が来るように
した。前記接続部材を1.5mm幅で載置し、セパレータ
を剥離した後貼り付けた。この後セパレータを剥離し、
他の回路板と上下回路を位置合わせし、150℃、20
kgf/mm2、15秒で接続した。
(2) Formation of Insulating Adhesive Layer and Preparation of Connection Member The conductive particles are removed from the conductive adhesive layer of (1) to increase the coating thickness of the microcapsule type latent curing agent and to activate it. Was set to 119 ° C. and a sheet having a thickness of 15 μm was prepared as in (1) above to form an insulating adhesive layer. First, (1)
The surface of the conductive adhesive layer of (1) and the surface of the adhesive layer of (2) were laminated while being rolled between rubber rolls. As described above, the multilayer connecting member having the two-layer structure shown in FIG. 1 was obtained. (3) Connection A two-layer FPC circuit board (circuit pitch 100 μm, parallel circuit electrodes with electrode width 50 μm) having a copper circuit 18 μm high on a polyimide film, and 1.1 mm thick on glass Connection was made with a flat electrode having a 0.2 μm (ITO, surface resistance 20 Ω / □) indium oxide thin film circuit. First, the conductive adhesive layer was placed on the flat electrode side. The connecting member was placed with a width of 1.5 mm, and the separator was peeled off and then attached. After this, peel off the separator,
Align the upper and lower circuits with other circuit boards,
The connection was made for 15 seconds at kgf / mm 2 .

【0019】(4)評価 この接続体の断面を研磨し、顕微鏡で観察したところ、
図4相当の接続構造であった。隣接電極間のスペースは
気泡混入がなく、粒子が球状であったが、電極上には粒
子が圧縮成形され、上下電極と接触保持されていた。相
対峙する電極間を接続抵抗、隣接する電極間を絶縁抵抗
として評価した結果、接続抵抗は1Ω以下、絶縁抵抗は
108Ω以上であり、これらは85℃、85%RH10
00時間処理後も殆ど変化がなく、良好な長期信頼性を
示した。本実施例では、平面電極のガラス側の接着力が
FPC側に比べて相対的に低いことから、ガラス側から
強制的に剥離したとき綺麗に界面剥離し、その後の清浄
化が容易であった。このことは、現在同様な構成で多用
されている液晶パネルの接続におけるリペア性の付与に
好適である。
(4) Evaluation When a cross section of this connector was polished and observed with a microscope,
The connection structure was equivalent to that in FIG. In the space between the adjacent electrodes, particles were spherical without inclusion of bubbles, but the particles were compression-molded on the electrodes and held in contact with the upper and lower electrodes. As a result of evaluating the connection resistance between the electrodes facing each other and the insulation resistance between the adjacent electrodes, the connection resistance was 1 Ω or less and the insulation resistance was 10 8 Ω or more, and these were 85 ° C. and 85% RH10.
After the treatment for 00 hours, there was almost no change and good long-term reliability was shown. In this example, since the adhesive force of the flat electrode on the glass side was relatively lower than that on the FPC side, when the film was forcibly peeled from the glass side, the interface was peeled off neatly and the subsequent cleaning was easy. . This is suitable for imparting repairability to the connection of liquid crystal panels that are often used in the same configuration at present.

【0020】実施例2 実施例1の導電性接着層に、更に絶縁性接着層を形成
し、図2の三層構成の多層接続部材を得た。実施例1の
FPC同士を同様に接続した。この場合、図5の接続体
が得られ、実施例1と同様に良好な接続特性を示した。 実施例3 実施例1の導電性接着層及び絶縁性接着層の硬化剤を入
れ替えた。即ち、バインダ成分の活性化温度を高温と
し、硬化速度を絶縁性接着層に比べて遅い硬化とした。
この場合も実施例1と同様に評価した結果、絶縁性接着
層が先に硬化膜を形成するので、やはり導電材料がバイ
ンダ成分で固定され、両層が分離して形成可能であっ
た。
Example 2 An insulating adhesive layer was further formed on the conductive adhesive layer of Example 1 to obtain a multi-layer connection member having a three-layer structure shown in FIG. The FPCs of Example 1 were similarly connected. In this case, the connection body shown in FIG. 5 was obtained and showed good connection characteristics as in Example 1. Example 3 The curing agents of the conductive adhesive layer and the insulating adhesive layer of Example 1 were replaced. That is, the activation temperature of the binder component was set to a high temperature, and the curing speed was set to be slower than that of the insulating adhesive layer.
Also in this case, as a result of evaluation in the same manner as in Example 1, since the insulating adhesive layer formed the cured film first, the conductive material was also fixed with the binder component, and both layers could be formed separately.

【0021】実施例4 実施例1と同様であるが、FPCに代えてICチップ
(2×10mm、高さ0.5mm、四辺周囲にバンプと呼ば
れる50μm角、高さ20μmの金電極が200個形
成)を用いた。ガラス側のITO電極を、前記ICチッ
プのバンプ電極のサイズに対応するように変更した。ま
た、導電性シートの導電材料を平均粒径3μmの導電粒
子とし、添加量1体積%、マトリックスの厚み10μm
のシートとし、図3(a)〜(b)相当の構成とした。
接続体は図4に相当する構成であるが、良好な接続特性
を示した。本実施例では、バンプがマッシュルーム形で
頂部を有していたが、粒子は圧縮変形され、上下電極と
接触保持されていた。隣接バンプ間に気泡混入がなく、
良好な長期信頼性を示した。導電粒子は、相対峙する電
極間距離に応じて粒子の変形度が異なり、部分的にバン
プに食い込むものも見られた。
Example 4 The same as Example 1, except that instead of the FPC, there were 200 IC chips (2 × 10 mm, height 0.5 mm, 50 μm squares called bumps around the four sides, and 20 μm height gold electrodes). Formation) was used. The ITO electrode on the glass side was changed to correspond to the size of the bump electrode of the IC chip. In addition, the conductive material of the conductive sheet is conductive particles having an average particle size of 3 μm, the addition amount is 1% by volume, and the thickness of the matrix is 10 μm.
The sheet has a structure corresponding to that of FIGS.
The connection body had a structure corresponding to that shown in FIG. 4, but showed good connection characteristics. In this example, the bump was mushroom-shaped and had a top portion, but the particles were compressed and deformed and held in contact with the upper and lower electrodes. No bubbles are mixed between adjacent bumps,
It showed good long-term reliability. The degree of deformation of the conductive particles was different depending on the relative distance between the electrodes, and some of the conductive particles also partially penetrated into the bumps.

【0022】実施例5 実施例2の接続部材と同様であるが、絶縁性接着層の厚
みを片側25μm、他の面を50μmに形成した。電極
は、QFP形ICのリード(厚み100μm、ピッチ3
00μm)であり、ガラガラスエポキシ基板上の銅の厚
み35μmの端子と接続した。本構成は図5相当である
が、片側に基板のない構成である。本実施例は、高さの
大きな電極同士の接続であるが、電極ずれがなく、良好
な接続特性を示した。導電性シート中の導電材料は図示
していないが、粒子は圧縮変形され、上下電極と接触保
持されていた。隣接電極間に気泡混入がなく、良好な長
期信頼性を示した。本実施例では、基板の無い部分もリ
ード高さに沿って接着層が形成され、リードを固定出来
た。
Example 5 The same as the connecting member of Example 2, except that the insulating adhesive layer was formed to have a thickness of 25 μm on one side and 50 μm on the other side. The electrodes are QFP type IC leads (thickness 100 μm, pitch 3
00 μm) and was connected to a terminal of copper having a thickness of 35 μm on the glass glass epoxy substrate. This configuration is equivalent to FIG. 5, but has no substrate on one side. In this example, electrodes having large heights were connected to each other, but there was no electrode displacement and good connection characteristics were exhibited. Although the conductive material in the conductive sheet is not shown, the particles were compressed and deformed and held in contact with the upper and lower electrodes. There were no bubbles mixed between adjacent electrodes, and good long-term reliability was shown. In this example, the adhesive layer was formed along the lead height even in the portion without the substrate, and the lead could be fixed.

【0023】実施例6 実施例1の接続部材と同様であるが、導電粒子の表面に
絶縁被覆処理を実施した。即ち、平均粒径3μmの導電
粒子の表面をガラス転移点127℃のナイロン樹脂で厚
み約0.2μm被覆し、添加量を10体積%に増加し
た。実施例3と同様に評価したが、良好な接続特性を示
した。本実施例では電極12上の粒子数が著しく増加し
た。電極接続部12−12´は接続時の熱圧による絶縁
層2及びバインダ4の軟化により導通可能であるが、隣
接電極列のスペース部は熱圧が少なく、導電材料3の表
面が絶縁層2で被覆されたままなので、絶縁性も良好で
あった。本構成は、導電材料3のバインダ4に対する濃
度を高密度に構成できる。
Example 6 Similar to the connecting member of Example 1, the surface of the conductive particles was subjected to an insulating coating treatment. That is, the surface of conductive particles having an average particle diameter of 3 μm was coated with nylon resin having a glass transition point of 127 ° C. to a thickness of about 0.2 μm, and the amount of addition was increased to 10% by volume. The same evaluation as in Example 3 was performed, but good connection characteristics were shown. In this example, the number of particles on the electrode 12 increased remarkably. The electrode connecting portions 12-12 'can be conducted by softening the insulating layer 2 and the binder 4 due to the heat pressure at the time of connection, but the space portion of the adjacent electrode row has a small heat pressure and the surface of the conductive material 3 has the insulating layer 2 Since it was still covered with, the insulating property was also good. In this configuration, the concentration of the conductive material 3 with respect to the binder 4 can be set to be high.

【0024】[0024]

【発明の効果】本発明の接続部材は、導電性接着層のバ
インダ成分と絶縁性接着層との反応性に差を設けたこと
から、導電材料は絶縁性接着層と混ざり難く、電極上か
らの流出が少ない。導電性接着層の導電材料は全面に均
一に分散するので、導電粒子と電極との正確な位置合わ
せが不要なことから作業性に優れる。従って、高分解能
で接続信頼性に優れたものとなる。本発明の電極の接続
構造は、導電材料が相対峙する電極間に存在し、且つ絶
縁性接着層が突出電極の少なくとも基板側の周囲を覆っ
ている構造であるので、微細電極の接続において、良好
な厚み方向の導電性と面方向の絶縁性とが併せて得られ
る。本発明の電極の接続方法は、接続部材の絶縁性接着
層が突出した電極側となるように配置し、バインダ成分
と絶縁性接着剤との高温側の活性化温度以上の温度で加
熱加圧する方法であるので、確実な面方向の絶縁性と強
固な機械的接続が得られる。
Since the connecting member of the present invention has a difference in reactivity between the binder component of the conductive adhesive layer and the insulating adhesive layer, the conductive material is hard to mix with the insulating adhesive layer, and the conductive material is not easily mixed with the conductive adhesive layer. There is little outflow. Since the conductive material of the conductive adhesive layer is uniformly dispersed on the entire surface, it is not necessary to accurately align the conductive particles and the electrodes, and therefore workability is excellent. Therefore, the resolution is high and the connection reliability is excellent. The electrode connection structure of the present invention is a structure in which the conductive material is present between the electrodes facing each other, and the insulating adhesive layer covers at least the substrate side periphery of the protruding electrode, so in the connection of the fine electrodes, Good conductivity in the thickness direction and good insulation in the plane direction are obtained together. The electrode connecting method of the present invention is arranged such that the insulating adhesive layer of the connecting member is on the protruding electrode side, and is heated and pressed at a temperature equal to or higher than the activation temperature on the high temperature side of the binder component and the insulating adhesive. Since this method is used, reliable in-plane insulation and strong mechanical connection can be obtained.

【0025】接着層は、その目的に応じ例えば電極基板
の材質に適合した組み合わせが可能なことから、材料の
選択肢が拡大し、接続部の気泡減少等により、やはり接
続信頼性が向上する。また、一方を溶剤に可溶性又は膨
潤性としたり、或いは耐熱性に差を持たせることで、一
方の基板面から優先的に剥離可能とし、再接続する所謂
リペア性を付与することも可能となる。或いは電極基板
の材質に適合した任意の組み合わせとすることも可能で
あり、電極と導電粒子との接触が得易く、製法も簡単で
ある。また、接着層を接続部の外にはみ出させ、封止材
的な作用により補強や防湿効果を得ることも出来る。
Since the adhesive layer can be combined according to the purpose, for example, in accordance with the material of the electrode substrate, the choice of materials is expanded, and the connection reliability is also improved due to the reduction of bubbles in the connection portion. Further, by making one of them soluble or swellable in a solvent, or by giving a difference in heat resistance, it is possible to preferentially separate from one substrate surface, and to provide so-called repairability for reconnection. . Alternatively, any combination suitable for the material of the electrode substrate can be used, the contact between the electrode and the conductive particles can be easily obtained, and the manufacturing method is also simple. In addition, the adhesive layer can be made to stick out of the connection portion to obtain a reinforcing effect and a moistureproof effect by the action of a sealing material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の接続部材の断面模式図である。FIG. 1 is a schematic sectional view of a connecting member of the present invention.

【図2】本発明の接続部材の断面模式図である。FIG. 2 is a schematic sectional view of a connecting member of the present invention.

【図3】本発明の接続部材における導電性接着層を示す
断面模式図である。
FIG. 3 is a schematic sectional view showing a conductive adhesive layer in the connecting member of the present invention.

【図4】本発明の接続部材を用いた電極の接続構造を示
す断面模式図である。
FIG. 4 is a schematic cross-sectional view showing an electrode connection structure using the connection member of the present invention.

【図5】本発明の接続部材を用いた電極の接続構造を示
す断面模式図である。
FIG. 5 is a schematic cross-sectional view showing a connection structure of electrodes using the connection member of the present invention.

【符号の説明】[Explanation of symbols]

1…導電性接着層、2…絶縁性接着層、3…導電材料、
4…バインダ、11…基板、、11´…基板、12…突
出電極、13…平面電極、14…周囲、15…基板
1 ... Conductive adhesive layer, 2 ... Insulating adhesive layer, 3 ... Conductive material,
4 ... Binder, 11 ... Substrate, 11 '... Substrate, 12 ... Projected electrode, 13 ... Planar electrode, 14 ... Surrounding, 15 ... Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 敦夫 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社結城工場内 (72)発明者 松岡 寛 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社結城工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Nakajima 1150 Gozamiya, Shimodate City, Ibaraki Prefecture Inside the Yuki Plant of Hitachi Chemical Co., Ltd. (72) Inventor Hiroshi Matsuoka 1150 Gogomiya, Shimodate City, Ibaraki Hitachi Seiko Co., Ltd. Yuki factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電材料及びバインダからなり、加圧方
向に導電性を有する接着層の少なくとも片面に絶縁性の
接着層を形成し、該絶縁性の接着層と前記バインダの成
分との反応性に差を設けた接続部材。
1. An insulative adhesive layer is formed on at least one surface of an adhesive layer which is made of a conductive material and a binder and has conductivity in the pressing direction, and the reactivity between the insulative adhesive layer and the components of the binder. Connection member with a difference.
【請求項2】 絶縁性の接着層とバインダ成分との間
で、DSCピーク温度で示される活性化温度に1〜50
℃の差を設けた請求項1記載の接続部材。
2. The activation temperature shown by the DSC peak temperature is between 1 and 50 between the insulating adhesive layer and the binder component.
The connection member according to claim 1, wherein a difference of ° C is provided.
【請求項3】 相対峙する電極列間の少なくとも一方が
突出し、請求項1又は2記載の接続部材の導電材料が相
対峙する電極間に存在し、且つ絶縁性接着層が突出電極
の少なくとも基板側の周囲を覆った電極の接続構造。
3. At least one of the electrode rows facing each other is projected, the conductive material of the connecting member according to claim 1 is present between the electrodes facing each other, and the insulating adhesive layer is at least the substrate of the projecting electrodes. The connection structure of the electrode that covers the periphery of the side.
【請求項4】 少なくとも一方が突出した電極を有し、
相対峙する電極列間に請求項1又は2記載の接続部材の
絶縁性接着層が突出した電極側となるように配置し、絶
縁性接着層とバインダ成分との高温側の活性化温度以上
の温度で加熱加圧することを特徴とする電極の接続法。
4. At least one has a protruding electrode,
The insulating member of the connecting member according to claim 1 or 2 is arranged between the opposing electrode rows so that the insulating adhesive layer is on the protruding electrode side, and the insulating adhesive layer and the binder component have a temperature higher than the activation temperature on the high temperature side. A method of connecting electrodes, which comprises heating and pressurizing at a temperature.
JP29027594A 1994-11-25 1994-11-25 Electrode connection method using connecting members Expired - Fee Related JP4155470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29027594A JP4155470B2 (en) 1994-11-25 1994-11-25 Electrode connection method using connecting members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29027594A JP4155470B2 (en) 1994-11-25 1994-11-25 Electrode connection method using connecting members

Publications (2)

Publication Number Publication Date
JPH08148212A true JPH08148212A (en) 1996-06-07
JP4155470B2 JP4155470B2 (en) 2008-09-24

Family

ID=17754038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29027594A Expired - Fee Related JP4155470B2 (en) 1994-11-25 1994-11-25 Electrode connection method using connecting members

Country Status (1)

Country Link
JP (1) JP4155470B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835274B2 (en) * 1998-08-03 2004-12-28 Sony Corporation Electrical connecting device and electrical connecting method
JP2011070931A (en) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd Anisotropic conductive material, manufacturing method of connection structure, and connection structure
WO2015056512A1 (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Electrical connection material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835274B2 (en) * 1998-08-03 2004-12-28 Sony Corporation Electrical connecting device and electrical connecting method
JP2011070931A (en) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd Anisotropic conductive material, manufacturing method of connection structure, and connection structure
WO2015056512A1 (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Electrical connection material
JP2015079603A (en) * 2013-10-15 2015-04-23 デクセリアルズ株式会社 Electric connecting material
CN105594064A (en) * 2013-10-15 2016-05-18 迪睿合株式会社 Electrical connection material
US10154587B2 (en) 2013-10-15 2018-12-11 Dexerials Corporation Electrical connection material

Also Published As

Publication number Publication date
JP4155470B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
KR100639083B1 (en) Anisotropic conductive adhesive film
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
JPH07230840A (en) Connecting member and electrode connecting structure using the same
JPH09312176A (en) Connecting member, and structure and method for connecting electrodes using this connecting member
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP3656768B2 (en) Connection member, electrode connection structure using the connection member, and connection method
JPH0945731A (en) Connection structure of semiconductor chip and interconnection substrate therefor
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JPH05258830A (en) Connecting method for circuit
JP4661914B2 (en) Electrode connection method
JP2004006417A (en) Connecting element and connection structure of electrode using this
JP4155470B2 (en) Electrode connection method using connecting members
JPH08148210A (en) Connection member
JP3876993B2 (en) Adhesive structure, liquid crystal device, and electronic device
KR100735211B1 (en) Anisotropic conductive film with conductive particles with excellent connection reliability
JP2007027712A (en) Adhesion method and liquid crystal device manufacturing method
JP4670859B2 (en) Connection member and electrode connection structure using the same
JPH09147928A (en) Connecting member
JP2008124029A (en) Connecting member
JP4181239B2 (en) Connecting member
JP5143329B2 (en) Manufacturing method of circuit connection body
JP4572929B2 (en) Connection member and electrode connection structure using the same
JP2008112732A (en) Connecting method of electrode
JPH0955279A (en) Electrode connecting method and connection structure of electrode obtained by the method
JP3783791B2 (en) Connection member and electrode connection structure and connection method using the connection member

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees