JPH0817631A - Multilayer magnetoresistive film and magnetic head - Google Patents
Multilayer magnetoresistive film and magnetic headInfo
- Publication number
- JPH0817631A JPH0817631A JP6148055A JP14805594A JPH0817631A JP H0817631 A JPH0817631 A JP H0817631A JP 6148055 A JP6148055 A JP 6148055A JP 14805594 A JP14805594 A JP 14805594A JP H0817631 A JPH0817631 A JP H0817631A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetoresistive effect
- layer
- multilayer
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
- Hall/Mr Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高い磁気抵抗効果を有
する多層磁気抵抗効果膜及びこれを用いた磁気抵抗効果
素子、磁気ヘッド、磁気記録再生装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer magnetoresistive effect film having a high magnetoresistive effect, a magnetoresistive effect element using the same, a magnetic head and a magnetic recording / reproducing apparatus.
【0002】[0002]
【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、高い磁気抵抗
効果を示す材料が求められている。そこで、Dieny らに
よるフィジカル・レビュ−・B(Physical Review B)、
第43巻、第1号、1297〜1300ペ−ジに記載の「軟磁性多
層膜における巨大磁気抵抗効果」(Giant Magnetoresist
ance in Soft Ferromagnetic Multilayers)のように2
層の磁性層を非磁性層で分離し、一方の磁性層に反強磁
性層からの交換バイアス磁界を印加する方法が考案され
た。上記のような多層膜では、EP,A2,0 490 608 に
記載のように、多層膜の組織、結晶粒径等を調整するた
めに、基板上にTa,Ru,CrVからなるバッファ層
を形成している。2. Description of the Related Art As the magnetic recording density increases, a material having a high magnetoresistive effect is required as a magnetoresistive effect material used for a reproducing magnetic head. So, Physical Review B by Dieny et al.
"Giant Magnetoresist in Soft Magnetic Multilayer Films", Volume 43, No. 1, pp. 1297-1300.
ance in Soft Ferromagnetic Multilayers) 2
A method has been devised in which the magnetic layers of the layers are separated by a non-magnetic layer and the exchange bias magnetic field from the antiferromagnetic layer is applied to one of the magnetic layers. In the above-mentioned multilayer film, as described in EP, A2, 0 490 608, a buffer layer made of Ta, Ru, CrV is formed on the substrate in order to adjust the structure, crystal grain size, etc. of the multilayer film. are doing.
【0003】[0003]
【発明が解決しようとする課題】本発明者等は、バッフ
ァ層として上記のTa、及びTaと同様に周期律表のV
a族元素であるV,Nbを用いて、図1に断面構造を示
す多層膜を形成した。多層膜の作製にはイオンビ−ムス
パッタリング法を用いた。到達真空度は、3×10-5P
a、スパッタリング時のAr圧力は0.02Paであ
る。また、膜形成速度は、0.01〜0.02nm/s
である。図1における基板11としては、Si(10
0)単結晶を用いた。バッファ層12の厚さは5nmで
ある。磁性層13及び15には、厚さ3nmのNi−2
0at%Fe合金を用いた。非磁性層14には厚さ2n
mのCuを用い、反強磁性層16には、厚さ5nmのF
e−40at%Mn合金を用いた。保護層17として
は、バッファ層12と同じ材料を膜厚5nmにして用い
た。DISCLOSURE OF THE INVENTION The present inventors have found that Ta as the buffer layer and V of the periodic table as well as Ta.
A multi-layer film having a cross-sectional structure shown in FIG. 1 was formed by using V and Nb which are group a elements. The ion beam sputtering method was used for manufacturing the multilayer film. Ultimate vacuum is 3 × 10 -5 P
a, Ar pressure during sputtering is 0.02 Pa. The film formation rate is 0.01 to 0.02 nm / s.
Is. The substrate 11 in FIG. 1 includes Si (10
0) A single crystal was used. The thickness of the buffer layer 12 is 5 nm. The magnetic layers 13 and 15 have a thickness of 3 nm of Ni-2.
A 0 at% Fe alloy was used. The nonmagnetic layer 14 has a thickness of 2n
m of Cu is used, and the antiferromagnetic layer 16 has a thickness of F of 5 nm.
An e-40 at% Mn alloy was used. As the protective layer 17, the same material as the buffer layer 12 was used with a film thickness of 5 nm.
【0004】これらの多層膜の磁気抵抗効果曲線を図2
に示す。図2のように、V,Nb,Taからなるバッフ
ァ層を用いた多層膜の磁気抵抗効果曲線には、大きなヒ
ステリシスが見られる。多層膜を磁気抵抗効果型ヘッド
に用いる場合、磁気抵抗効果曲線に大きなヒステリシス
が存在すると、磁気ヘッドの出力波形に歪が生じる。従
って、多層膜の磁気抵抗効果曲線におけるヒステリシス
は小さい方が好ましい。The magnetoresistive effect curves of these multilayer films are shown in FIG.
Shown in As shown in FIG. 2, a large hysteresis is seen in the magnetoresistive effect curve of the multilayer film using the buffer layer made of V, Nb, and Ta. When a multilayer film is used for a magnetoresistive head, if the magnetoresistive curve has a large hysteresis, the output waveform of the magnetic head is distorted. Therefore, it is preferable that the hysteresis in the magnetoresistive effect curve of the multilayer film is small.
【0005】また、これらの多層膜の磁性層13の磁化
容易方向の保磁力は3〜5Oeであった。磁性層13の
保磁力が高い場合、磁気抵抗効果素子はバルクハウゼン
ノイズを生じる。従って、多層膜の磁性層13の保磁力
は低いことが要求される。上述のように、図1における
バッファ層12として、周期律表のVa族元素である
V,Nb,Taを用いた多層膜は、磁気抵抗効果曲線に
大きなヒステリシスが存在する。また、磁性層13の保
磁力が高い。The coercive force of the magnetic layer 13 of these multilayer films in the easy magnetization direction was 3 to 5 Oe. When the coercive force of the magnetic layer 13 is high, the magnetoresistive effect element produces Barkhausen noise. Therefore, the coercive force of the multilayer magnetic layer 13 is required to be low. As described above, the multilayer film using V, Nb, and Ta which are Va group elements of the periodic table as the buffer layer 12 in FIG. 1 has a large hysteresis in the magnetoresistive effect curve. Moreover, the coercive force of the magnetic layer 13 is high.
【0006】次に、図1におけるバッファ層12とし
て、周期律表のIVa族元素であるTi,Zr,Hfを用
いると、図3のように、ヒステリシスの比較的小さい磁
気抵抗効果曲線が得られる〔この結果については、Naka
tani等によるJpn. J. Appl. Phys.,第33巻、第1A号、13
3〜137ペ−ジに記載の「種々のバッファ層材料を用いた
Fe-Mn/Ni-Fe/Cu/Ni-Feサンドイッチの磁気抵抗及び結晶
配向性」(Magnetoresistance and Preferred Orientat
ion in Fe-Mn/Ni-Fe/Cu/Ni-Fe Sandwiches withVarious
Buffer Layer Materials)参照〕。また、図1におけ
る磁性層13の磁化容易方向の保磁力は2.0Oeと低
く、磁性層13の磁化困難方向の保磁力は0.8Oeで
あった。Next, by using Ti, Zr, and Hf which are group IVa elements of the periodic table as the buffer layer 12 in FIG. 1, a magnetoresistive effect curve with a relatively small hysteresis is obtained as shown in FIG. [For this result, see Naka
Tani et al., Jpn. J. Appl. Phys., Vol. 33, No. 1A, 13
See “Using Various Buffer Layer Materials” on pages 3-137.
Magnetoresistance and Preferred Orientat of Fe-Mn / Ni-Fe / Cu / Ni-Fe Sandwich "
ion in Fe-Mn / Ni-Fe / Cu / Ni-Fe Sandwiches with Various
Buffer Layer Materials)). Further, the coercive force of the magnetic layer 13 in FIG. 1 in the easy magnetization direction was as low as 2.0 Oe, and the coercive force of the magnetic layer 13 in the difficult magnetization direction was 0.8 Oe.
【0007】ところで、多層膜を磁気抵抗効果型ヘッド
に用いる時には、磁気ヘッド作製工程において、多層膜
は加熱プロセスを通る。このため、多層膜は高い耐熱性
を有することが望まれる。しかし、以下に示すように、
バッファ層12としてIVa族元素であるTi,Zr,H
fを用いた多層膜に対して305℃の熱処理を行ったと
ころ、磁気抵抗変化率は0.2〜0.3%まで低下し
た。By the way, when the multilayer film is used for a magnetoresistive head, the multilayer film goes through a heating process in the magnetic head manufacturing process. Therefore, the multilayer film is desired to have high heat resistance. However, as shown below,
As the buffer layer 12, Ti, Zr, and H which are group IVa elements
When a heat treatment was performed on the multilayer film using f at 305 ° C., the magnetoresistance change rate decreased to 0.2 to 0.3%.
【0008】上記と同様に、図1の断面構造を有する多
層膜を形成した。基板11にはSi(100)単結晶を
用いた。バッファ層12としては、V,Nb,Ta,T
i,Zr,Hfを用い、膜厚は5nmとした。磁性層1
3及び15には、厚さ5nmのNi−16at%Fe−
18at%Co合金を用いた。非磁性層14には、厚さ
2.5nmのCuを用いた。反強磁性層16には、厚さ
5nmのFe−40at%Mn合金を用いた。保護層1
7には、バッファ層12と同じ材料を用い、厚さは5n
mとした。磁性層13の磁化容易方向の保磁力とバッフ
ァ層材料との関係を表1に示す。Similarly to the above, a multilayer film having the cross-sectional structure of FIG. 1 was formed. The substrate 11 was made of Si (100) single crystal. The buffer layer 12 includes V, Nb, Ta, T
i, Zr, and Hf were used, and the film thickness was 5 nm. Magnetic layer 1
3 and 15 have a thickness of 5 nm of Ni-16 at% Fe-
A 18 at% Co alloy was used. Cu having a thickness of 2.5 nm was used for the non-magnetic layer 14. For the antiferromagnetic layer 16, a Fe-40 at% Mn alloy having a thickness of 5 nm was used. Protective layer 1
7 is made of the same material as the buffer layer 12 and has a thickness of 5 n.
m. Table 1 shows the relationship between the coercive force of the magnetic layer 13 in the easy magnetization direction and the buffer layer material.
【0009】[0009]
【表1】 [Table 1]
【0010】表1から明らかなように、バッファ層材料
として周期律表におけるVa族元素であるV,Nb,T
aを用いると、磁性層13の磁化容易方向の保磁力は高
くなる。これに対し、バッファ層材料として周期律表に
おけるIVa族元素であるTi,Zr,Hfを用いた場
合、磁性層13の磁化容易方向の保磁力は低い。図4に
上記多層膜に対する熱処理温度と磁気抵抗変化率との関
係を示す。図のように、200℃以上の温度で熱処理を
行うと、多層膜の磁気抵抗変化率が低下する。磁気抵抗
変化率が低下する温度を決定することは困難であるが、
305℃で熱処理を行った後の多層膜の磁気抵抗変化率
は、多層膜により大きく異なる。305℃で熱処理を行
った後の多層膜の磁気抵抗変化率とバッファ層材料との
関係を表2に示す。As is clear from Table 1, as a buffer layer material, V, Nb, and T which are Va group elements in the periodic table.
When a is used, the coercive force of the magnetic layer 13 in the easy magnetization direction becomes high. On the other hand, when Ti, Zr, and Hf which are IVa group elements in the periodic table are used as the buffer layer material, the coercive force of the magnetic layer 13 in the easy magnetization direction is low. FIG. 4 shows the relationship between the heat treatment temperature and the magnetoresistance change rate for the multilayer film. As shown in the figure, when the heat treatment is performed at a temperature of 200 ° C. or higher, the magnetoresistive change rate of the multilayer film decreases. Although it is difficult to determine the temperature at which the rate of change in magnetoresistance decreases,
The rate of change in magnetoresistance of the multilayer film after heat treatment at 305 ° C. greatly differs depending on the multilayer film. Table 2 shows the relationship between the magnetoresistance change rate of the multilayer film after the heat treatment at 305 ° C. and the buffer layer material.
【0011】[0011]
【表2】 [Table 2]
【0012】表2のように、バッファ層材料として周期
律表におけるVa族元素であるV,Nb,Taを用いる
と、磁気抵抗変化率の低下量は少ない。これに対し、バ
ッファ層材料として周期律表におけるIVa族元素である
Ti,Zr,Hfを用いた場合は、磁気抵抗変化率の低
下は著しい。As shown in Table 2, when the group V elements of the periodic table, V, Nb, and Ta are used as the buffer layer material, the amount of decrease in the magnetoresistance change rate is small. On the other hand, when Ti, Zr, and Hf, which are group IVa elements in the periodic table, are used as the material of the buffer layer, the magnetoresistance change rate is significantly reduced.
【0013】このように、周期律表のVa族元素である
V,Nb,Taを用いた多層膜は磁気特性に問題があ
る。これに対し、IVa族元素であるTi,Zr,Hfを
用いた多層膜は優れた磁気特性を示すが、耐熱性に問題
がある。本発明の目的は、上述の磁気抵抗効果型ヘッド
用の高磁気抵抗効果多層膜における問題の解決方法を提
供することにある。As described above, the multilayer film using V, Nb, and Ta, which are elements of the Va group of the periodic table, has a problem in magnetic characteristics. On the other hand, the multilayer film using Ti, Zr, and Hf which are group IVa elements has excellent magnetic characteristics, but has a problem in heat resistance. It is an object of the present invention to provide a solution to the problem in the high magnetoresistive effect multilayer film for the magnetoresistive effect head described above.
【0014】[0014]
【課題を解決するための手段】本発明者等は、種々の材
料及び膜厚を有する磁性層、非磁性層を積層した多層磁
性膜を用いた磁気抵抗効果素子について鋭意研究を重ね
た結果、上記多層膜と基板との間に、周期律表における
IVa族元素とVa族元素との合金からなるバッファ層を
形成することにより、多層磁気抵抗効果膜の磁気特性及
び耐熱性を向上させることができることを見出し、本発
明を完成するに至った。Means for Solving the Problems The inventors of the present invention have conducted extensive studies as to a magnetoresistive effect element using a multilayer magnetic film in which magnetic layers having various materials and film thicknesses and non-magnetic layers are laminated. Between the multilayer film and the substrate, in the periodic table
The inventors have found that the magnetic characteristics and heat resistance of the multilayer magnetoresistive effect film can be improved by forming a buffer layer made of an alloy of a group IVa element and a group Va element, and have completed the present invention.
【0015】すなわち、非磁性層で分離された2層の磁
性層と、前記2層の磁性層のうちの一方の磁性層に交換
バイアス磁界を印加するための反強磁性層を含む多層膜
を基板上に形成した多層磁気抵抗効果膜において、多層
膜と基板との間に周期律表におけるIVa族元素とVa族
元素との合金からなるバッファ層を形成することによ
り、多層磁気抵抗効果膜の磁気特性及び耐熱性を向上さ
せることができる。That is, a multilayer film including two magnetic layers separated by a non-magnetic layer and an antiferromagnetic layer for applying an exchange bias magnetic field to one of the two magnetic layers is formed. In the multilayer magnetoresistive effect film formed on the substrate, a buffer layer made of an alloy of an IVa group element and a Va group element in the periodic table is formed between the multilayer film and the substrate, whereby The magnetic characteristics and heat resistance can be improved.
【0016】上記合金は、例えば、V−Ti,V−Z
r,V−Hf,Nb−Ti,Nb−Zr,Nb−Hf,
Ta−Ti,Ta−Zr,Ta−Hf合金のような2元
系合金であるが、IVa族元素とVa族元素を3種類以上
組合せても良い。また、上記バッファ層を構成する合金
のVa族元素に対するIVa族元素の組成は、20〜80
at%であることが好ましい。また、IVa族元素とVa
族元素のほかに他の族の元素を含んでいても、その量が
耐熱正及び軟磁気特性を劣化させない範囲であれば構わ
ない。The above alloys are, for example, V-Ti, V-Z.
r, V-Hf, Nb-Ti, Nb-Zr, Nb-Hf,
Although it is a binary alloy such as Ta-Ti, Ta-Zr, Ta-Hf alloy, three or more kinds of IVa group element and Va group element may be combined. The composition of the IVa group element with respect to the Va group element of the alloy forming the buffer layer is 20 to 80.
It is preferably at%. In addition, IVa group element and Va
Even if the element of the other group is contained in addition to the group element, the amount thereof does not matter as long as the heat resistance and soft magnetic characteristics are not deteriorated.
【0017】上記多層磁気抵抗効果膜は、磁気抵抗効果
素子、磁界センサ、磁気ヘッドなどに好適である。ま
た、上記磁気ヘッドを用いることにより、高性能磁気記
録再生装置を得ることができる。The above-mentioned multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.
【0018】[0018]
【作用】上述のように、上記多層膜と基板との間に、周
期律表におけるIVa族元素とVa族元素との合金からな
るバッファ層を形成することにより、多層磁気抵抗効果
膜の磁気特性及び耐熱性を向上させることができる。As described above, by forming the buffer layer made of an alloy of the IVa group element and the Va group element in the periodic table between the multilayer film and the substrate, the magnetic characteristics of the multilayer magnetoresistive film are obtained. And heat resistance can be improved.
【0019】[0019]
【実施例】バッファ層材料として周期律表におけるVa
族元素であるV,Nb,Taを用いた多層膜は耐熱性に
優れるが、磁性層の保磁力が高い。そこで、V,Nb,
Taからなるバッファ層にTi,Zr,Hfを添加し、
保磁力の低減を試みた。多層膜の構造は、バッファ層材
料を除き、図1に示す従来例と同じである。すなわち、
基板11にはSi(100)単結晶を用い、磁性層13
及び15には厚さ5nmのNi−16at%Fe−18
at%Co合金を用いた。非磁性層14には厚さ2.5
nmのCuを用い、反強磁性層16には厚さ5nmのF
e−40at%Mn合金を用いた。保護層17には、バ
ッファ層12と同じ材料を用い、厚さは5nmとした。
なお、バッファ層12の厚さは5nmである。EXAMPLES Va in the periodic table as a buffer layer material
The multilayer film using the group elements V, Nb, and Ta has excellent heat resistance, but the magnetic layer has a high coercive force. Therefore, V, Nb,
Ti, Zr, and Hf are added to the buffer layer made of Ta,
We tried to reduce the coercive force. The structure of the multilayer film is the same as that of the conventional example shown in FIG. 1 except for the buffer layer material. That is,
The substrate 11 is made of Si (100) single crystal, and the magnetic layer 13
And 15 have a thickness of 5 nm of Ni-16 at% Fe-18.
At% Co alloy was used. The nonmagnetic layer 14 has a thickness of 2.5.
nm Cu is used, and the antiferromagnetic layer 16 has a thickness F of 5 nm.
An e-40 at% Mn alloy was used. The protective layer 17 was made of the same material as the buffer layer 12 and had a thickness of 5 nm.
The buffer layer 12 has a thickness of 5 nm.
【0020】〔実施例1〕まず、Vからなるバッファ層
にTi,Zr,Hfを添加した。図1における磁性層1
3の磁化容易方向の保磁力とTi,Zr,Hfの添加量
との関係を図5に示す。図中、○はTiを添加した場合
を、□はZrを添加した場合を、△はHfを添加した場
合をそれぞれ示す。同図のように、Ti,Zr,Hfの
添加量増加とともに、保磁力は低下する。20at%以
上のTi,Zr,Hfを添加すると、保磁力は2.5O
e以下になる。Example 1 First, Ti, Zr, and Hf were added to the buffer layer made of V. Magnetic layer 1 in FIG.
FIG. 5 shows the relationship between the coercive force in the direction of easy magnetization of 3 and the added amounts of Ti, Zr, and Hf. In the figure, ◯ indicates the case where Ti is added, □ indicates the case where Zr is added, and Δ indicates the case where Hf is added. As shown in the figure, the coercive force decreases as the amount of Ti, Zr, and Hf added increases. When 20 at% or more of Ti, Zr, and Hf is added, the coercive force is 2.5 O
e or less.
【0021】また、上記多層膜を熱処理した。305℃
での熱処理後の多層膜の磁気抵抗変化率とTi,Zr,
Hfの添加量との関係を図6に示す。同図のように、T
i,Zr,Hfの添加量増加とともに、耐熱性は低下し
てしまう。熱処理後の磁気抵抗変化率が1.5%以上で
あるためには、Ti,Zr,Hfの添加量は80at%
以下であることが必要である。上述のように、優れた磁
気特性及び耐熱性を同時に得るためには、Vに対するT
i,Zr,Hfの添加量を20〜80at%にすること
が必要である。The multilayer film was heat-treated. 305 ° C
Change rate of multi-layered film after heat treatment at room temperature and Ti, Zr,
The relationship with the amount of Hf added is shown in FIG. As shown in the figure, T
The heat resistance decreases as the amount of i, Zr, and Hf added increases. In order for the magnetoresistance change rate after heat treatment to be 1.5% or more, the addition amount of Ti, Zr, and Hf should be 80 at%.
It must be: As described above, in order to obtain excellent magnetic properties and heat resistance at the same time, T with respect to V is
It is necessary to add i, Zr, and Hf in an amount of 20 to 80 at%.
【0022】〔実施例2〕次に、Nbからなるバッファ
層にTi,Zr,Hfを添加した。図1における磁性層
13の磁化容易方向の保磁力とTi,Zr,Hfの添加
量との関係を図7に示す。図中、○はTiを添加した場
合を、□はZrを添加した場合を、△はHfを添加した
場合をそれぞれ示す。Vの場合と同様に、Ti,Zr,
Hfの添加量増加とともに、保磁力は低下する。約20
at%以上のTi,Zr,Hfを添加すると、保磁力は
2.5Oe以下になる。Example 2 Next, Ti, Zr, and Hf were added to the buffer layer made of Nb. FIG. 7 shows the relationship between the coercive force of the magnetic layer 13 in FIG. 1 in the easy magnetization direction and the amounts of addition of Ti, Zr, and Hf. In the figure, ◯ indicates the case where Ti is added, □ indicates the case where Zr is added, and Δ indicates the case where Hf is added. As with V, Ti, Zr,
The coercive force decreases as the amount of Hf added increases. About 20
When Ti, Zr, and Hf of at% or more are added, the coercive force becomes 2.5 Oe or less.
【0023】また、305℃での熱処理後の多層膜の磁
気抵抗変化率とTi,Zr,Hfの添加量との関係を図
8に示す。図のように、熱処理後の磁気抵抗変化率が
1.5%以上であるためには、Ti,Zr,Hfの添加
量は約80at%以下であることが必要である。FIG. 8 shows the relationship between the magnetoresistance change rate of the multilayer film after the heat treatment at 305 ° C. and the added amounts of Ti, Zr and Hf. As shown in the figure, in order for the magnetoresistance change rate after heat treatment to be 1.5% or more, the amount of addition of Ti, Zr, and Hf must be about 80 at% or less.
【0024】〔実施例3〕さらに、Taからなるバッフ
ァ層にTi,Zr,Hfを添加した。図1における磁性
層13の磁化容易方向の保磁力とTi,Zr,Hfの添
加量との関係を図9に示す。図中、○はTiを添加した
場合を、□はZrを添加した場合を、△はHfを添加し
た場合をそれぞれ示す。Vの場合と同様に、Ti,Z
r,Hfの添加量増加とともに、保磁力は低下する。約
20at%以上のTi,Zr,Hfを添加すると、保磁
力は2.5Oe以下になる。Example 3 Further, Ti, Zr, and Hf were added to the buffer layer made of Ta. FIG. 9 shows the relationship between the coercive force of the magnetic layer 13 in FIG. 1 in the easy magnetization direction and the amounts of addition of Ti, Zr, and Hf. In the figure, ◯ indicates the case where Ti is added, □ indicates the case where Zr is added, and Δ indicates the case where Hf is added. As with V, Ti, Z
The coercive force decreases as the added amounts of r and Hf increase. When about 20 at% or more of Ti, Zr, and Hf are added, the coercive force becomes 2.5 Oe or less.
【0025】また、305℃での熱処理後の多層膜の磁
気抵抗変化率とTi,Zr,Hfの添加量との関係を図
10に示す。図のように、熱処理後の磁気抵抗変化率が
1.5%以上であるためには、Ti,Zr,Hfの添加
量は約80at%以下であることが必要である。上述の
ように、バッファ層の材料の周期律表の族により、多層
膜の特性はほぼ決まる。このため、V,Nb,Taに対
するTi,Zr,Hfの添加の効果は、ほぼ同様であ
る。優れた磁気特性及び耐熱性を有する多層膜を得るた
めには、V,Nb,Taからなるバッファ層に、20〜
80at%のTi,Zr,Hfを添加することが好まし
い。FIG. 10 shows the relationship between the magnetoresistance change rate of the multilayer film after the heat treatment at 305 ° C. and the addition amounts of Ti, Zr and Hf. As shown in the figure, in order for the magnetoresistance change rate after heat treatment to be 1.5% or more, the amount of addition of Ti, Zr, and Hf must be about 80 at% or less. As described above, the characteristics of the multilayer film are substantially determined by the group of the periodic table of the material of the buffer layer. Therefore, the effects of adding Ti, Zr, and Hf to V, Nb, and Ta are almost the same. In order to obtain a multilayer film having excellent magnetic properties and heat resistance, a buffer layer composed of V, Nb, and Ta should have a thickness of 20 to 20.
It is preferable to add 80 at% of Ti, Zr, and Hf.
【0026】前記各実施例の多層膜に対してX線回折を
行ったところ、多層膜は強い(111)配向を示した。
特に、軟磁気特性の優れた多層膜は強い(111)配向
を示した。前記実施例では、2元系合金のバッファ層に
ついて述べたが、Va族元素に対するIVa族元素の組成
が20〜80%であれば、3元系以上の合金でも良い。
特に、Zr及びHfは分離することが困難である。この
ため、Zr及びHfが混ざったスパッタリングターゲッ
トを用いると、ターゲットは安価で得られ、また、多層
膜の特性に影響することもない。なお、IVa族元素とV
a族元素のほかに他の族の元素を含んでいても、その量
が耐熱正及び軟磁気特性を劣化させない範囲であれば構
わない。When X-ray diffraction was carried out on the multilayer film of each of the above-mentioned examples, the multilayer film showed a strong (111) orientation.
In particular, the multilayer film having excellent soft magnetic properties showed a strong (111) orientation. Although the buffer layer of the binary alloy has been described in the above-mentioned embodiments, a ternary or higher alloy may be used as long as the composition of the IVa group element with respect to the Va group element is 20 to 80%.
In particular, Zr and Hf are difficult to separate. Therefore, by using a sputtering target in which Zr and Hf are mixed, the target can be obtained at low cost and the characteristics of the multilayer film are not affected. In addition, IVa group element and V
Even if the element of the other group is contained in addition to the element of the group a, the amount thereof does not matter as long as the heat resistance and soft magnetic characteristics are not deteriorated.
【0027】また、前記実施例では、磁性層としてNi
−Fe−Co系合金を使用したが、他の磁性層を用いて
も、同様の結果を得ることができる。しかし、反強磁性
層から直接交換バイアス磁界が印加されていない磁性層
は、軟磁性を示すことが必要であり、磁性層として、N
i−Fe系合金、Ni−Fe−Co系合金を用いること
が好ましい。Further, in the above embodiment, Ni is used as the magnetic layer.
Although the -Fe-Co alloy was used, similar results can be obtained by using other magnetic layers. However, the magnetic layer to which the exchange bias magnetic field is not directly applied from the antiferromagnetic layer needs to exhibit soft magnetism.
It is preferable to use an i-Fe-based alloy or a Ni-Fe-Co-based alloy.
【0028】また、前記実施例では、非磁性層として、
Cuを用いたが、電気抵抗率の低いAu,Agを用いて
も同様の結果が得られる。しかし、磁性層として3d遷
移金属を用いる場合には、磁性層とのフェルミ面のマッ
チングの観点から、非磁性層はCuであることが好まし
い。また、前記実施例では、反強磁性層として、Fe−
Mn系合金を用いたが、他の反強磁性材料を用いること
もできる。反強磁性材料としては、Cr−Mn,Pt−
Mn,Ir−Mn,Au−Mn,Ni−Mn系合金など
が好ましい。In the above embodiment, the nonmagnetic layer is
Although Cu is used, similar results can be obtained by using Au or Ag having a low electric resistivity. However, when a 3d transition metal is used for the magnetic layer, the non-magnetic layer is preferably Cu from the viewpoint of matching the Fermi surface with the magnetic layer. Further, in the above-mentioned embodiment, as the antiferromagnetic layer, Fe-
Although the Mn-based alloy is used, other antiferromagnetic materials can also be used. As the antiferromagnetic material, Cr-Mn, Pt-
Mn, Ir-Mn, Au-Mn, Ni-Mn based alloys and the like are preferable.
【0029】〔実施例4〕本発明の多層膜を用いて磁気
抵抗効果素子を形成した。本実施例では、図1のバッフ
ァ層12として、厚さ5nmのNb−50at%Hf合
金を用いた。磁性層13及び磁性層15には、厚さ5n
mのNi−16at%Fe−18at%Co合金を用い
た。非磁性層14には、厚さ2nmのCuを用いた。反
強磁性層16には、厚さ5nmのFe−40at%Mn
合金を用いた。また、保護層17には、厚さ5nmのN
b−50at%Hf合金を用いた。Example 4 A magnetoresistive effect element was formed using the multilayer film of the present invention. In this example, a 5 nm thick Nb-50 at% Hf alloy was used as the buffer layer 12 in FIG. The magnetic layers 13 and 15 have a thickness of 5n.
m Ni-16 at% Fe-18 at% Co alloy was used. Cu having a thickness of 2 nm was used for the non-magnetic layer 14. The antiferromagnetic layer 16 has a thickness of 5 nm of Fe-40 at% Mn.
An alloy was used. The protective layer 17 has a thickness of 5 nm of N.
A b-50 at% Hf alloy was used.
【0030】図11に磁気抵抗効果素子の構造を示す。
磁気抵抗効果素子は、多層磁気抵抗効果膜41及び電極
42をシ−ルド層43,44で挟んだ構造を有する。上
記磁気抵抗効果素子に磁界を印加し、電気抵抗率の変化
を測定したところ、本発明の多層磁気抵抗効果膜を用い
た磁気抵抗効果素子は、1.6kA/m(20Oe)程
度の印加磁界で3%程度の磁気抵抗変化率を示した。ま
た、本発明の磁気抵抗効果素子の再生出力は、Ni−F
e単層膜を用いた磁気抵抗効果素子と比較して2.8倍
であった。本実施例では、バッファ層材料として、Nb
−50at%Hf合金を用いたが、実施例1〜3で述べ
た本発明のバッファ層材料は全て磁気抵抗効果素子用の
多層膜のバッファ層として用いることができる。FIG. 11 shows the structure of the magnetoresistive effect element.
The magnetoresistive effect element has a structure in which a multilayer magnetoresistive effect film 41 and an electrode 42 are sandwiched between shield layers 43 and 44. When a magnetic field was applied to the magnetoresistive effect element and a change in electric resistivity was measured, the magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention showed an applied magnetic field of about 1.6 kA / m (20 Oe). Showed a magnetoresistance change rate of about 3%. The reproduction output of the magnetoresistive effect element of the present invention is Ni-F.
e 2.8 times that of the magnetoresistive element using the single-layer film. In this embodiment, Nb is used as the buffer layer material.
Although a -50 at% Hf alloy was used, all the buffer layer materials of the present invention described in Examples 1 to 3 can be used as a multilayer buffer layer for a magnetoresistive effect element.
【0031】〔実施例5〕実施例4で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図12は、記録再生分離型ヘッドの一
部分を切断した場合の斜視図である。多層磁気抵抗効果
膜51をシ−ルド層52、53で挾んだ部分が再生ヘッ
ドとして働き、コイル54を挾む下部磁極55、上部磁
極56の部分が記録ヘッドとして働く。また、電極58
には、Cr/Cu/Crという多層構造の材料を用い
た。[Embodiment 5] A magnetic head was manufactured using the magnetoresistive effect element described in Embodiment 4. The structure of the magnetic head is shown below. FIG. 12 is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multilayer magnetoresistive film 51 sandwiched between the shield layers 52 and 53 functions as a reproducing head, and the lower magnetic pole 55 and the upper magnetic pole 56 sandwiching the coil 54 function as a recording head. Also, the electrode 58
As the material, a material having a multilayer structure of Cr / Cu / Cr was used.
【0032】以下にこのヘッドの作製方法を示す。Al
2O3・TiCを主成分とする焼結体をスライダ用の基板
57とした。シ−ルド層、記録磁極にはスパッタリング
法で形成したNi−Fe合金を用いた。各磁性膜の膜厚
は、以下のようにした。上下のシ−ルド層52、53は
1.0μm、下部磁極55、上部56は3.0μm、各
層間のギャップ材としてはスパッタリングで形成したA
l2O3 を用いた。ギャップ層の膜厚は、シ−ルド層と
磁気抵抗効果素子間で0.2μm、記録磁極間では0.
4μmとした。さらに再生ヘッドと記録ヘッドの間隔は
約4μmとし、このギャップもAl2O3 で形成した。
コイル54には膜厚3μmのCuを使用した。The manufacturing method of this head will be described below. Al
A sintered body containing 2 O 3 .TiC as a main component was used as the substrate 57 for the slider. A Ni-Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. The upper and lower shield layers 52 and 53 have a thickness of 1.0 μm, the lower magnetic pole 55 and the upper portion have a thickness of 3.0 μm, and the gap material between the layers is formed by sputtering.
1 2 O 3 was used. The film thickness of the gap layer is 0.2 μm between the shield layer and the magnetoresistive effect element, and 0.
It was 4 μm. Further, the distance between the reproducing head and the recording head was set to about 4 μm, and this gap was also formed of Al 2 O 3 .
Cu having a film thickness of 3 μm was used for the coil 54.
【0033】以上述べた構造の磁気ヘッドを図13に示
す磁気記録再生装置に組み込んだ。図13(a)は磁気
記録再生装置の平面図、図13(b)はそのA−A断面
図である。ディスク状磁気記録媒体81は駆動部82に
よって回転駆動される。磁気ヘッド83は、駆動部84
によって回動駆動されて磁気記録媒体81上のトラック
を選択できる。磁気ヘッド83による記録再生信号は記
録再生信号処理系85で処理される。The magnetic head having the structure described above was incorporated in the magnetic recording / reproducing apparatus shown in FIG. 13A is a plan view of the magnetic recording / reproducing apparatus, and FIG. 13B is a sectional view taken along line AA. The disk-shaped magnetic recording medium 81 is rotationally driven by the drive unit 82. The magnetic head 83 has a drive unit 84.
A track on the magnetic recording medium 81 can be selected by being rotationally driven by. The recording / reproducing signal from the magnetic head 83 is processed by the recording / reproducing signal processing system 85.
【0034】この磁気記録再生装置で記録再生を行った
ところ、Ni−Fe単層膜を用いた磁気ヘッドと比較し
て、2.8倍高い再生出力を得た。これは、本発明の磁
気ヘッドに高磁気抵抗効果を示す多層膜を用いたためと
考えられる。また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。When recording / reproducing was performed with this magnetic recording / reproducing apparatus, a reproducing output that was 2.8 times higher than that of a magnetic head using a Ni--Fe single layer film was obtained. It is considered that this is because the magnetic head of the present invention uses a multilayer film having a high magnetoresistive effect. Further, the magnetoresistive effect element of the present invention can be used in a magnetic field detector other than the magnetic head.
【0035】[0035]
【発明の効果】上述のように、磁性層の一部に反強磁性
層からの交換バイアス磁界を印加した多層膜において、
基板上に周期律表のIVa族とVa族との合金からなるバ
ッファ層を形成することにより、優れた軟磁気特性及び
高い耐熱性を示す多層膜が得られる。上記多層磁気抵抗
効果膜は、磁気抵抗効果素子、磁界センサ、磁気ヘッド
などに好適である。また、上記磁気ヘッドを用いること
により、高性能磁気記録再生装置を得ることができる。As described above, in the multilayer film in which the exchange bias magnetic field from the antiferromagnetic layer is applied to a part of the magnetic layer,
By forming a buffer layer made of an alloy of group IVa and group Va of the periodic table on a substrate, a multilayer film having excellent soft magnetic characteristics and high heat resistance can be obtained. The multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head, and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.
【図1】多層磁気抵抗効果膜の構造を示す断面図。FIG. 1 is a sectional view showing the structure of a multilayer magnetoresistive effect film.
【図2】V,Nb,Taバッファ層を有する多層膜の磁
気抵抗効果曲線。FIG. 2 is a magnetoresistive effect curve of a multilayer film having V, Nb, and Ta buffer layers.
【図3】Ti,Zr,Hfバッファ層を用いた多層膜の
磁気抵抗効果曲線。FIG. 3 is a magnetoresistive effect curve of a multilayer film using Ti, Zr, and Hf buffer layers.
【図4】多層膜の熱処理温度と磁気抵抗変化率との関係
を示すグラフ。FIG. 4 is a graph showing the relationship between the heat treatment temperature of a multilayer film and the magnetoresistance change rate.
【図5】VにTi,Zr,Hfを添加した時の保磁力の
低減を示すグラフ。FIG. 5 is a graph showing reduction in coercive force when Ti, Zr, and Hf are added to V.
【図6】VにTi,Zr,Hfを添加した時の耐熱性の
劣化を示すグラフ。FIG. 6 is a graph showing deterioration of heat resistance when Ti, Zr, and Hf are added to V.
【図7】NbにTi,Zr,Hfを添加した時の保磁力
の低減を示すグラフ。FIG. 7 is a graph showing reduction in coercive force when Ti, Zr, and Hf are added to Nb.
【図8】NbにTi,Zr,Hfを添加した時の耐熱性
の劣化を示すグラフ。FIG. 8 is a graph showing deterioration of heat resistance when Ti, Zr, and Hf are added to Nb.
【図9】TaにTi,Zr,Hfを添加した時の保磁力
の低減を示すグラフ。FIG. 9 is a graph showing reduction in coercive force when Ti, Zr, and Hf are added to Ta.
【図10】TaにTi,Zr,Hfを添加した時の耐熱
性の劣化を示すグラフ。FIG. 10 is a graph showing deterioration of heat resistance when Ti, Zr, and Hf are added to Ta.
【図11】多層磁気抵抗効果膜を用いた磁気抵抗効果素
子の構造を示す斜視図。FIG. 11 is a perspective view showing the structure of a magnetoresistive effect element using a multilayer magnetoresistive effect film.
【図12】磁気ヘッドの構造を示す斜視図。FIG. 12 is a perspective view showing the structure of a magnetic head.
【図13】磁気記録再生装置の概略図。FIG. 13 is a schematic diagram of a magnetic recording / reproducing apparatus.
【符号の説明】 11…基板 12…バッファ層 13,15…磁性層 14…非磁性層 16…反強磁性層 17…保護層 41…多層磁気抵抗効果膜 42…電極 43,44…シ−ルド層 51…多層磁気抵抗効果膜 52,53…シ−ルド層 54…コイル 55…下部磁極 56…上部磁極 57…基体 58…電極 81…磁気記録媒体 82…駆動部 83…磁気ヘッド 84…駆動部 85…記録再生信号処理系[Explanation of reference numerals] 11 ... Substrate 12 ... Buffer layer 13, 15 ... Magnetic layer 14 ... Nonmagnetic layer 16 ... Antiferromagnetic layer 17 ... Protective layer 41 ... Multilayer magnetoresistive effect film 42 ... Electrodes 43, 44 ... Shield Layer 51 ... Multilayer magnetoresistive film 52, 53 ... Shield layer 54 ... Coil 55 ... Lower magnetic pole 56 ... Upper magnetic pole 57 ... Base 58 ... Electrode 81 ... Magnetic recording medium 82 ... Drive section 83 ... Magnetic head 84 ... Drive section 85 ... Recording / reproducing signal processing system
Claims (10)
前記2層の磁性層のうちの一方の磁性層に交換バイアス
磁界を印加するための反強磁性層を含む多層膜を基板上
に形成した多層磁気抵抗効果膜において、 前記多層膜と前記基板との間に周期律表におけるIVa族
元素とVa族元素との合金からなるバッファ層を形成し
たことを特徴とする多層磁気抵抗効果膜。1. A two-layer magnetic layer separated by a non-magnetic layer,
A multilayer magnetoresistive effect film in which a multilayer film including an antiferromagnetic layer for applying an exchange bias magnetic field to one of the two magnetic layers is formed on a substrate, wherein the multilayer film and the substrate are A multilayer magnetoresistive effect film, characterized in that a buffer layer made of an alloy of an IVa group element and a Va group element in the periodic table is formed between the two.
族元素に対するIVa族元素の割合が20〜80at%で
あることを特徴とする請求項1記載の多層磁気抵抗効果
膜。2. The alloy forming the buffer layer is Va
The multilayer magnetoresistive effect film according to claim 1, wherein the ratio of the group IVa element to the group element is 20 to 80 at%.
r,V−Hfの群から選ばれた合金からなることを特徴
とする請求項1又は2記載の多層磁気抵抗効果膜。3. The buffer layer is V-Ti, V-Z
The multilayer magnetoresistive effect film according to claim 1 or 2, which is made of an alloy selected from the group consisting of r and V-Hf.
Zr,Nb−Hfの群から選ばれた合金からなることを
特徴とする請求項1又は2記載の多層磁気抵抗効果膜。4. The buffer layer is Nb-Ti, Nb-
The multilayer magnetoresistive effect film according to claim 1 or 2, which is made of an alloy selected from the group of Zr and Nb-Hf.
Zr,Ta−Hfの群から選ばれた合金からなることを
特徴とする請求項1又は2記載の多層磁気抵抗効果膜。5. The buffer layer is made of Ta-Ti, Ta-
3. The multilayer magnetoresistive effect film according to claim 1, which is made of an alloy selected from the group of Zr and Ta-Hf.
11)配向していることを特徴とする請求項1〜5のい
ずれか1項記載の多層磁気抵抗効果膜。6. The magnetic layer has a face-centered cubic structure,
11) The multilayer magnetoresistive effect film according to any one of claims 1 to 5, which is oriented.
磁気抵抗効果膜及び前記多層磁気抵抗効果膜に通電する
ための一対の電極を備えることを特徴とする磁気抵抗効
果素子。7. A magnetoresistive effect element comprising: the multilayer magnetoresistive effect film according to claim 1; and a pair of electrodes for energizing the multilayer magnetoresistive effect film.
ることを特徴とする磁気ヘッド。8. A magnetic head comprising the magnetoresistive effect element according to claim 7.
対の磁極及びそれに鎖交するコイルとを含むことを特徴
とする磁気ヘッド。9. A magnetic head comprising the magnetoresistive effect element according to claim 7, a pair of magnetic poles, and a coil interlinking the magnetic poles.
の磁気ヘッドと、前記磁気記録媒体と前記磁気ヘッドと
を相対的に駆動する駆動手段と、前記磁気ヘッドに接続
された記録再生信号処理系とを含むことを特徴とする磁
気記録再生装置。10. A magnetic recording medium, the magnetic head according to claim 8 or 9, drive means for relatively driving the magnetic recording medium and the magnetic head, and a recording / reproducing signal connected to the magnetic head. A magnetic recording / reproducing apparatus including a processing system.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6148055A JPH0817631A (en) | 1994-06-29 | 1994-06-29 | Multilayer magnetoresistive film and magnetic head |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6148055A JPH0817631A (en) | 1994-06-29 | 1994-06-29 | Multilayer magnetoresistive film and magnetic head |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0817631A true JPH0817631A (en) | 1996-01-19 |
Family
ID=15444162
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6148055A Pending JPH0817631A (en) | 1994-06-29 | 1994-06-29 | Multilayer magnetoresistive film and magnetic head |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0817631A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6369993B1 (en) | 1997-05-14 | 2002-04-09 | Nec Corporation | Magnetoresistance effect sensor and magnetoresistance detection system and magnetic storage system using this sensor |
| JP2014006953A (en) * | 2012-06-25 | 2014-01-16 | Seagate Technology Llc | Devices including tantalum alloy layers |
-
1994
- 1994-06-29 JP JP6148055A patent/JPH0817631A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6369993B1 (en) | 1997-05-14 | 2002-04-09 | Nec Corporation | Magnetoresistance effect sensor and magnetoresistance detection system and magnetic storage system using this sensor |
| US7064936B2 (en) | 1997-05-14 | 2006-06-20 | Tdk Corporation | Magnetoresistance effect device |
| JP2014006953A (en) * | 2012-06-25 | 2014-01-16 | Seagate Technology Llc | Devices including tantalum alloy layers |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3088478B2 (en) | Magnetoresistive element | |
| JP4409656B2 (en) | Magnetoresistive element and magnetic reproducing apparatus | |
| JP3207477B2 (en) | Magnetoresistance effect element | |
| JP2001189503A (en) | Magnetoresistive element and magnetic reproducing device | |
| JP3231313B2 (en) | Magnetic head | |
| JP3088519B2 (en) | Magnetoresistive element | |
| JPH0969211A (en) | Magnetoresistive film, magnetic head, and magnetic recording / reproducing device | |
| JP3527786B2 (en) | Multilayer magnetoresistive film and magnetic head | |
| JPH0950612A (en) | Magnetoresistive film, magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus | |
| JPH0817631A (en) | Multilayer magnetoresistive film and magnetic head | |
| JP3083237B2 (en) | Magnetoresistive element and magnetic head | |
| JPH06310329A (en) | Multilayer magnetoresistive film and magnetic head | |
| JPH0923031A (en) | Magnetoresistance effect multilayered film | |
| JP2907805B1 (en) | Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device | |
| JPH08241506A (en) | Multilayer magnetoresistive film and magnetic head | |
| JPH09161243A (en) | Multilayer magnetoresistive film and magnetic head | |
| JPH0766036A (en) | Multilayer magnetoresistive effect film, magnetoresistive effect element and magnetic head using the same | |
| JPH0774022A (en) | Multilayer magnetoresistive film and magnetic head | |
| JPH09245320A (en) | Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus | |
| JP2983492B2 (en) | Stack of antiferromagnetic layer and magnetic layer and magnetic head using the stack | |
| JPH08153314A (en) | Multilayer magnetoresistive film and magnetic head | |
| JP2856387B2 (en) | Stack of antiferromagnetic layer and magnetic layer and magnetic head | |
| JPH0661048A (en) | Multilayer magnetoresistive film and magnetic head | |
| JPH08111010A (en) | Multilayer magnetoresistive film and magnetic head | |
| JP2888810B2 (en) | Stack of antiferromagnetic layer and magnetic layer, magnetoresistive element, and magnetic head |