JPH08143998A - Heat exchanger fin material made of aluminum alloy, having high fatigue strength after brazing - Google Patents
Heat exchanger fin material made of aluminum alloy, having high fatigue strength after brazingInfo
- Publication number
- JPH08143998A JPH08143998A JP31760694A JP31760694A JPH08143998A JP H08143998 A JPH08143998 A JP H08143998A JP 31760694 A JP31760694 A JP 31760694A JP 31760694 A JP31760694 A JP 31760694A JP H08143998 A JPH08143998 A JP H08143998A
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- heat exchanger
- fin material
- fatigue strength
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、ろう付け時のろう材
侵入抑制作用を有し、したがってろう材侵入による疲労
強度の低下がきわめて小さいAl合金製熱交換器フィン
材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger fin material made of Al alloy which has a brazing material invasion suppressing effect during brazing, and therefore has a very small decrease in fatigue strength due to brazing material penetration.
【0002】[0002]
【従来の技術】従来、一般に、例えば自動車などにAl
合金製熱交換器が用いられており、このAl合金製熱交
換器は、各種のAl合金の芯材の片面に、Al−Si系
合金のろう材をクラッドしてなるブレージングシートか
ら成形された管材と、同じく各種のAl合金のフィン材
を前記ろう材を介してろう付け組立てすることにより製
造されるものである。また、一般に、上記の従来Al合
金製熱交換器フィン材が、(a) 所定組成のAl合金
溶湯を半連続鋳造法にて、例えば厚さ:500mm×幅:
1000mmの寸法をもったインゴットに鋳造し、このイ
ンゴットは初晶Siが素地中に分布した樹枝状組織を有
し、(b) 上記インゴットに、大気中、500〜60
0℃の温度に4〜12時間保持の条件で均質化処理を施
して、上記樹枝状組織の消滅をはかると共に、金属間化
合物を析出させ、もって素地中に初晶Siと析出金属間
化合物が分散分布した組織とし、(c) 均質化処理後
のインゴットに熱間圧延を施して、板厚が5〜6mmの熱
延板とし、(d) 上記熱延板に、冷間圧延と、必要に
応じて大気中、300〜400℃の温度に1〜5時間保
持の条件でバッチ式中間焼鈍を施して、上記の初晶Si
が微細化し、かつ微細にして多量の金属間化合物が素地
中に均一に析出した組織を有する板厚:70〜150μ
mの冷延薄板とする、以上(a)〜(d)の基本工程に
より製造されることも知られている。2. Description of the Related Art Conventionally, Al is generally used for automobiles, for example.
An alloy heat exchanger is used, and this Al alloy heat exchanger is formed from a brazing sheet obtained by clad a brazing material of an Al-Si alloy on one surface of a core material of various Al alloys. It is manufactured by brazing and assembling a tube material and a fin material of various Al alloys via the brazing material. In general, the conventional Al alloy heat exchanger fin material is (a) a semi-continuous casting method of an Al alloy molten metal having a predetermined composition, for example, thickness: 500 mm x width:
It is cast into an ingot having a size of 1000 mm, and this ingot has a dendritic structure in which primary Si is distributed in the matrix.
A homogenization treatment is performed at a temperature of 0 ° C. for 4 to 12 hours to eliminate the dendritic structure and to precipitate an intermetallic compound, so that the primary crystal Si and the precipitated intermetallic compound are present in the matrix. (C) The ingot after the homogenization treatment is subjected to hot rolling to obtain a hot-rolled sheet having a plate thickness of 5 to 6 mm. (D) The above hot-rolled sheet requires cold rolling and According to the above, batch-type intermediate annealing is performed in the atmosphere at a temperature of 300 to 400 ° C. for 1 to 5 hours, and the above-mentioned primary crystal Si is added.
Has a fine structure, and has a structure in which a large amount of finely divided intermetallic compounds are uniformly deposited in the base material. Plate thickness: 70 to 150 μm
It is also known that a cold-rolled thin plate of m is manufactured by the above basic steps (a) to (d).
【0003】[0003]
【発明が解決しようとする課題】一方、近年のAl合金
製熱交換器の軽量化および小型化はめざましく、これに
伴ない、これを構成するフィン材も薄肉化の傾向にあ
る。しかし上記の従来Al合金製熱交換器フィン材は、
上記の通り微細な初晶Siと析出金属間化合物が素地に
多量に分散分布した組織をもつものであることから、ろ
う付け時に前記初晶Siおよび析出金属間化合物が再結
晶化の核として作用し、微細な再結晶組織をもつものと
なるが、このような微細な再結晶組織は、それだけ結晶
粒界が多いことになり、ろう付け時にろう材が前記結晶
粒界から侵入する割合が増大することになり、このよう
なろう材が結晶粒界を通って侵入したフィン材は疲労強
度の低下が著しく、したがって上記の従来Al合金製熱
交換器フィン材においては、これを薄肉化すると、ろう
材の結晶粒界からの侵入が中心部まで達し、著しい疲労
強度の低下をもたらすことから、十分満足な薄肉化をは
かることができないのが現状である。On the other hand, in recent years, the weight and size of the Al alloy heat exchanger have been remarkably reduced, and along with this, the fin material constituting the heat exchanger tends to be thin. However, the above conventional Al alloy heat exchanger fin material is
As described above, since the fine primary Si and the precipitated intermetallic compound have a structure in which a large amount is dispersed and distributed in the matrix, the primary Si and the precipitated intermetallic compound act as nuclei for recrystallization during brazing. However, it has a fine recrystallized structure, but such a fine recrystallized structure has a large number of crystal grain boundaries, and the proportion of the brazing material penetrating from the crystal grain boundaries during brazing increases. Therefore, the fatigue strength of the fin material in which such a brazing material has penetrated through the crystal grain boundaries is remarkably lowered, and therefore, in the above conventional Al alloy heat exchanger fin material, if the thickness is reduced, Since the penetration of the brazing filler metal from the crystal grain boundaries reaches the central portion and the fatigue strength is remarkably lowered, it is not possible to achieve a sufficiently thin wall thickness.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、ろう付け時におけるろう材の結
晶粒界からの侵入が少ないAl合金製熱交換器フィン材
を開発すべく研究を行なった結果、(a) Al合金
を、重量%(以下、%は重量%を示す)、Si:0.5
〜1.5%、 Mn:0.3〜2.5%、を含有
し、Fe:0.6〜1.5%、 Cr:0.01〜
0.3%、Ti:0.01〜0.3%、 Zr:0.
01〜0.3%、V:0.01〜0.3%、 C
u:0.01〜0.7%、のうちの1種または2種以
上、を含有し、さらに必要に応じて、Mg:0.01〜
1%、 Zn:0.1〜3%、In:0.005
〜0.1%、 Sn:0.05〜0.2%、のうちの1
種または2種以上、を含有し、残りがAlと不可避不純
物からなる組成を有するAl合金に特定し、(b) 上
記特定したAl合金の溶湯を、薄板連続鋳造コイル法
(双ロールキャスト法)、すなわち3C法、さらに述べ
れば耐火物製のノズルから一対の水冷ロール間にAl合
金溶湯を供給する方法で、4〜10mmの厚さのコイルに
直接鋳造し、このコイルは、前記の通り急冷されるの
で、初晶Siの晶出が抑制され、かつ初晶Siも板厚中
心部に集中して晶出し、その他の部分への晶出は実質的
にない組織を有し、(c) ついで、上記コイルに、均
質化処理および熱間圧延を施すことなく、冷間圧延と、
例えば昇温速度:100℃/min 以上、加熱温度:45
0〜550℃、保持時間:5〜100秒の条件での連続
焼鈍を施して板厚:70〜150μmの冷延コイルとす
る、以上(a)〜(c)の基本工程でAl合金製熱交換
器フィン材を製造すると、この結果のフィン材は、上記
の3C法で板厚中心部に微細な初晶Siが集中的に晶出
し、金属間化合物の析出が抑制された組織(均質化処
理、熱間圧延、およびバッチ式中間焼鈍を行なわないの
で、板厚全面に亘って金属間化合物の析出が著しく抑制
されたものとなる)をもつようになり、このように再結
晶化の核となる初晶Siは板厚中心部に存在し、かつ析
出金属間化合物は、その存在がきわめて少ないことか
ら、ろう付け時の再結晶化が抑止され、この結果結晶粒
はろう付け時も相対的に大きな状態を保持し、この状態
では結晶粒界を通してのろう材の侵入は著しく少なく、
かつ前記板厚中心部に存在する微細な初晶Siがろう材
侵入の障壁として作用することと相まって疲労強度の低
下が著しく抑制されたものになるという研究結果を得た
のである。Therefore, the present inventors have
From the above-mentioned viewpoint, as a result of research to develop an Al alloy heat exchanger fin material in which the brazing material is less likely to penetrate from the crystal grain boundaries during brazing, (a) the Al alloy is represented by weight% ( Hereinafter,% indicates% by weight), Si: 0.5
~ 1.5%, Mn: 0.3-2.5%, Fe: 0.6-1.5%, Cr: 0.01-
0.3%, Ti: 0.01 to 0.3%, Zr: 0.
01-0.3%, V: 0.01-0.3%, C
u: 0.01 to 0.7%, one or more of them are contained, and Mg: 0.01 to if necessary.
1%, Zn: 0.1 to 3%, In: 0.005
~ 0.1%, Sn: 0.05-0.2%, 1 of
And an alloy containing at least two kinds, and the balance consisting of Al and unavoidable impurities, and (b) a molten metal of the above-specified Al alloy is thin plate continuous casting coil method (twin roll casting method) That is, the 3C method, more specifically, a method of supplying molten Al alloy from a refractory nozzle between a pair of water-cooled rolls is directly cast into a coil having a thickness of 4 to 10 mm, and the coil is quenched as described above. Therefore, the crystallization of the primary crystal Si is suppressed, and the primary crystal Si is also concentrated and crystallized in the central portion of the plate thickness, and the crystallization to other portions has substantially no structure, and (c) Then, the coil, without performing homogenization treatment and hot rolling, cold rolling,
For example, heating rate: 100 ° C / min or more, heating temperature: 45
Continuous annealing is performed under the conditions of 0 to 550 ° C. and holding time: 5 to 100 seconds to obtain a cold rolled coil having a plate thickness of 70 to 150 μm. The heat treatment made of Al alloy in the basic steps (a) to (c) above. When the fin material of the exchanger is manufactured, the resulting fin material has a structure in which fine primary crystal Si is crystallized intensively in the center part of the plate thickness by the above-mentioned 3C method, and precipitation of intermetallic compounds is suppressed (homogenized. Since the treatment, hot rolling, and batch type intermediate annealing are not performed, the precipitation of intermetallic compounds is remarkably suppressed over the entire plate thickness). The primary crystal Si is present in the center of the plate thickness, and the presence of precipitated intermetallic compounds is extremely small, so recrystallization during brazing is suppressed, and as a result, the crystal grains are relatively Hold a relatively large state, and in this state, through the grain boundaries The braze penetration is significantly less,
Further, the research results were obtained that, together with the fact that the fine primary crystal Si existing in the central portion of the plate thickness acts as a barrier for the penetration of the brazing filler metal, the reduction in fatigue strength is significantly suppressed.
【0005】この発明は、上記の研究結果にもとづいて
なされたものであって、Si:0.5〜1.5%、
Mn:0.3〜2.5%、を含有し、Fe:0.6〜
1.5%、 Cr:0.01〜0.3%、Ti:
0.01〜0.3%、 Zr:0.01〜0.3%、
V:0.01〜0.3%、 Cu:0.01〜0.
7%、のうちの1種または2種以上、を含有し、さらに
必要に応じて、Mg:0.01〜1%、 Zn:
0.1〜3%、In:0.005〜0.1%、 Sn:
0.05〜0.2%、のうちの1種または2種以上、を
含有し、残りがAlと不可避不純物からなる組成、並び
に微細な初晶Siが板厚中心部に集中的に晶出し、金属
間化合物の析出が抑制された組織を有する、ろう付け後
に高い疲労強度を保持するAl合金製熱交換器フィン材
に特徴を有するものである。The present invention has been made based on the above research results, and Si: 0.5 to 1.5%,
Mn: 0.3-2.5%, Fe: 0.6-
1.5%, Cr: 0.01 to 0.3%, Ti:
0.01-0.3%, Zr: 0.01-0.3%,
V: 0.01-0.3%, Cu: 0.01-0.
1% or 2 or more of 7%, and if necessary, Mg: 0.01 to 1%, Zn:
0.1-3%, In: 0.005-0.1%, Sn:
0.05 to 0.2%, one or more of which is contained, and the rest is composed of Al and unavoidable impurities, and fine primary crystal Si is crystallized intensively at the center of the plate thickness. The heat exchanger fin material made of Al alloy has a structure in which precipitation of intermetallic compounds is suppressed and retains high fatigue strength after brazing.
【0006】この発明のフィン材において、これを構成
するAl合金の成分組成を上記の通りに限定した理由を
以下に説明する。 (a) Si 上記のように、この発明のフィン材においては、その製
造工程上急冷を伴なう3C法を採用しているので、初晶
Siの晶出が抑制され、かつ初晶Siの晶出が主として
板厚中心部に集中されるものである。したがって、Si
成分は、素地に固溶して強度を向上させると共に、初晶
Siとして板厚中心部に存在して、ろう付け時に再結晶
化の核となるのを避け、もって結晶粒界からのろう材の
侵入による疲労強度の低下を抑制する作用をもつが、そ
の含有量が0.5%未満では前記作用に所望の効果が得
られず、一方その含有量が1.5%を越えると融点低下
が著しく、ろう付け時に局部溶融が発生するようになる
ことから、その含有量を0.5〜1.5%、望ましくは
0.7〜1.1%と定めた。In the fin material of the present invention, the reason why the composition of the Al alloy constituting the fin material is limited as described above will be explained below. (A) Si As described above, in the fin material of the present invention, since the 3C method involving quenching is adopted in the manufacturing process, the crystallization of primary Si is suppressed and the primary Si Crystallization is mainly concentrated in the central part of the plate thickness. Therefore, Si
The components are solid-solved in the base material to improve the strength, and also exist as primary crystal Si in the center of the plate thickness to avoid becoming the nucleus of recrystallization during brazing, and thus the brazing material from the crystal grain boundary. Although it has the effect of suppressing the decrease in fatigue strength due to the intrusion of Al, if the content is less than 0.5%, the desired effect cannot be obtained, while if the content exceeds 1.5%, the melting point decreases. However, since the local melting occurs at the time of brazing, the content thereof is set to 0.5 to 1.5%, preferably 0.7 to 1.1%.
【0007】(b) Mn 同じく、この発明のフィン材においては、その製造工程
上、実質的に均質化処理および熱間圧延を行なわず、か
つ冷間圧延中の中間焼鈍もバッチ式焼鈍に代って連続焼
鈍を採用しているので、Al−Mn系化合物やAl−M
n−Si系化合物などの金属間化合物の析出が著しく抑
制されるものである。したがって、Mn成分は、素地に
固溶して高温強度を向上させる作用を発揮するが、その
含有量が0.3%未満では所望の高温強度向上効果が得
られず、一方その含有量が2.5%を越えると、金属間
化合物が析出するようになり、これがろう付け時の再結
晶化の核となり、微細な再結晶組織となってろう材の侵
入が促進し、疲労強度が低下するようになることから、
その含有量を0.3〜2.5%、望ましくは1.0〜
1.8と定めた。(B) Mn Similarly, in the fin material of the present invention, the homogenization treatment and hot rolling are not substantially performed in the manufacturing process, and the intermediate annealing during cold rolling is replaced with batch annealing. Since continuous annealing is adopted, Al-Mn compounds and Al-M
The precipitation of intermetallic compounds such as n-Si compounds is significantly suppressed. Therefore, the Mn component acts as a solid solution in the matrix to improve the high temperature strength, but if the content is less than 0.3%, the desired high temperature strength improving effect cannot be obtained, while the content is 2%. If it exceeds 0.5%, intermetallic compounds start to precipitate, which serves as nuclei for recrystallization during brazing, resulting in a fine recrystallized structure that promotes penetration of the brazing material and reduces fatigue strength. From that,
The content is 0.3 to 2.5%, preferably 1.0 to
It was set as 1.8.
【0008】 (c) Fe,Cr,Ti,Zr,V、およびCu これらの成分には、いずれも初晶Siの板厚中心部への
晶出を促進し、かつ金属間化合物の析出を抑制し、さら
に強度を向上させる作用があるが、その含有量がFe:
0.6%未満、Cr,Ti,Zr,V、およびCu成分
にあってはいずれも0.01%未満では前記作用に所望
の効果が得られず、一方その含有量がFe:1.5%,
Cr,Ti,Zr、およびVはいずれも0.3%、Cu
は0.7%をそれぞれ越えると、冷間圧延性が低下する
ようになることから、その含有量を、それぞれFe:
0.6〜1.5%,Cr:0.01〜0.3%,Ti:
0.01〜0.3%,Zr:0.01〜0.3%,V:
0.01〜0.3%、およびCu:0.01〜0.7
%、さらに望ましくはFe:0.8〜1.2%,Cr:
0.05〜0.15%,Ti:0.05〜0.15%,
Zr:0.05〜0.15%,V:0.05〜0.15
%、およびCu:0.05〜0.5%と定めた。(C) Fe, Cr, Ti, Zr, V, and Cu Any of these components promotes crystallization of primary crystal Si to the center of the plate thickness and suppresses precipitation of intermetallic compounds. Has the effect of further improving the strength, but its content is Fe:
If less than 0.6%, and Cr, Ti, Zr, V, and Cu components are all less than 0.01%, the desired effect cannot be obtained, while the content of Fe: 1.5. %,
Cr, Ti, Zr, and V are all 0.3%, Cu
If the content of Fe exceeds 0.7%, the cold rolling property will decrease, so the content of Fe:
0.6-1.5%, Cr: 0.01-0.3%, Ti:
0.01-0.3%, Zr: 0.01-0.3%, V:
0.01-0.3%, and Cu: 0.01-0.7
%, More preferably Fe: 0.8 to 1.2%, Cr:
0.05 to 0.15%, Ti: 0.05 to 0.15%,
Zr: 0.05 to 0.15%, V: 0.05 to 0.15
%, And Cu: 0.05 to 0.5%.
【0009】(d) Mg Mg成分には、素地に固溶して強度を一段と向上させる
作用があるので、必要に応じて含有されるが、その含有
量が0.01%未満では所望の強度向上効果が得られ
ず、一方その含有量が1%を越えると、融点が低下し、
ろう付け時に局部溶融を起こすようになることから、そ
の含有量を0.01〜1%、望ましくは0.05〜0.
3%と定めた。(D) Mg Since the Mg component has the action of forming a solid solution in the matrix to further improve the strength, it is contained if necessary, but if the content is less than 0.01%, the desired strength is obtained. When the content exceeds 1%, the melting point is lowered,
Since local melting will occur during brazing, its content is 0.01 to 1%, preferably 0.05 to 0.
It was set at 3%.
【0010】(e) Zn,In、およびSn これらの成分には、いずれも素地に固溶して、これを電
気化学的に卑にし、もって管材に対する犠牲陽極効果を
確実なものとする作用があるので、必要に応じて含有さ
れるが、その含有量が、それぞれZn:0.1%未満、
In:0.005%未満、およびSn:0.05%未満
では電位低下が不十分で、所望の犠牲陽極効果を付与す
ることができず、一方その含有量が、それぞれZn:3
%,In:0.1%、およびSn:0.2%を越えても
前記作用に一層の向上効果は現われないことから、その
含有量を、それぞれZn:0.1〜3%,In:0.0
05〜0.1%、およびSn:0.05〜0.2%、さ
らに望ましくはZn:1〜2%,In:0.01〜0.
05%、およびSn:0.05〜0.15%と定めた。(E) Zn, In, and Sn Any of these components has a function of forming a solid solution in the base material and making it electrochemically base, thereby ensuring the sacrificial anode effect on the pipe material. Therefore, the content of Zn is less than 0.1%.
If the In content is less than 0.005% and the Sn content is less than 0.05%, the potential drop is insufficient, and the desired sacrificial anode effect cannot be imparted.
%, In: 0.1%, and Sn: 0.2%, no further improvement effect appears in the above action, so the contents are Zn: 0.1-3% and In :, respectively. 0.0
05-0.1%, Sn: 0.05-0.2%, more preferably Zn: 1-2%, In: 0.01-0.
05% and Sn: 0.05 to 0.15%.
【0011】[0011]
【実施例】つぎに、この発明のAl合金製熱交換器フィ
ン材を実施例により具体的に説明する。通常の溶解法に
て、それぞれ表1,2に示される組成をもったAl合金
溶湯A〜Xを調製し、これらのAl合金溶湯を、3C法
(双ロールキャスト法)を用い、ロール直径:600m
m、ロール間距離:6mm、溶湯温度:725℃、鋳造速
度:800mm/min の条件で厚さ:6mmのコイルに直接
鋳造し、ついでこのコイルに、均質化処理および熱間圧
延を施すことなく、通常の条件で冷間圧延を施し、板厚
が1.8mmになった時点で、昇温速度:105℃/min
、温度:465℃、保持時間:20秒、冷却速度:2
100℃/min の条件で1回目の中間連続焼鈍を行な
い、さらに冷間圧延を施して板厚が0.2mmになった時
点で、昇温速度:3200℃/min 、温度:540℃、
保持時間:90秒、冷却速度:450℃/min の条件で
2回目の中間連続焼鈍を行ない、以後、50μmの板厚
まで冷間圧延を続行することにより本発明フィン材1〜
24をそれぞれ製造した。EXAMPLES Next, the Al alloy heat exchanger fin material of the present invention will be specifically described by way of examples. Al alloy melts A to X having compositions shown in Tables 1 and 2, respectively, were prepared by an ordinary melting method, and these Al alloy melts were subjected to a 3C method (twin roll casting method) to obtain a roll diameter: 600 m
m, distance between rolls: 6 mm, melt temperature: 725 ° C., casting speed: 800 mm / min, thickness: 6 mm, directly cast into a coil, and then this coil is not subjected to homogenization treatment and hot rolling. When cold rolling was performed under normal conditions and the plate thickness reached 1.8 mm, the heating rate was 105 ° C / min.
, Temperature: 465 ° C., holding time: 20 seconds, cooling rate: 2
When the first intermediate continuous annealing was performed under the condition of 100 ° C / min, and further cold rolling was performed to reach a plate thickness of 0.2 mm, the heating rate: 3200 ° C / min, temperature: 540 ° C,
Holding time: 90 seconds, cooling rate: 450 ° C./min, the second intermediate continuous annealing was performed, and thereafter, the cold rolling was continued to a plate thickness of 50 μm.
24 were produced respectively.
【0012】また、比較の目的で、同じく表1,2に示
される組成のAl合金溶湯A〜Xを用い、これを半連続
鋳造法にて厚さ:500mm×幅:1000mmの寸法をも
ったインゴットに鋳造し、このインゴットに、大気中、
500〜600℃の範囲内の所定温度に8時間保持の条
件で均質化処理を施した後、通常の条件で熱間圧延を行
なって板厚:6mmの熱延板とし、さらにこの熱延板に、
通常の条件で冷間圧延を施し、板厚が1.8mmおよび
0.2mmになった時点でそれぞれ大気中、300〜40
0℃の範囲内の所定温度に3時間保持の条件でバッチ式
中間焼鈍を施し、板厚:50μmまで冷間圧延を行なう
ことにより従来フィン材1〜24をそれぞれ製造した。For comparison purposes, Al alloy melts A to X having the same compositions shown in Tables 1 and 2 were used, and these were semi-continuously cast to have a thickness of 500 mm and a width of 1000 mm. Cast into an ingot, and in this ingot, in the atmosphere,
After performing homogenization treatment at a predetermined temperature within a range of 500 to 600 ° C. for 8 hours, hot rolling is performed under normal conditions to obtain a hot rolled sheet having a plate thickness of 6 mm. To
Cold-rolled under normal conditions, when the plate thickness becomes 1.8 mm and 0.2 mm, respectively, in the atmosphere, 300-40
The conventional fin materials 1 to 24 were manufactured by performing batch type intermediate annealing under the condition of maintaining at a predetermined temperature within a range of 0 ° C. for 3 hours and performing cold rolling to a plate thickness of 50 μm.
【0013】この結果得られた本発明フィン材1〜24
および従来フィン材1〜24の厚さ方向断面を金属顕微
鏡により観察したところ、前者はいずれも板厚中心部に
微細な初晶Siが集中的に晶出し、金属間化合物などの
析出はほとんど見られない組織を示し、一方後者は微細
な初晶Siと析出金属間化合物が全面に亘って多量に分
散分布した組織を示した。The fin materials 1 to 24 of the present invention obtained as a result
When observing the cross section in the thickness direction of the conventional fin materials 1 to 24 with a metallographic microscope, in the former, fine primary crystal Si was intensively crystallized in the center part of the plate thickness and almost no precipitation of intermetallic compounds was observed. However, the latter showed a structure in which a large amount of fine primary crystal Si and precipitated intermetallic compounds were dispersed and distributed over the entire surface.
【0014】つぎに、上記の各種フィン材について、ろ
う付け後の疲労強度を評価する目的で、幅:25mm×長
さ:200mmの寸法に切り出し、この両面に20μmを
有するJISZ3263BA4045ろう材を重ね合わ
せて水平に置き、この状態で窒素雰囲気中、温度:61
0℃に5分間保持のろう付け条件に相当する条件で加熱
した後、これより平行部幅:10mm×平行部長さ:50
mmの試験片を切り出し、応力:10kgf /mm2 の引張り
と無負荷を30Hzで繰り返す疲労試験を行ない、前記
試験片が破断に至るまでの繰り返し回数を測定した。こ
の測定結果を表3,4に示した。また、表3,4には、
上記のろう付け加熱処理を行なわない場合の疲労試験結
果を「ろう付け加熱前」として示した。Next, for the purpose of evaluating the fatigue strength after brazing, the above-mentioned various fin materials were cut into a size of width: 25 mm × length: 200 mm, and JIS Z3263BA4045 brazing material having 20 μm was superposed on both sides. And place it horizontally, and in this state in a nitrogen atmosphere, temperature: 61
After heating at 0 ° C for 5 minutes under the conditions equivalent to the brazing conditions, the parallel part width: 10 mm x parallel part length: 50
A test piece of mm was cut out, and a fatigue test was repeated in which stress: tension of 10 kgf / mm 2 and no load were repeated at 30 Hz, and the number of repetitions until the test piece was broken was measured. The measurement results are shown in Tables 3 and 4. Also, in Tables 3 and 4,
The fatigue test results when the above brazing heat treatment was not performed are shown as "before brazing heat treatment".
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】[0017]
【表3】 [Table 3]
【0018】[0018]
【表4】 [Table 4]
【0019】[0019]
【発明の効果】表3,4に示される結果から、本発明フ
ィン材1〜24は、いずれもろう付け時の再結晶化が抑
制され、結晶粒は相対的に粗大な状態を保持するので、
結晶粒界からのろう材の侵入がきわめて少ないことか
ら、ろう付け後の疲労強度の低下がきわめて小さいのに
対して、従来フィン材1〜24は、いずれも微細な初晶
Siおよび析出金属間化合物が素地中に多量に分散分布
した組織をもち、この初晶Siおよび析出金属間化合物
がろう付け時に再結晶化の核となって微細組織となり、
この結果は結晶粒界の増大をもたらし、それだけ結晶粒
界からのろう材の侵入が促進されるので、ろう付け後の
疲労強度の低下が著しいことが明らかである。上述のよ
うに、この発明のAl合金製熱交換器フィン材は、ろう
付け後の疲労強度の低下が著しく抑制されるので、これ
の薄肉化をはかることができ、熱交換器の軽量化および
小型化に大いに寄与するものである。From the results shown in Tables 3 and 4, all of the fin materials 1 to 24 of the present invention suppress recrystallization during brazing, and the crystal grains maintain a relatively coarse state. ,
Since the penetration of the brazing filler metal from the crystal grain boundaries is extremely small, the deterioration of the fatigue strength after brazing is extremely small, whereas the conventional fin materials 1 to 24 all have fine primary crystal Si and precipitated metal. The compound has a structure in which it is dispersed and distributed in a large amount in the matrix, and this primary crystal Si and precipitated intermetallic compound serve as nuclei for recrystallization during brazing to form a fine structure,
This result leads to an increase in the grain boundaries, which promotes the penetration of the brazing material from the grain boundaries, so that it is clear that the fatigue strength after brazing is significantly reduced. As described above, since the Al alloy heat exchanger fin material of the present invention is remarkably suppressed in the decrease in fatigue strength after brazing, it is possible to reduce the thickness of the heat exchanger fin material and reduce the weight of the heat exchanger. This greatly contributes to miniaturization.
Claims (4)
%、を含有し、さらに、 Fe:0.6〜1.5%、 Cr:0.01〜0.
3%、 Ti:0.01〜0.3%、 Zr:0.01〜0.
3%、 V:0.01〜0.3%、 Cu:0.01〜0.
7%、のうちの1種または2種以上、を含有し、残りが
Alと不可避不純物からなる組成、並びに微細な初晶S
iが板厚中心部に集中的に晶出し、金属間化合物の析出
が抑制された組織を有することを特徴とする、ろう付け
後に高い疲労強度を保持するAl合金製熱交換器フィン
材。1. By weight%, Si: 0.5 to 1.5%, Mn: 0.3 to 2.5
%, Further, Fe: 0.6 to 1.5%, Cr: 0.01 to 0.
3%, Ti: 0.01 to 0.3%, Zr: 0.01 to 0.
3%, V: 0.01 to 0.3%, Cu: 0.01 to 0.
7%, one or more of them, and the balance consisting of Al and inevitable impurities, and fine primary crystal S
A heat exchanger fin material made of an Al alloy which retains high fatigue strength after brazing, characterized in that i has a structure in which precipitation of intermetallic compounds is suppressed in the central portion of the plate thickness.
%、 Mg:0.01〜1%、を含有し、さらに、 Fe:0.6〜1.5%、 Cr:0.01〜0.
3%、 Ti:0.01〜0.3%、 Zr:0.01〜0.
3%、 V:0.01〜0.3%、 Cu:0.01〜0.
7%、のうちの1種または2種以上、を含有し、残りが
Alと不可避不純物からなる組成、並びに微細な初晶S
iが板厚中心部に集中的に晶出し、金属間化合物の析出
が抑制された組織を有することを特徴とする、ろう付け
後に高い疲労強度を保持するAl合金製熱交換器フィン
材。2. By weight%, Si: 0.5-1.5%, Mn: 0.3-2.5
%, Mg: 0.01 to 1%, Fe: 0.6 to 1.5%, Cr: 0.01 to 0.
3%, Ti: 0.01 to 0.3%, Zr: 0.01 to 0.
3%, V: 0.01 to 0.3%, Cu: 0.01 to 0.
7%, one or more of them, and the balance consisting of Al and inevitable impurities, and fine primary crystal S
A heat exchanger fin material made of an Al alloy which retains high fatigue strength after brazing, characterized in that i has a structure in which precipitation of intermetallic compounds is suppressed in the central portion of the plate thickness.
%、を含有し、 Fe:0.6〜1.5%、 Cr:0.01〜0.
3%、 Ti:0.01〜0.3%、 Zr:0.01〜0.
3%、 V:0.01〜0.3%、 Cu:0.01〜0.
7%、のうちの1種または2種以上、を含有し、さら
に、 Zn:0.1〜3%、 In:0.005〜
0.1%、 Sn:0.05〜0.2%、のうちの1種または2種以
上、を含有し、残りがAlと不可避不純物からなる組
成、並びに微細な初晶Siが板厚中心部に集中的に晶出
し、金属間化合物の析出が抑制された組織を有すること
を特徴とする、ろう付け後に高い疲労強度を保持するA
l合金製熱交換器フィン材。3. By weight%, Si: 0.5-1.5%, Mn: 0.3-2.5
%, Fe: 0.6-1.5%, Cr: 0.01-0.
3%, Ti: 0.01 to 0.3%, Zr: 0.01 to 0.
3%, V: 0.01 to 0.3%, Cu: 0.01 to 0.
1% or 2 or more of 7%, and Zn: 0.1-3%, In: 0.005-
0.1%, Sn: 0.05 to 0.2%, one or more of them are contained, and the balance is composed of Al and unavoidable impurities, and fine primary crystal Si is the plate thickness center. Which has high fatigue strength after brazing, characterized by having a structure in which the precipitation of intermetallic compounds is suppressed in a concentrated area.
l Alloy heat exchanger fin material.
%、 Mg:0.01〜1%、を含有し、 Fe:0.6〜1.5%、 Cr:0.01〜0.
3%、 Ti:0.01〜0.3%、 Zr:0.01〜0.
3%、 V:0.01〜0.3%、 Cu:0.01〜0.
7%、のうちの1種または2種以上、を含有し、さら
に、 Zn:0.1〜3%、 In:0.005〜
0.1%、 Sn:0.05〜0.2%、のうちの1種または2種以
上、を含有し、残りがAlと不可避不純物からなる組
成、並びに微細な初晶Siが板厚中心部に集中的に晶出
し、金属間化合物の析出が抑制された組織を有すること
を特徴とする、ろう付け後に高い疲労強度を保持するA
l合金製熱交換器フィン材。4. By weight%, Si: 0.5-1.5%, Mn: 0.3-2.5
%, Mg: 0.01-1%, Fe: 0.6-1.5%, Cr: 0.01-0.
3%, Ti: 0.01 to 0.3%, Zr: 0.01 to 0.
3%, V: 0.01 to 0.3%, Cu: 0.01 to 0.
1% or 2 or more of 7%, and Zn: 0.1-3%, In: 0.005-
0.1%, Sn: 0.05 to 0.2%, one or more of them are contained, and the balance is composed of Al and unavoidable impurities, and fine primary crystal Si is the plate thickness center. Which has high fatigue strength after brazing, characterized by having a structure in which the precipitation of intermetallic compounds is suppressed in a concentrated area.
l Alloy heat exchanger fin material.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP31760694A JP3505825B2 (en) | 1994-11-28 | 1994-11-28 | Aluminum alloy heat exchanger fin material that retains high fatigue strength after brazing |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP31760694A JP3505825B2 (en) | 1994-11-28 | 1994-11-28 | Aluminum alloy heat exchanger fin material that retains high fatigue strength after brazing |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH08143998A true JPH08143998A (en) | 1996-06-04 |
| JP3505825B2 JP3505825B2 (en) | 2004-03-15 |
Family
ID=18090080
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP31760694A Expired - Fee Related JP3505825B2 (en) | 1994-11-28 | 1994-11-28 | Aluminum alloy heat exchanger fin material that retains high fatigue strength after brazing |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3505825B2 (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002161324A (en) * | 2000-11-17 | 2002-06-04 | Sumitomo Light Metal Ind Ltd | Aluminum alloy fin material for heat exchanger with excellent formability and brazing properties |
| WO2002048413A1 (en) * | 2000-12-13 | 2002-06-20 | The Furukawa Electric Co.,Ltd. | Method of manufacturing aluminum alloy fin material for brazing |
| JP2003514989A (en) * | 1999-11-17 | 2003-04-22 | コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー | Aluminum brazing alloy |
| US6962753B1 (en) | 1996-09-09 | 2005-11-08 | Nec Tokin Corporation | Highly heat-conductive composite magnetic material |
| EP1693475A3 (en) * | 2005-02-17 | 2006-09-27 | Furukawa-Sky Aluminum Corp. | Aluminium alloy fin material for brazing |
| JP2010085081A (en) * | 2008-09-02 | 2010-04-15 | Calsonic Kansei Corp | Heat exchanger made of aluminum alloy |
| JP2010270386A (en) * | 2009-05-25 | 2010-12-02 | Furukawa-Sky Aluminum Corp | Aluminum alloy fin material for heat exchanger |
| JP2010270387A (en) * | 2009-05-25 | 2010-12-02 | Furukawa-Sky Aluminum Corp | Aluminum alloy fin material for heat exchanger and manufacturing method thereof |
| US7850796B2 (en) | 2007-08-20 | 2010-12-14 | Denso Corporation | Aluminum alloy fin material for brazing |
| ITTO20100032A1 (en) * | 2010-01-18 | 2011-07-19 | Ebrille S R L | ALUMINUM ALLOY TUBE FOR AIR-CONDITIONING SYSTEMS. |
| US20130156634A1 (en) * | 2011-12-16 | 2013-06-20 | Andrew D. Howells | Aluminum fin alloy and method of making the same |
| CN103572101A (en) * | 2013-10-21 | 2014-02-12 | 姚富云 | Heat exchanger aluminum alloy radiating fin material suitable for hard brazing |
| US8945721B2 (en) | 2010-03-02 | 2015-02-03 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy heat exchanger |
| CN105002403A (en) * | 2015-07-13 | 2015-10-28 | 苏州金业船用机械厂 | Manufacturing method of easy-to-process aluminium alloy plate for ships |
| WO2017148788A1 (en) * | 2016-02-29 | 2017-09-08 | Aleris Rolled Products Germany Gmbh | Rolled aluminium alloy for heat exchangers |
| CN110747379A (en) * | 2019-11-27 | 2020-02-04 | 亚太轻合金(南通)科技有限公司 | 3XXX series aluminum alloy and preparation method thereof |
| US11933553B2 (en) | 2014-08-06 | 2024-03-19 | Novelis Inc. | Aluminum alloy for heat exchanger fins |
-
1994
- 1994-11-28 JP JP31760694A patent/JP3505825B2/en not_active Expired - Fee Related
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6962753B1 (en) | 1996-09-09 | 2005-11-08 | Nec Tokin Corporation | Highly heat-conductive composite magnetic material |
| JP2003514989A (en) * | 1999-11-17 | 2003-04-22 | コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー | Aluminum brazing alloy |
| JP2002161324A (en) * | 2000-11-17 | 2002-06-04 | Sumitomo Light Metal Ind Ltd | Aluminum alloy fin material for heat exchanger with excellent formability and brazing properties |
| WO2002048413A1 (en) * | 2000-12-13 | 2002-06-20 | The Furukawa Electric Co.,Ltd. | Method of manufacturing aluminum alloy fin material for brazing |
| JP2002241910A (en) * | 2000-12-13 | 2002-08-28 | Furukawa Electric Co Ltd:The | Manufacturing method of aluminum alloy fin material for brazing |
| US6620265B2 (en) * | 2000-12-13 | 2003-09-16 | The Furukawa Electric Co., Ltd. | Method for manufacturing an aluminum alloy fin material for brazing |
| KR100845083B1 (en) * | 2000-12-13 | 2008-07-09 | 후루카와 스카이 가부시키가이샤 | Manufacturing method of aluminum alloy fin material for brazing |
| CN100429327C (en) * | 2000-12-13 | 2008-10-29 | 古河Sky株式会社 | Method for preparing aluminum alloy fin material by brazing |
| CZ304486B6 (en) * | 2000-12-13 | 2014-05-28 | Furukawa-Sky Aluminum Corp. | Method of producing aluminum alloy fin material for brazing |
| EP1693475A3 (en) * | 2005-02-17 | 2006-09-27 | Furukawa-Sky Aluminum Corp. | Aluminium alloy fin material for brazing |
| US7850796B2 (en) | 2007-08-20 | 2010-12-14 | Denso Corporation | Aluminum alloy fin material for brazing |
| JP2010085081A (en) * | 2008-09-02 | 2010-04-15 | Calsonic Kansei Corp | Heat exchanger made of aluminum alloy |
| JP2010270386A (en) * | 2009-05-25 | 2010-12-02 | Furukawa-Sky Aluminum Corp | Aluminum alloy fin material for heat exchanger |
| JP2010270387A (en) * | 2009-05-25 | 2010-12-02 | Furukawa-Sky Aluminum Corp | Aluminum alloy fin material for heat exchanger and manufacturing method thereof |
| ITTO20100032A1 (en) * | 2010-01-18 | 2011-07-19 | Ebrille S R L | ALUMINUM ALLOY TUBE FOR AIR-CONDITIONING SYSTEMS. |
| US9328977B2 (en) | 2010-03-02 | 2016-05-03 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy heat exchanger |
| US8945721B2 (en) | 2010-03-02 | 2015-02-03 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy heat exchanger |
| JP2015505905A (en) * | 2011-12-16 | 2015-02-26 | ノベリス・インコーポレイテッドNovelis Inc. | Aluminum fin alloy and manufacturing method thereof |
| US20130156634A1 (en) * | 2011-12-16 | 2013-06-20 | Andrew D. Howells | Aluminum fin alloy and method of making the same |
| US9719156B2 (en) * | 2011-12-16 | 2017-08-01 | Novelis Inc. | Aluminum fin alloy and method of making the same |
| CN103572101A (en) * | 2013-10-21 | 2014-02-12 | 姚富云 | Heat exchanger aluminum alloy radiating fin material suitable for hard brazing |
| US11933553B2 (en) | 2014-08-06 | 2024-03-19 | Novelis Inc. | Aluminum alloy for heat exchanger fins |
| CN105002403A (en) * | 2015-07-13 | 2015-10-28 | 苏州金业船用机械厂 | Manufacturing method of easy-to-process aluminium alloy plate for ships |
| WO2017148788A1 (en) * | 2016-02-29 | 2017-09-08 | Aleris Rolled Products Germany Gmbh | Rolled aluminium alloy for heat exchangers |
| CN109072357A (en) * | 2016-02-29 | 2018-12-21 | 爱励轧制产品德国有限责任公司 | Heat exchanger comprising rolled aluminium alloy |
| CN110747379A (en) * | 2019-11-27 | 2020-02-04 | 亚太轻合金(南通)科技有限公司 | 3XXX series aluminum alloy and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3505825B2 (en) | 2004-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3505825B2 (en) | Aluminum alloy heat exchanger fin material that retains high fatigue strength after brazing | |
| US20090165901A1 (en) | Aluminum alloy clad sheet for a heat exchanger and its production method | |
| US6592688B2 (en) | High conductivity aluminum fin alloy | |
| JP2002241910A (en) | Manufacturing method of aluminum alloy fin material for brazing | |
| US6294272B2 (en) | Aluminium alloy for use as core material in brazing sheet | |
| US9719156B2 (en) | Aluminum fin alloy and method of making the same | |
| EP1250468B8 (en) | Process of producing aluminum fin alloy | |
| JP2004076057A (en) | Aluminum alloy clad material and method for producing the same | |
| JP3857551B2 (en) | Method for producing aluminum alloy fin material for brazing | |
| JP2004035966A (en) | Aluminum alloy clad material and method for producing the same | |
| JP3533434B2 (en) | Brazing sheet for aluminum alloy heat exchanger | |
| JP2004017116A (en) | Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method | |
| JP4574036B2 (en) | Aluminum alloy for fin material of heat exchanger and manufacturing method of fin material of heat exchanger | |
| EP0846781B1 (en) | Process of forming an aluminium sheet with excellent high speed superplastic formability | |
| JP2002256402A (en) | Method of producing fin material for use in heat exchanger | |
| JPH11350058A (en) | Aluminum alloy sheet excellent in formability and baking hardenability and its production | |
| JP3683443B2 (en) | Aluminum alloy composite material for heat exchanger and manufacturing method thereof | |
| JP3345850B2 (en) | Aluminum alloy brazing sheet strip for ERW processing | |
| JP3286119B2 (en) | Aluminum alloy foil and method for producing the same | |
| JP3735700B2 (en) | Aluminum alloy fin material for heat exchanger and method for producing the same | |
| JPH08291353A (en) | Aluminum alloy brazing sheet strip with excellent electric resistance workability | |
| JPH07179973A (en) | Al alloy brazing sheet for vacuum brazing for structural member for heat exchanger, excellent in corrosion resistance | |
| JPH0210212B2 (en) | ||
| JPH05345963A (en) | Manufacture of high formability aluminum alloy sheet | |
| JP7690701B1 (en) | Aluminum alloy wrought material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031208 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081226 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091226 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101226 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20111226 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111226 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20121226 |
|
| LAPS | Cancellation because of no payment of annual fees |