JPH08176409A - Conductive resin paste - Google Patents
Conductive resin pasteInfo
- Publication number
- JPH08176409A JPH08176409A JP32201994A JP32201994A JPH08176409A JP H08176409 A JPH08176409 A JP H08176409A JP 32201994 A JP32201994 A JP 32201994A JP 32201994 A JP32201994 A JP 32201994A JP H08176409 A JPH08176409 A JP H08176409A
- Authority
- JP
- Japan
- Prior art keywords
- resin paste
- conductive resin
- compd
- reaction product
- silver powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 35
- 239000011347 resin Substances 0.000 title claims abstract description 35
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 15
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 15
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 14
- 239000003822 epoxy resin Substances 0.000 claims abstract description 12
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 11
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 7
- 238000006459 hydrosilylation reaction Methods 0.000 claims description 5
- WOCGGVRGNIEDSZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical compound C=1C=C(O)C(CC=C)=CC=1C(C)(C)C1=CC=C(O)C(CC=C)=C1 WOCGGVRGNIEDSZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229910000679 solder Inorganic materials 0.000 abstract description 7
- 230000007547 defect Effects 0.000 abstract description 3
- 238000013329 compounding Methods 0.000 abstract description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 239000000047 product Substances 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 14
- 229910052802 copper Inorganic materials 0.000 description 14
- 239000010949 copper Substances 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 14
- 239000004593 Epoxy Substances 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229920003986 novolac Polymers 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- -1 halogen ions Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 150000004687 hexahydrates Chemical class 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KWEKXPWNFQBJAY-UHFFFAOYSA-N (dimethyl-$l^{3}-silanyl)oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)C KWEKXPWNFQBJAY-UHFFFAOYSA-N 0.000 description 2
- CUFXMPWHOWYNSO-UHFFFAOYSA-N 2-[(4-methylphenoxy)methyl]oxirane Chemical compound C1=CC(C)=CC=C1OCC1OC1 CUFXMPWHOWYNSO-UHFFFAOYSA-N 0.000 description 2
- 229940126062 Compound A Drugs 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- YCUKMYFJDGKQFC-UHFFFAOYSA-N 2-(octan-3-yloxymethyl)oxirane Chemical compound CCCCCC(CC)OCC1CO1 YCUKMYFJDGKQFC-UHFFFAOYSA-N 0.000 description 1
- HJEORQYOUWYAMR-UHFFFAOYSA-N 2-[(2-butylphenoxy)methyl]oxirane Chemical compound CCCCC1=CC=CC=C1OCC1OC1 HJEORQYOUWYAMR-UHFFFAOYSA-N 0.000 description 1
- HPILSDOMLLYBQF-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COC(CCC)OCC1CO1 HPILSDOMLLYBQF-UHFFFAOYSA-N 0.000 description 1
- KUAUJXBLDYVELT-UHFFFAOYSA-N 2-[[2,2-dimethyl-3-(oxiran-2-ylmethoxy)propoxy]methyl]oxirane Chemical compound C1OC1COCC(C)(C)COCC1CO1 KUAUJXBLDYVELT-UHFFFAOYSA-N 0.000 description 1
- QIRNGVVZBINFMX-UHFFFAOYSA-N 2-allylphenol Chemical compound OC1=CC=CC=C1CC=C QIRNGVVZBINFMX-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 1
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- BQQUFAMSJAKLNB-UHFFFAOYSA-N dicyclopentadiene diepoxide Chemical compound C12C(C3OC33)CC3C2CC2C1O2 BQQUFAMSJAKLNB-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010946 fine silver Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- USFPINLPPFWTJW-UHFFFAOYSA-N tetraphenylphosphonium Chemical compound C1=CC=CC=C1[P+](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 USFPINLPPFWTJW-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- UHUUYVZLXJHWDV-UHFFFAOYSA-N trimethyl(methylsilyloxy)silane Chemical compound C[SiH2]O[Si](C)(C)C UHUUYVZLXJHWDV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Conductive Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はIC、LSI等の半導体
素子を金属フレーム等に接着する導電性樹脂ペーストに
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive resin paste for adhering semiconductor elements such as IC and LSI to a metal frame or the like.
【0002】[0002]
【従来の技術】近年のエレクトロニクス産業の著しい発
展に伴い、トランジスタ,IC、LSI、超LSIと半
導体素子における回路の集積度は急激に増大している。
このため、半導体素子の大きさも、従来長辺が数mm程
度だったものが10数mmと飛躍的に増大している。又
リードフレームも従来の42合金から熱伝導性も良く安
価である銅材が主流となりつつあり、一方、半導体製品
の実装方法は表面実装法にしかも高密度実装化のため、
半導体素子は大型化しているにもかかわらずパッケージ
の封止サイズは小さくなってきている。このような半導
体製品の動向に伴い、半導体製品の構成材料に対する要
求性能も変化してきており、半導体素子と金属フレーム
を接合するダイボンディング用樹脂ペーストに対して
も、従来求められていた接合の信頼性のみならず、大型
チップと銅フレームの熱膨張率の差に基づく、熱応力を
吸収緩和する応力緩和特性、更には薄型パッケージでの
表面実装に基づく、耐半田クラック特性が要求されてき
ている。2. Description of the Related Art With the remarkable development of the electronics industry in recent years, the degree of integration of circuits in transistors, ICs, LSIs, VLSIs and semiconductor devices has been rapidly increasing.
For this reason, the size of the semiconductor element, which has been conventionally about several mm on the long side, has been dramatically increased to about 10 mm. Also, the lead frame is mainly made of copper material, which has good thermal conductivity and is inexpensive, from the conventional 42 alloy. On the other hand, the mounting method of semiconductor products is the surface mounting method and the high density mounting.
Despite the increase in the size of semiconductor elements, the package sealing size is becoming smaller. With such trends in semiconductor products, the performance requirements for the constituent materials of semiconductor products have also changed, and the reliability of bonding that has been conventionally required for die-bonding resin paste for bonding semiconductor elements and metal frames In addition to the characteristics, stress relaxation characteristics that absorb and relax thermal stress based on the difference in coefficient of thermal expansion between large chips and copper frames, and solder crack resistance characteristics based on surface mounting in thin packages have been demanded. .
【0003】応力緩和特性は半導体素子の材料であるシ
リコン等の線熱膨張係数が、3×10-6/℃であるのに
対し、銅フレームの線熱膨張係数は20×10-6/℃と
一桁大きいため、ダイボンディング用樹脂ペーストを加
熱硬化した後の冷却過程において、銅フレームの方がシ
リコンチップより大きな割合で収縮することに基づき、
チップの反りひいてはチップクラックあるいはダイボン
ディング用樹脂ペーストの剥離等を引き起こし,IC、
LSI等の半導体製品の特性不良の一因となり得る可能
性がある。このような熱応力を吸収緩和するためにダイ
ボンディング用樹脂ペーストを低弾性率にする必要があ
るが、従来のエポキシ系ダイボンディング用樹脂ペース
トは、熱硬化性樹脂であるため三次元架橋し弾性率が高
くなり、大型チップと銅フレームとの熱膨張率の差に基
づく、歪を吸収するに至らなかった。一方線状高分子タ
イプのポリイミド系ダイボンディング用樹脂ペースト
は、エポキシ系ダイボンディング用樹脂ペーストに比べ
硬化物の弾性率は小さく、チップの反りは改良される。
しかし、ポリイミド樹脂をダイボンディング用樹脂ペー
ストとして用いる場合、塗布作業性の点からN−メチル
−2−ピロリドン,N,Nージメチルホルムアミド等の
多量の極性溶剤に溶解して粘度を調整しなければならな
い。このときの溶剤量はダイボンディング用樹脂ペース
トの30重量%にもなり、半導体素子と金属フレームの
接着に用いた場合、硬化加熱時の溶剤の抜け後として硬
化物中にボイドが発生し、接着強度、熱伝導性及び導電
性の低下の原因となり信頼性の面から好ましくない。Regarding the stress relaxation characteristic, the linear thermal expansion coefficient of silicon, which is a material for semiconductor elements, is 3 × 10 -6 / ° C, whereas the linear thermal expansion coefficient of a copper frame is 20 × 10 -6 / ° C. Since it is one digit larger, the copper frame shrinks at a rate larger than that of the silicon chip in the cooling process after heating and curing the die bonding resin paste.
The warp of the chip, which in turn causes chip cracks or peeling of the resin paste for die bonding, causes the IC,
There is a possibility that it may be a cause of defective characteristics of semiconductor products such as LSI. In order to absorb and relax such thermal stress, it is necessary to make the die-bonding resin paste have a low elastic modulus, but the conventional epoxy-based die-bonding resin paste is a thermosetting resin and is three-dimensionally crosslinked and elastic. The rate was high, and strain could not be absorbed due to the difference in thermal expansion coefficient between the large chip and the copper frame. On the other hand, the linear polymer type polyimide die-bonding resin paste has a smaller elastic modulus of the cured product than the epoxy die-bonding resin paste, and the warpage of the chip is improved.
However, when a polyimide resin is used as a resin paste for die bonding, it must be dissolved in a large amount of a polar solvent such as N-methyl-2-pyrrolidone, N, N-dimethylformamide or the like to adjust the viscosity in terms of coating workability. I won't. The amount of solvent at this time is as much as 30% by weight of the die-bonding resin paste, and when it is used for bonding a semiconductor element and a metal frame, voids are generated in the cured product after the solvent escapes at the time of curing and heating, and the bonding occurs. It causes deterioration of strength, thermal conductivity and conductivity, and is not preferable in terms of reliability.
【0004】又、表面実装あるいは高密度実装を目的と
したパッケージサイズの小型化、薄型化に基づく、実装
時の熱ストレスの急激な増加により半導体封止材だけで
なく、ダイボンディング用樹脂ペーストにも耐リフロー
クラック性が要求されてきている。ダイボンディング用
樹脂ペーストの耐リフロークラック性は、半田リフロー
時のストレスを緩和吸収するために、リフロー温度付近
で低弾性率であると共に、半田リフローの前処理段階で
の吸水率が小さく、かつ吸水後でも十分な接合強度、特
に加熱状態で十分な引き剥し方向での強度を示すことが
必要であるが、エポキシ系及びポリイミド系樹脂ペース
トを含めてこれらの特性を満足するものはなかった。Further, due to a rapid increase in thermal stress during mounting based on the miniaturization and thinning of the package size for surface mounting or high density mounting, not only the semiconductor sealing material but also the resin paste for die bonding is used. Also, reflow crack resistance is required. The reflow crack resistance of the die-bonding resin paste has a low elastic modulus near the reflow temperature in order to absorb and absorb stress during solder reflow, and has a low water absorption rate at the pretreatment stage of solder reflow Even after that, it is necessary to show sufficient bonding strength, particularly strength in the peeling direction in a heated state, but none of these, including epoxy-based and polyimide-based resin pastes, satisfied these characteristics.
【0005】[0005]
【発明が解決しようとする課題】本発明は、IC等の大
型チップと銅フレームとの組み合わせでもチップクラッ
クやチップの反りによるIC等の特性不良が生じず、か
つ薄型パッケージでの半田リフロークラックが発生しな
い高信頼性の導電性樹脂ペーストを提供するものであ
る。SUMMARY OF THE INVENTION According to the present invention, even when a large chip such as an IC and a copper frame are combined, a characteristic defect of the IC such as a chip crack or a warp of the chip does not occur, and a solder reflow crack in a thin package is prevented. It is intended to provide a highly reliable conductive resin paste that does not occur.
【0006】[0006]
【課題を解決するための手段】本発明は、(A)銀粉、
(B)常温で液状のエポキシ樹脂、(C)1分子内に少
なくとも1個のアルケニル基及び少なくとも2個のフェ
ノール性水酸基を有する化合物と式(1)で示されるシ
リコーン化合物をハイドロシリル化反応し得られる反応
生成物を必須成分とする導電性樹脂ペーストであって、
かつ全導電性樹脂ペースト中に(A)成分を60〜85
重量%、(C)成分を1〜20重量%含む導電性樹脂ペ
ーストであり、The present invention provides (A) silver powder,
(B) an epoxy resin which is liquid at room temperature, (C) a compound having at least one alkenyl group and at least two phenolic hydroxyl groups in one molecule, and a silicone compound represented by the formula (1) are hydrosilylated. A conductive resin paste containing the obtained reaction product as an essential component,
Moreover, the component (A) is added to the total conductive resin paste at 60 to 85.
A conductive resin paste containing 1% to 20% by weight of the component (C),
【0007】[0007]
【化2】 Embedded image
【0008】成分(C)の硬化剤を用いることにより、
従来から用いられているエポキシ樹脂の硬化剤であるフ
ェノールノボラック樹脂と比べて、硬化物の架橋密度が
大幅に低下し、低弾性率となるためIC、LSI等の大
型チップと銅フレームの組み合わせでも熱膨張率の差に
基づく歪を十分吸収する応力緩和特性に優れるものであ
る。又(C)成分中に、非常に柔軟なシロキサン結合を
主鎖に導入することで硬化物の凝集力をそれほど低下さ
せることなく、硬化物自体を柔軟にできるので、耐熱性
を犠牲にすることなく、従来より問題となっていたエポ
キシ系樹脂ペーストの欠点である引き剥し方向の接着力
を大幅に向上させることができるため、半田リフロー時
の熱ストレスによる導電性樹脂ペースト層の剥離が生じ
にくい、耐リフロークラック性に優れるものである。By using the curing agent of component (C),
Compared to phenol novolac resin, which is a curing agent for epoxy resins that has been used conventionally, the cross-linking density of the cured product is significantly reduced and the elastic modulus is low, so even in the combination of large chips such as IC and LSI and copper frames. It is excellent in stress relaxation characteristics that sufficiently absorb strain due to the difference in coefficient of thermal expansion. Further, by introducing an extremely flexible siloxane bond into the main chain in the component (C), the cured product itself can be made flexible without significantly reducing the cohesive force of the cured product, so that heat resistance is sacrificed. Since the adhesive force in the peeling direction, which is a drawback of epoxy resin paste, which has been a problem from the past, can be significantly improved, peeling of the conductive resin paste layer due to thermal stress during solder reflow is less likely to occur. It has excellent reflow crack resistance.
【0009】本発明に用いる銀粉は用いる分野が電子電
気分野のためハロゲンイオン、アルカリ金属イオン等の
イオン性不純物量が10ppm以下であることが望まし
い。又形状としてはフレーク状、樹枝状あるいは球状の
ものを単独あるいは混合して用いることができる。更に
粒径に関しては通常平均粒径が2〜10μm、最大粒径
は50μm程度のものが好ましく、比較的細かい銀粉と
粗い銀粉を混合して用いてもよい。全樹脂ペースト中の
銀粉量が60重量%未満だと、硬化物の電気伝導性が低
下し、85重量%を越えると樹脂ペーストの粘度が高く
なり過ぎ塗布作業性の低下の原因となるので好ましくな
い。又本発明に用いるエポキシ樹脂は常温で液状のもの
に限定しているが、常温で液状のものでないと銀粉との
混練において溶剤を必要とする。溶剤は気泡の原因とな
り硬化物の接着強度、熱伝導率を低下させてしまうので
好ましくない。ここで常温で液状のエポキシ樹脂とは、
例えば常温で固形のものでも常温で液状のエポキシ樹脂
と混合することにより常温で安定して液状を示すものも
含む。Since the silver powder used in the present invention is used in electronic and electrical fields, it is desirable that the amount of ionic impurities such as halogen ions and alkali metal ions be 10 ppm or less. As for the shape, flaky, dendritic or spherical shapes can be used alone or in combination. Regarding the particle size, it is usually preferable that the average particle size is 2 to 10 μm and the maximum particle size is about 50 μm, and relatively fine silver powder and coarse silver powder may be mixed and used. If the amount of silver powder in the total resin paste is less than 60% by weight, the electrical conductivity of the cured product will be reduced, and if it exceeds 85% by weight, the viscosity of the resin paste will be too high and the coating workability will be reduced. Absent. The epoxy resin used in the present invention is limited to a liquid at room temperature, but a solvent is required for kneading with silver powder unless it is liquid at room temperature. The solvent is not preferable because it causes bubbles and reduces the adhesive strength and thermal conductivity of the cured product. Here, the epoxy resin that is liquid at room temperature is
For example, it includes those that are solid at room temperature but those that are stable at room temperature when mixed with an epoxy resin that is liquid at room temperature.
【0010】本発明に用いるエポキシ樹脂としてはビス
フェノールA、ビスフェノールF、フェノールノボラッ
ク樹脂、クレゾールノボラック樹脂類とエピクロルヒド
リンとの反応により得られるポリグリシジルエーテル、
ブタンジオールジグリシジルエーテル、ネオペンチルグ
リコールジグリシジルエーテル等の脂肪族エポキシ、ジ
グリシジルヒダントイン等の複素環式エポキシ、ビニル
シクロヘキセンジオキサイド、ジシクロペンタジエンジ
オキサイド、アリサイクリックジエポキシーアジペイト
のような脂環式エポキシ、更ににはn−ブチルグリシジ
ルエーテル、バーサティック酸グリシジルエステル、ス
チレンオキサイド、エチルヘキシルグリシジルエーテ
ル、フェニルグリシジルエーテル、クレジルグリシジル
エーテル、ブチルフェニルグリシジルエーテル等の通常
のエポキシ樹脂の希釈剤として用いられるものがあり、
これらは単独でも混合して用いても差し支えない。The epoxy resin used in the present invention includes bisphenol A, bisphenol F, phenol novolac resin, polyglycidyl ether obtained by the reaction of cresol novolac resins with epichlorohydrin,
Aliphatic epoxies such as butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, heterocyclic epoxies such as diglycidyl hydantoin, vinyl cyclohexene dioxide, dicyclopentadiene dioxide, fats such as alicyclic diepoxy adipate Used as a diluent for ordinary epoxy resins such as cyclic epoxy, n-butyl glycidyl ether, versatic acid glycidyl ester, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, and butylphenyl glycidyl ether There are things that are
These may be used alone or in combination.
【0011】本発明で用いる硬化剤は、1分子内に少な
くとも1個のアルケニル基及び少なくとも2個のフェノ
ール性水酸基を有する化合物と式(1)で示されるシリ
コーン化合物とをハイドロシリル化反応により反応させ
た反応生成物であり、全導電性樹脂ペースト中に1〜2
0重量%含まれる。従来より用いられてきた硬化剤であ
るフェノールノボラック樹脂では、硬化物の架橋密度が
高くなるため、弾性率が高くなり応力緩和特性が低下す
ると共に、特に引き剥し方向の接着力が小さいため大型
チップと銅フレームの組み合わせで使用した場合には、
半田リフロー時の応力に耐えられず、銀ペースト層の剥
離ひいてはパッケージクラックを引き起こしてしまう。
1分子内に少なくとも1個のアルケニル基及び少なくと
も2個のフェノール性水酸基を有する化合物のアルケニ
ル基の数が1個以上の場合には、2:1〜1.5:1が
好ましい。モル比が2:1を越えると1分子内に少なく
とも1個のアルケニル基及び少なくとも2個のフェノー
ル性水酸基を有する化合物が未反応成分として残存し、
又1.5:1未満だと式(1)のシリコーン化合物が未
反応成分として残存するため好ましくない。The curing agent used in the present invention is obtained by reacting a compound having at least one alkenyl group and at least two phenolic hydroxyl groups in one molecule with a silicone compound represented by the formula (1) by a hydrosilylation reaction. It is a reaction product of 1 to 2 in the total conductive resin paste.
Contains 0% by weight. In the case of phenol novolac resin, which is a hardener that has been used in the past, the cross-link density of the cured product is high, so the elastic modulus is high and the stress relaxation property is reduced, and the adhesive force especially in the peeling direction is small When used in combination with the copper frame,
It cannot withstand the stress during solder reflow, causing peeling of the silver paste layer and eventually package cracking.
When the number of alkenyl groups in the compound having at least one alkenyl group and at least two phenolic hydroxyl groups in one molecule is 1 or more, 2: 1 to 1.5: 1 is preferable. When the molar ratio exceeds 2: 1, a compound having at least one alkenyl group and at least two phenolic hydroxyl groups in one molecule remains as an unreacted component,
If it is less than 1.5: 1, the silicone compound of formula (1) remains as an unreacted component, which is not preferable.
【0012】本発明の1分子内に少なくとも1個のアル
ケニル基及び少なくとも2個のフェノール性水酸基を有
する化合物と式(1)で示されるシリコーン化合物とを
ハイドロシリル化反応により反応させた反応生成物は、
全導電性樹脂ペースト中に1〜20重量%含むが、1重
量%未満だと、要求される低応力性・高密着性が望めな
く、20重量%を越えると硬化剤量が多くなり過ぎ硬化
後、過剰のフェノール性水酸基が未反応の状態で残存す
るため硬化物の吸水率が大きくなったり、あるいは硬化
後も十分な架橋構造となりえず熱時の接着強度が極端に
低くなるため好ましくない。1分子内に少なくとも1個
のアルケニル基及び少なくとも2個のフェノール性水酸
基を有する化合物と式(1)で示されるシリコーン化合
物とをハイドロシリル化反応により反応させた化合物
は、単独あるいは混合して用いてもよく、また他のフェ
ノールノボラック系樹脂と併用しても差し支えない。1
分子内に少なくとも1個のアルケニル基及び少なくとも
2個のフェノール性水酸基を有する化合物としては、ジ
アリルビスフェノールA、トリス(O−アリルヒドロキ
シフェニル)メタン、ジ(O−アリルヒドロキシフェニ
ル)ヒドロキシフェニルメタン等があり、好ましいの
は、ジアリルビスフェノールAである。又式(1)中の
R1は、CH3、又はOCH3で、少なくとも2個はCH3
であり、好ましいのは、全てのR1がCH3のジシロキサ
ンである。A reaction product obtained by reacting a compound having at least one alkenyl group and at least two phenolic hydroxyl groups in the molecule of the present invention with a silicone compound represented by the formula (1) by a hydrosilylation reaction. Is
1 to 20% by weight is contained in the total conductive resin paste, but if it is less than 1% by weight, the required low stress and high adhesion cannot be expected, and if it exceeds 20% by weight, the amount of curing agent becomes too large to cure. After that, excessive phenolic hydroxyl groups remain in an unreacted state so that the water absorption rate of the cured product increases, or even after curing, a sufficient cross-linked structure cannot be obtained and the adhesive strength during heating becomes extremely low, which is not preferable. . A compound obtained by reacting a compound having at least one alkenyl group and at least two phenolic hydroxyl groups in one molecule with a silicone compound represented by the formula (1) by a hydrosilylation reaction may be used alone or in combination. It may be used together with other phenol novolac resins. 1
Examples of the compound having at least one alkenyl group and at least two phenolic hydroxyl groups in the molecule include diallylbisphenol A, tris (O-allylhydroxyphenyl) methane, and di (O-allylhydroxyphenyl) hydroxyphenylmethane. Yes, and preferred is diallyl bisphenol A. R 1 in the formula (1) is CH 3 or OCH 3 , and at least two are CH 3
And preferred is a disiloxane in which all R 1 are CH 3 .
【0013】また必要に応じ、潜在性アミン硬化剤等の
他の硬化剤と併用してもよく、第3級アミン、イミダゾ
ール類、トリフェニルホスフィン、テトラフェニルホス
フィン・テトラフェニルボレート等の一般にエポキシ樹
脂とフェノール系硬化剤との硬化促進剤として知られて
いる化合物を添加することもできる。本発明において
は、必要に応じ可撓性付与剤、消泡剤、カップリング剤
等を用いることもできる。本発明の製造方法は、例えば
各成分を予備混合した後、3本ロールを用いて混練し、
混練後真空下脱泡し樹脂ペーストを得るなどがある。If desired, they may be used in combination with other curing agents such as latent amine curing agents. Generally, epoxy resins such as tertiary amines, imidazoles, triphenylphosphine, tetraphenylphosphine and tetraphenylborate are used. It is also possible to add a compound known as a curing accelerator of a phenol-based curing agent. In the present invention, a flexibility imparting agent, a defoaming agent, a coupling agent and the like can be used if necessary. The production method of the present invention includes, for example, pre-mixing the respective components, followed by kneading using a three-roll mill,
After kneading, defoaming is performed under vacuum to obtain a resin paste.
【0014】以下実施例を用いて本発明を具体的に説明
する。配合割合は重量部で示す。実施例,比較例で用い
る1分子内に少なくとも1個のアルケニル基及び少なく
とも2個のフェノール性水酸基を有する化合物と式
(1)で示されるシリコーン化合物とをハイドロシリル
化反応により反応させた反応生成物の製造方法を製造例
として示す。 製造例1 リフラックスコンデンサー、温度計、撹拌機を具備した
内容積1リットルの4つ口フラスコに、1,1,3,3
−テトラメチルジシロキサン67g、ジアリルビスフェ
ノールA(三井東圧化学(株)・製,以下BPA−C
A)300g、ヘキサクロロ白金(IV)酸6水和物(和
光純薬工業(株)・製)のイソプロピルアルコール溶液
(5重量%)0.1g、リンスタークトラップを使用
し、予め共沸脱水したトルエン500gを入れ、4時間
撹拌環流反応した。得られた内容物からトルエンを減圧
下で留去し、シリコーン化合物Aを得た。 製造例2 製造例1と全く同様な装置を用い,1,1,3,3−テ
トラメチルジシロキサン70g、BPA−CA250
g、ヘキサクロロ白金(IV)酸6水和物(和光純薬工業
(株)・製)のイソプロピルアルコール溶液(5重量
%)0.1g、リンスタークトラップを使用し、予め共
沸脱水したトルエン500gを入れ、4時間撹拌環流反
応した。得られた内容物からトルエンを減圧下で留去
し、シリコーン化合物Bを得た。 製造例3 製造例1と全く同様な装置を用い,1,1,3,3−テ
トラメチルジシロキサン70g、O−アリルフェノール
140g、ヘキサクロロ白金(IV)酸6水和物(和光純
薬工業(株)・製)のイソプロピルアルコール溶液(5
重量%)0.1g、リンスタークトラップを使用し、予
め共沸脱水したトルエン500gを入れ、4時間撹拌環
流反応した。得られた内容物からトルエンを減圧下で留
去し、シリコーン化合物Cを得た。The present invention will be specifically described below with reference to examples. The blending ratio is shown in parts by weight. A reaction product obtained by reacting a compound having at least one alkenyl group and at least two phenolic hydroxyl groups in one molecule used in Examples and Comparative Examples with a silicone compound represented by the formula (1) by a hydrosilylation reaction. A method for manufacturing a product will be shown as a manufacturing example. Production Example 1 1, 1, 3, 3 was placed in a 4-neck flask with an internal volume of 1 liter equipped with a reflux condenser, a thermometer, and a stirrer.
-67 g of tetramethyldisiloxane, diallyl bisphenol A (manufactured by Mitsui Toatsu Chemicals, Inc., hereinafter BPA-C)
A) 300 g, hexachloroplatinum (IV) acid hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) in isopropyl alcohol (5% by weight) 0.1 g, and azeotropic dehydration in advance using a Linstark trap Toluene (500 g) was added, and the mixture was stirred and refluxed for 4 hours. Toluene was distilled off from the obtained content under reduced pressure to obtain a silicone compound A. Production Example 2 Using the same apparatus as in Production Example 1, 70 g of 1,1,3,3-tetramethyldisiloxane and BPA-CA250 were used.
g, hexachloroplatinate (IV) acid hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) 0.1 g of isopropyl alcohol (5% by weight), and 500 g of toluene azeotropically dehydrated in advance using a Linstark trap Was charged and the reaction was carried out with stirring and refluxing for 4 hours. Toluene was distilled off from the obtained contents under reduced pressure to obtain a silicone compound B. Production Example 3 Using the same apparatus as in Production Example 1, 70 g of 1,1,3,3-tetramethyldisiloxane, 140 g of O-allylphenol, hexachloroplatinum (IV) acid hexahydrate (Wako Pure Chemical Industries ( Co., Ltd.) isopropyl alcohol solution (5
0.1% by weight) and 500 g of toluene which had been azeotropically dehydrated in advance using a Linstark trap, and stirred and refluxed for 4 hours. Toluene was distilled off from the obtained contents under reduced pressure to obtain a silicone compound C.
【0015】実施例1〜5 粒径1〜30μmで平均粒径3μmのフレーク状銀粉と
ビスフェノールFエポキシ(エポキシ当量170、常温
で液状、以下ビスFエポキシ)、クレジルグリシジルエ
ーテル(エポキシ当量185)、シリコーン化合物A
(水酸基当量189)、シリコーン化合物B(水酸基当
量197)、ビスフェノールF(水酸基当量100)、
フェノールノボラック樹脂(水酸基当量104)、ジシ
アンジアミド、1,8−ジアザビシクロウンデセンを表
1に示す割合で配合し、3本ロールで混練して導電性樹
脂ペーストを得た。Examples 1 to 5 Flake silver powder having a particle size of 1 to 30 μm and an average particle size of 3 μm, bisphenol F epoxy (epoxy equivalent 170, liquid at room temperature, hereinafter bis F epoxy), cresyl glycidyl ether (epoxy equivalent 185) , Silicone compound A
(Hydroxyl equivalent 189), silicone compound B (hydroxyl equivalent 197), bisphenol F (hydroxyl equivalent 100),
Phenol novolac resin (hydroxyl group equivalent 104), dicyandiamide, and 1,8-diazabicycloundecene were mixed in the proportions shown in Table 1 and kneaded with three rolls to obtain a conductive resin paste.
【0016】この導電性樹脂ペーストを真空チャンバー
にて、2mmHgで30分間脱泡した後以下の方法によ
り各種性能を評価した。 粘度 :E型粘度計(3°コーン)を用い25
℃、2.5rpmでの値を測定。 体積抵抗率 :スライドガラス上にペーストを幅4m
m、厚さ30μmに塗布し、200℃のオーブン中で6
0分間硬化した後、硬化物の体積抵抗率を測定。 弾性率 :テフロンシート上にペーストを幅10m
m、長さ約150mm厚さ100μmに塗布し、200
℃のオーブン中で60分間硬化した後、引張り試験機で
試験長100mm、引張り速度1mm/分にて測定し、
得られた応力ーひずみ曲線の初期勾配より弾性率を算
出。 接着強度 :9×9mmのシリコンチップをペースト
を用いて銅フレームにマウントし、200℃で60秒間
熱板上で硬化した。硬化後マウント強度測定装置を用
い、240℃での熱時ダイシェア強度を測定。The conductive resin paste was defoamed in a vacuum chamber at 2 mmHg for 30 minutes, and various performances were evaluated by the following methods. Viscosity: 25 using E-type viscometer (3 ° cone)
Measured at ℃ and 2.5 rpm. Volume resistivity: 4m width paste on slide glass
m, thickness 30 μm, and apply in an oven at 200 ° C for 6
After curing for 0 minutes, the volume resistivity of the cured product is measured. Elastic Modulus: Paste 10m wide on Teflon sheet
m, length about 150 mm, thickness 100 μm, 200
After curing for 60 minutes in an oven at ℃, measured with a tensile tester at a test length of 100 mm and a pulling speed of 1 mm / min,
Elastic modulus was calculated from the initial gradient of the obtained stress-strain curve. Adhesive Strength: A 9 × 9 mm silicon chip was mounted on a copper frame using a paste and cured at 200 ° C. for 60 seconds on a hot plate. After curing, measure the die shear strength during heating at 240 ° C using the mount strength measuring device.
【0017】チップの反り:6×15×0.3mmのシ
リコンチップを銅フレーム(200μm厚さ)にペース
トでマウントし、200℃で60秒間硬化した後、チッ
プの反りを表面粗さ計(測定長13mm)で測定。 耐パッケージクラック性:シリカフィラーを約78%含
有するビフェノール型エポキシ/フェノールノボラック
樹脂系の封止材料を用い下記の条件で成形したパッケー
ジを85℃、85%、120時間吸水処理した後,IR
リフロ ー(240℃、10秒)処理をし、
断面観察により内部クラックの数を測定し耐パッ
ケージクラッ ク性の指標とした。 パッケージ : 80pQFP (14×20×2.0mm厚さ) チップサイズ : 9×9mm(アルミ配線の
み) リードフレーム : 銅材 成形 : 175℃、2分 ポストモールドキュア: 175℃、8時間 比較例1〜7 表2に示す配合割合で実施例と全く同様にして導電性樹
脂ペーストを作製した。評価結果を表2に示す。Warp of chip: A silicon chip of 6 × 15 × 0.3 mm was mounted on a copper frame (thickness of 200 μm) with a paste and cured at 200 ° C. for 60 seconds, and then the warp of the chip was measured by a surface roughness meter (measurement). Measured with a length of 13 mm). Package crack resistance: A package molded under the following conditions using a biphenol-type epoxy / phenol novolac resin-based encapsulating material containing about 78% silica filler is treated with water at 85 ° C, 85% for 120 hours, and then IR
Reflow (240 ℃, 10 seconds) treatment,
The number of internal cracks was measured by observing the cross section and used as an index of the package crack resistance. Package: 80 pQFP (14 × 20 × 2.0 mm thickness) Chip size: 9 × 9 mm (only aluminum wiring) Lead frame: Copper material molding: 175 ° C., 2 minutes Post mold cure: 175 ° C., 8 hours Comparative Examples 1 to 1 7 A conductive resin paste was prepared with the compounding ratios shown in Table 2 in exactly the same manner as in the examples. Table 2 shows the evaluation results.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【発明の効果】本発明の導電性樹脂ペーストは、硬化物
の弾性率が低く銅、42合金等の金属フレーム、セラミ
ック基板、ガラスエポキシ等の有機基板へのIC,LS
I等の半導体素子の接着に用いることができる。特に銅
フレームへの大型チップの接着に適しており、銅フレー
ムとシリコンチップの熱膨張率の差に基づくIC、LS
I等の特性不良を防ぐことができ、薄型パッケージに用
いても半田処理時にクラックの発生がなく、従来になか
った高信頼性の半導体素子接着用の導電性樹脂ペースト
である。EFFECT OF THE INVENTION The conductive resin paste of the present invention has a low elastic modulus of a cured product, and a metal frame such as copper or 42 alloy, a ceramic substrate, an IC or LS on an organic substrate such as glass epoxy.
It can be used for bonding semiconductor elements such as I. Especially suitable for bonding large chips to a copper frame, which is based on the difference in the coefficient of thermal expansion between the copper frame and the silicon chip.
It is a conductive resin paste for bonding highly reliable semiconductor elements, which can prevent characteristic defects such as I, does not cause cracks during soldering even when used in a thin package, and has never been used before.
Claims (2)
シ樹脂、(C)1分子内に少なくとも1個のアルケニル
基及び少なくとも2個のフェノール性水酸基を有する化
合物と式(1)で示されるシリコーン化合物をハイドロ
シリル化反応し得られる反応生成物を必須成分とする導
電性樹脂ペーストであって、かつ全導電性樹脂ペースト
中に(A)成分を60〜85重量%、(C)成分を1〜
20重量%含むことを特徴とする導電性樹脂ペースト。 【化1】 1. A compound of formula (1) with (A) silver powder, (B) an epoxy resin which is liquid at room temperature, (C) a compound having at least one alkenyl group and at least two phenolic hydroxyl groups in one molecule. A conductive resin paste containing a reaction product obtained by a hydrosilylation reaction of the silicone compound shown as an essential component, wherein 60 to 85% by weight of the component (A) in the total conductive resin paste, (C) 1 to 1
A conductive resin paste containing 20% by weight. Embedded image
示されるシリコーン化合物との反応モル比が2:1〜
1.5:1で得られる反応生成物(C)である請求項1
記載の導電性樹脂ペースト。2. The reaction molar ratio of diallyl bisphenol A and the silicone compound represented by formula (1) is from 2: 1 to
The reaction product (C) obtained at 1.5: 1.
The conductive resin paste described.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32201994A JP3384472B2 (en) | 1994-12-26 | 1994-12-26 | Conductive resin paste |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP32201994A JP3384472B2 (en) | 1994-12-26 | 1994-12-26 | Conductive resin paste |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH08176409A true JPH08176409A (en) | 1996-07-09 |
| JP3384472B2 JP3384472B2 (en) | 2003-03-10 |
Family
ID=18139022
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP32201994A Expired - Lifetime JP3384472B2 (en) | 1994-12-26 | 1994-12-26 | Conductive resin paste |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3384472B2 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006137924A (en) * | 2004-07-01 | 2006-06-01 | Murata Mfg Co Ltd | Electroconductive resin composition, electroconductive resin cured product, and electronic component module |
| US7172711B2 (en) * | 2001-01-30 | 2007-02-06 | Honeywell International, Inc. | Interface materials and methods of production and use thereof |
| JP2009242657A (en) * | 2008-03-31 | 2009-10-22 | Nippon Steel Chem Co Ltd | Epoxy resin composition and molded product |
| JP2010209266A (en) * | 2009-03-12 | 2010-09-24 | Shin-Etsu Chemical Co Ltd | Liquid epoxy resin composition for sealing semiconductor, and flip-chip semiconductor device sealed with the same as underfill material |
| CN102174241A (en) * | 2010-12-31 | 2011-09-07 | 东莞市阿比亚能源科技有限公司 | A silver paste for photovoltaic modules |
| JP2014122281A (en) * | 2012-12-21 | 2014-07-03 | Shin Etsu Chem Co Ltd | Diallyl group-containing hydroxyphenyl derivative, silicone skeleton-containing polymer compound, negative resist material, photocurable dry film, pattern formation method and coating for protection of electric/electronic component |
| WO2018216814A1 (en) * | 2017-05-26 | 2018-11-29 | 株式会社カネカ | Conductive paste composition, device comprising electrode formed from same, and method for producing conductive paste composition |
| JPWO2021039732A1 (en) * | 2019-08-26 | 2021-03-04 |
-
1994
- 1994-12-26 JP JP32201994A patent/JP3384472B2/en not_active Expired - Lifetime
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7172711B2 (en) * | 2001-01-30 | 2007-02-06 | Honeywell International, Inc. | Interface materials and methods of production and use thereof |
| JP2006137924A (en) * | 2004-07-01 | 2006-06-01 | Murata Mfg Co Ltd | Electroconductive resin composition, electroconductive resin cured product, and electronic component module |
| JP2009242657A (en) * | 2008-03-31 | 2009-10-22 | Nippon Steel Chem Co Ltd | Epoxy resin composition and molded product |
| JP2010209266A (en) * | 2009-03-12 | 2010-09-24 | Shin-Etsu Chemical Co Ltd | Liquid epoxy resin composition for sealing semiconductor, and flip-chip semiconductor device sealed with the same as underfill material |
| CN102174241A (en) * | 2010-12-31 | 2011-09-07 | 东莞市阿比亚能源科技有限公司 | A silver paste for photovoltaic modules |
| JP2014122281A (en) * | 2012-12-21 | 2014-07-03 | Shin Etsu Chem Co Ltd | Diallyl group-containing hydroxyphenyl derivative, silicone skeleton-containing polymer compound, negative resist material, photocurable dry film, pattern formation method and coating for protection of electric/electronic component |
| WO2018216814A1 (en) * | 2017-05-26 | 2018-11-29 | 株式会社カネカ | Conductive paste composition, device comprising electrode formed from same, and method for producing conductive paste composition |
| CN110651336A (en) * | 2017-05-26 | 2020-01-03 | 株式会社钟化 | Conductive paste composition, device including electrode formed from conductive paste composition, and method for producing conductive paste composition |
| JPWO2018216814A1 (en) * | 2017-05-26 | 2020-01-16 | 株式会社カネカ | Conductive paste composition, device including electrode formed therefrom, and method for producing conductive paste composition |
| US11066509B2 (en) | 2017-05-26 | 2021-07-20 | Kaneka Corporation | Conductive paste composition, device comprising electrode formed from same, and method for producing conductive paste composition |
| CN110651336B (en) * | 2017-05-26 | 2022-05-17 | 株式会社钟化 | Conductive paste composition, electrode device comprising same, and method for producing conductive paste composition |
| JPWO2021039732A1 (en) * | 2019-08-26 | 2021-03-04 | ||
| CN114269848A (en) * | 2019-08-26 | 2022-04-01 | 富士胶片株式会社 | Composition for forming heat conductive material, heat conductive sheet, and device with heat conductive layer |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3384472B2 (en) | 2003-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3384472B2 (en) | Conductive resin paste | |
| JP3313267B2 (en) | Conductive resin paste | |
| JPH0790239A (en) | Electrically conductive resin paste | |
| JP2974902B2 (en) | Conductive resin paste | |
| KR20030059805A (en) | Die-attaching paste and semiconductor device | |
| JPH10120873A (en) | Insulating resin paste for semiconductor | |
| JP3555930B2 (en) | Resin paste for semiconductor and semiconductor device using the same | |
| JP2002252235A (en) | Resin paste for semiconductor and semiconductor device using it | |
| JPH10237157A (en) | Liquid resin composition, and semiconductor apparatus made by using the same | |
| JP3719856B2 (en) | Resin paste for semiconductor | |
| JP3719855B2 (en) | Resin paste for semiconductor | |
| JP3608908B2 (en) | Resin paste for semiconductor | |
| JPH07161740A (en) | Conductive resin paste for semiconductor | |
| JPH0790238A (en) | Electrically conductive resin paste | |
| JP3568742B2 (en) | Resin paste for semiconductor | |
| JP2002241584A (en) | Resin paste for semiconductor and semiconductor device | |
| JP2501258B2 (en) | Insulating resin paste | |
| JP2010108615A (en) | Conductive resin paste | |
| JPH0484444A (en) | Conductive paste | |
| JPH03145143A (en) | Conductive resin paste for semiconductor | |
| JP2596663B2 (en) | Conductive resin paste for semiconductors | |
| JPH11106612A (en) | Epoxy resin composition and semiconductor device | |
| JPH06184279A (en) | Electrically conductive resin paste | |
| JP3449846B2 (en) | Conductive resin paste for semiconductor | |
| JP2000072846A (en) | Resin paste for semiconductor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081227 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091227 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101227 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111227 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111227 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121227 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121227 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131227 Year of fee payment: 11 |
|
| EXPY | Cancellation because of completion of term |