[go: up one dir, main page]

JPH0819601A - Artificial lung - Google Patents

Artificial lung

Info

Publication number
JPH0819601A
JPH0819601A JP15771394A JP15771394A JPH0819601A JP H0819601 A JPH0819601 A JP H0819601A JP 15771394 A JP15771394 A JP 15771394A JP 15771394 A JP15771394 A JP 15771394A JP H0819601 A JPH0819601 A JP H0819601A
Authority
JP
Japan
Prior art keywords
blood
hollow fiber
artificial lung
core portion
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15771394A
Other languages
Japanese (ja)
Inventor
Hikari Nakanishi
光 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENKO IKA KOGYO KK
Senko Medical Instrument Manufacturing Co Ltd
Original Assignee
SENKO IKA KOGYO KK
Senko Medical Instrument Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENKO IKA KOGYO KK, Senko Medical Instrument Manufacturing Co Ltd filed Critical SENKO IKA KOGYO KK
Priority to JP15771394A priority Critical patent/JPH0819601A/en
Publication of JPH0819601A publication Critical patent/JPH0819601A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PURPOSE:To provide an artificial lung with which gas exchanging with a high efficiency can be achieved all the time regardless of the flow rate of blood. CONSTITUTION:A core part 29 which is substantially cylindrical when seen from the outside, is arranged at the center of a cylinder body 21. On the peripheral surface of the core part 29, a plurality of ribs 30 axially extending along the core part 29, are arranged at equal intervals in the sectional circumferential direction of the core part 29. On the passages formed between each pair of ribs 30 on the peripheral surface of the core part 29, wave part 32 are formed in such a way that the radius of an axially different place is relatively enlarged or reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、中空糸膜型人工肺に関
する。
FIELD OF THE INVENTION The present invention relates to a hollow fiber membrane type artificial lung.

【0002】[0002]

【従来の技術】周知のように、血液のガス交換を人工的
に行なう医療装置として、処理膜に中空糸膜を使用した
構造の中空糸膜型人工肺が知られている。すなわち、多
数の中空糸膜により容器内に多数の血液流路と、ガスの
流通路とを形成し、上記中空糸膜を介して血液(静脈
血)と、ガス(酸素あるいは酸素と空気と二酸化炭素と
から構成される)とを接触させ、血液中に酸素を加える
と同時に血液中の二酸化炭素をガス中に排出させるもの
である。
2. Description of the Related Art As is well known, as a medical device for artificially exchanging blood gas, a hollow fiber membrane type artificial lung having a structure in which a hollow fiber membrane is used as a treatment membrane is known. That is, a large number of hollow fiber membranes form a large number of blood flow paths and gas flow passages in the container, and blood (venous blood), gas (oxygen or oxygen, air, and dioxide) are passed through the hollow fiber membranes. (Composed of carbon) and oxygen is added to the blood and carbon dioxide in the blood is discharged into the gas at the same time.

【0003】このような膜型人工肺の一例として、従
来、図5に示す構造の中空糸膜型人工肺が提供されてい
る。図中符号1は円筒状の筒体を示すもので、この筒体
1の両端部は拡径されて筒体頭部2a、2bとなってい
る。前記構成の筒体1内には多数の中空糸が集束されて
なる中空糸集束体4が収められている。この中空糸集束
体4は円筒状に形成されており、その中央部空間4aに
は、後述する蓋体8に連結されたコア部9が挿入配置さ
れている。中空糸集束体4は、筒体1内に収納後にその
両端部をポリウレタン樹脂などのポッティング材5、5
により上記筒体1内において固定されており、このポッ
ティング材5、5の外側端面では前記中空糸集束体4を
構成する各中空糸が開口されている。
As an example of such a membrane oxygenator, a hollow fiber membrane oxygenator having a structure shown in FIG. 5 has been conventionally provided. In the figure, reference numeral 1 indicates a cylindrical tubular body, and both ends of the tubular body 1 are expanded in diameter to become tubular body heads 2a and 2b. A hollow fiber bundle 4 having a large number of hollow fibers bundled therein is housed in the cylindrical body 1 having the above-described structure. The hollow fiber bundle 4 is formed in a cylindrical shape, and a core portion 9 connected to a lid body 8 described later is inserted and arranged in a central space 4a thereof. After the hollow fiber bundle 4 is housed in the tubular body 1, both ends of the hollow fiber bundle 4 are potting materials 5, 5 such as polyurethane resin.
Are fixed in the cylindrical body 1 by the above, and the hollow fibers constituting the hollow fiber bundle 4 are opened at the outer end surfaces of the potting materials 5, 5.

【0004】前記筒体1には、その両開口部6a、6b
を覆うようにして蓋体7、8が取り付けられている。こ
の蓋体7、8はそれぞれ筒体1に対して密閉状態に装着
されるキャップ状に形成され、下方(図中下方)の蓋体
8には血液が導入される血液導入口突管10および該血
液導入口突管10から導入された血液を筒体1の上部ま
で導入する前記コア部9が連結されている。コア部9の
上端には、導入された血液を筒体1内に流出させる複数
の窓11が筒体1の周方向に沿って等間隔で開口されて
いる。コア部9の外周面には、コア部9の軸方向に沿っ
て延在するリブ12がコア部9の断面周方向に等間隔に
複数配置されている。また、筒体1の下部には筒体1に
導入された血液の排出突管13が設けられている。前記
筒体頭部2a、2bの側部にはガスを中空糸集束体4を
構成する各中空糸内側に導入し、筒体1外に排出する流
通管14a、14bが設けられている(ただし、流通管
14bは複数の場合もある)。
The cylindrical body 1 has both openings 6a and 6b.
The lids 7 and 8 are attached so as to cover the. The lids 7 and 8 are each formed in a cap shape that is mounted in a hermetically sealed state with respect to the cylindrical body 1, and a blood introduction port projection tube 10 into which blood is introduced into the lid 8 below (lower in the figure) and The core portion 9 that introduces the blood introduced from the blood inlet pipe 10 to the upper portion of the cylindrical body 1 is connected. At the upper end of the core portion 9, a plurality of windows 11 for letting out the introduced blood into the cylindrical body 1 are opened at equal intervals along the circumferential direction of the cylindrical body 1. On the outer peripheral surface of the core portion 9, a plurality of ribs 12 extending along the axial direction of the core portion 9 are arranged at equal intervals in the circumferential direction of the cross section of the core portion 9. A discharge tube 13 for discharging the blood introduced into the cylinder 1 is provided below the cylinder 1. Flowing pipes 14a and 14b for introducing gas into the inside of each hollow fiber constituting the hollow fiber bundle 4 and discharging the gas to the outside of the cylinder 1 are provided on the side portions of the cylinder heads 2a and 2b (however). , There may be a plurality of distribution pipes 14b).

【0005】上記構成において、血液は導入口突管10
からコア部9内に導入され、上部のポッティング材5に
ぶつかった後、上記窓11を経てコア部9と筒体1との
間の領域に出て、中空糸集束体4を構成する中空糸間を
流れて下方のポッティング材5に至り、排出突管13か
ら筒体1の外方に排出される。ガスは各中空糸集束体4
を構成する中空糸内を通り、これら中空糸膜を介して血
液とガスとがガス交換される。
In the above structure, blood is introduced into the inlet port 10
Hollow fiber which is introduced into the core part 9 from the core part, hits the potting material 5 at the upper part, and then passes through the window 11 to the region between the core part 9 and the tubular body 1 to form the hollow fiber bundle 4. It flows through the space to reach the potting material 5 below, and is discharged from the discharge projection tube 13 to the outside of the cylindrical body 1. Gas is each hollow fiber bundle 4
Blood is exchanged for gas through the hollow fiber membranes that make up the hollow fiber membrane.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記従来の
中空糸膜型人工肺(血液処理装置)には、次のような欠
点があった。すなわち、例えば、開心術の術中のよう
に、血液流量が大幅に変化(開心術の場合1〜7リット
ル毎分程度の範囲)する場合、流量がある範囲の時には
血液が中空糸集束体4全体に行きわたるが、流量が前記
ある範囲以外の時には血液がコア部9の上端と排出突管
13との間で流路長の短縮する経路に偏在して特定のリ
ブ12、12間にのみ、または筒体1と中空糸集束体4
の外周との間にのみ流路が形成され(所謂チャネリン
グ)、血液が中空糸集束体4全体に行きわたらずガス交
換効率に低下が生じるといった問題がある。また、中央
部空間4aを流れた血液は上部ポッティング材4に当た
り血液の向きが90°から180°変更する、この当た
って向きを変更する量は、血液量により異なるので、前
記のある範囲以外で血液が中空糸集束体4全体にいきわ
たらずガス交換効率低下の原因となっている。さらに、
高流量時には上部ポッティング材5に血液が当たり90
°以上向きが変更することは血液損傷の問題がある。中
央部空間4a内に充填されている血液量も大概循環全回
路の充填量を最小にある目標から見て内方が好ましい。
The conventional hollow fiber membrane type artificial lung (blood processing apparatus) has the following drawbacks. That is, for example, when the blood flow rate changes significantly (in the case of open heart surgery, in the range of about 1 to 7 liters per minute), such as during open heart surgery, when the flow rate is within a certain range, the blood is entirely in the hollow fiber converging body 4. However, when the flow rate is out of the above range, the blood is unevenly distributed between the upper end of the core portion 9 and the discharge projection tube 13 in the path where the flow path length is shortened, and only between the specific ribs 12, 12. Alternatively, the cylinder 1 and the hollow fiber bundle 4
There is a problem that a flow path is formed only between the outer circumference of the hollow fiber and the outer periphery of the hollow fiber (so-called channeling), and blood does not reach the entire hollow fiber bundle 4, and the gas exchange efficiency decreases. In addition, the blood flowing through the central space 4a hits the upper potting material 4 and the direction of the blood changes from 90 ° to 180 °. The amount of change in the contact is different depending on the amount of blood. Blood does not reach the entire hollow fiber bundle 4 and causes a decrease in gas exchange efficiency. further,
At high flow rate, blood hits the upper potting material 5 and 90
There is a problem of blood damage if the direction is changed more than °. The amount of blood filled in the central space 4a is also preferably inward as viewed from the goal of minimizing the filling amount of the entire circulation circuit.

【0007】本発明は、前述の課題に鑑みてなされたも
ので、血液流量に関係なく常時高いガス交換能率が得ら
れ、血液損傷の問題が少なく、血液充填量の少ない人工
肺を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned problems, and provides an artificial lung that can always obtain a high gas exchange efficiency regardless of the blood flow rate, has less problems of blood damage, and has a small blood filling amount. The purpose is.

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題を解
決するため、以下の構成を採用した。すなわち、請求項
1記載の人工肺では、片端部に血液流出口が突設されて
いる筒体内に中空糸を筒状に集束してなる中空糸集束体
が収納されるとともに、この中空糸集束体の中央部に端
部の血液導入口より導入された血液の複数の流路を外周
側に有する柱状のコア部が収納され、これら中空糸集束
体およびコア部がポッティング材により固定され、血液
導入口とガス導入口を各々有するキャップ状の蓋体が前
記筒体の両端部に一体に連結された中空糸膜型人工肺に
おいて、前記コア部の複数の血液流路に前記コア部に外
接する中空糸集束体に向けて端部の血液導入口より導入
された血液の流れの向きを積極的にコア部の外周側から
遠ざけるように変更する手段が設けられていることを前
記課題の解決手段とした。
The present invention has the following features to attain the object mentioned above. That is, in the artificial lung according to claim 1, a hollow fiber converging body formed by concentrating hollow fibers in a cylindrical shape is housed in a cylindrical body having a blood outlet port protruding from one end thereof, and the hollow fiber converging body is also housed. A columnar core part having a plurality of flow passages for blood introduced from the blood introduction port at the end part on the outer peripheral side is housed in the center part of the body, and these hollow fiber bundles and core parts are fixed by potting material, In a hollow fiber membrane oxygenator in which cap-shaped lids each having an inlet and a gas inlet are integrally connected to both ends of the tubular body, in a plurality of blood channels of the core are circumscribed to the core. The means for changing the direction of the flow of the blood introduced from the blood introducing port at the end toward the hollow fiber converging body to be positively moved away from the outer peripheral side of the core part is provided. The means.

【0009】請求項2記載の人工肺では、前記コア部の
複数の流路が端部の血液導入口から下流に向かって螺旋
状に配置されていることを前記課題の解決手段とした。
In the artificial lung according to the second aspect of the present invention, the means for solving the above-mentioned problems is that the plurality of flow paths of the core portion are arranged in a spiral shape from the blood introduction port at the end portion toward the downstream side.

【0010】請求項3記載の人工肺では、前記コア部の
複数の各流路の断面積が、血液導入口から下流に向かっ
て縮小と拡大を繰り返す形態を前記課題の解決手段とし
た。
In the artificial lung according to a third aspect of the present invention, the means for solving the above-mentioned problems is such that the cross-sectional area of each of the plurality of flow paths of the core portion is repeatedly reduced and expanded from the blood introduction port toward the downstream.

【0011】請求項4記載の人工肺では、コア部の内部
を血液が流通しないことを前記課題の解決手段とした。
In the artificial lung according to the fourth aspect, the fact that blood does not circulate inside the core portion is a means for solving the above problems.

【0012】[0012]

【作用】本発明では、コア部に平行に流入した血液の流
れの向きを中空糸集束体中央に栓状に存在するコア部の
側面全体で血液流れ方向を積極的に変更し、血液流量広
範囲で中空糸集束体へ血液の流れを向ける。これによ
り、血液は流量広範囲で中空糸集束体に向けて流れ、高
ガス交換率が得られる。コア部に設けられた流路を血液
導入口から下流に向かって螺旋状に配置することによ
り、流路に導入された血液はコア部の輪切りにした断面
から接線方向に流れの向きが変更されることになり、血
液は中空糸集束体に向かって流れ、前記の効果が得られ
る。また、コア部に設けられた流路の断面積を血液導入
口から下流に向かって縮小と拡大を繰り返すことにより
流路に導入された血液は、流路断面積が縮小している間
は、コア部側面から離れる方向へ流れの向きが変更され
る。次に、流路断面積が拡大している間は、前記断面積
が縮小している部分を流れの向きが変更されなかった血
液が満たすことになり、また、次の断面積縮小部分へ進
行していく。これにより、血液の流れ方向は、主に断面
積縮小部分で変更されることになり、断面積縮小と拡大
とを複数繰り返すごとに血液は中空糸集束体へ向かって
流れ、前記の効果が得られる。また、前記コア部の内部
を血液が流通しないことにより、血液は導入口よりコア
部片端へ流通し、わずかに向きを変更しながら前記流路
へ流通して行く。この結果、血液は流路に流通する前に
ほとんど流れの向きが変更されていないので、中空糸集
束体への流れ方に悪影響を与えず、しかも、血液損傷の
問題も少ない。加えて、筒体内への中央空間充填量も無
くせる。
In the present invention, the direction of the flow of blood flowing in parallel to the core portion is positively changed over the entire side surface of the core portion existing like a plug in the center of the hollow fiber concentrating body, and the blood flow rate is wide range. Directs the flow of blood to the hollow fiber bundle. As a result, the blood flows toward the hollow fiber bundle with a wide range of flow rates, and a high gas exchange rate is obtained. By arranging the flow path provided in the core part in a spiral shape from the blood introduction port toward the downstream, the flow direction of the blood introduced into the flow part is changed tangentially from the sliced cross section of the core part. Therefore, the blood flows toward the hollow fiber bundle, and the above-mentioned effect is obtained. Further, the blood introduced into the flow path by repeatedly reducing and expanding the cross-sectional area of the flow path provided in the core portion from the blood introduction port toward the downstream, while the flow path cross-sectional area is decreasing, The flow direction is changed in the direction away from the side surface of the core portion. Next, while the cross-sectional area of the flow channel is expanding, the area where the cross-sectional area is reduced is filled with blood whose flow direction has not been changed, and the next cross-sectional area is reduced. I will do it. As a result, the flow direction of the blood is changed mainly in the cross-sectional area reduction portion, and the blood flows toward the hollow fiber converging body each time the cross-sectional area reduction and expansion are repeated, and the above-mentioned effect is obtained. To be In addition, since blood does not flow inside the core part, blood flows from the inlet to one end of the core part, and flows into the flow path while slightly changing its direction. As a result, the direction of flow of blood is hardly changed before flowing into the flow path, so that it does not adversely affect the flow direction to the hollow fiber bundle, and the problem of blood damage is small. In addition, the filling amount of the central space in the cylinder can be eliminated.

【0013】[0013]

【実施例】以下本発明の人工肺の一実施例を、図1から
図4を参照して説明する。図1中符号21は円筒状の筒
体を示すもので、この筒体21の両端部は蓋体22a、
22bにより閉塞されている。この蓋体22a、22b
にはガスを中空糸内側に導入する流通管23a(ガス導
入口)、外側に排出する流通管23bが設けられてい
る。前記構成の筒体21内には多数の中空糸を集束して
なる中空糸集束体24が収められている。この中空糸集
束体24は円筒状に形成されており、この中空糸集束体
24の中央部空間24aには、後述するコア部29が挿
入配置されている。中空糸集束体24は、筒体21内に
収納後にその両端部をポリウレタン樹脂などのポッティ
ング材25、25により上記筒体1内において固定され
ており、このポッティング材25、25の外側端面に前
記中空糸集束体24を構成する各中空糸が開口されてい
る。
EXAMPLE An example of the artificial lung of the present invention will be described below with reference to FIGS. 1 to 4. Reference numeral 21 in FIG. 1 denotes a cylindrical tubular body, and both end portions of the tubular body 21 are a lid 22a,
It is closed by 22b. This lid 22a, 22b
A distribution pipe 23a (gas introduction port) for introducing gas to the inside of the hollow fiber and a distribution pipe 23b for discharging gas to the outside are provided therein. A hollow fiber bundle 24, which is a bundle of a large number of hollow fibers, is housed in the cylindrical body 21 having the above structure. The hollow fiber bundle 24 is formed in a cylindrical shape, and a core portion 29 described later is inserted and arranged in the central space 24a of the hollow fiber bundle 24. The hollow fiber bundle 24 is housed in the tubular body 21, and both ends thereof are fixed in the tubular body 1 by potting materials 25, 25 such as polyurethane resin. Each hollow fiber constituting the hollow fiber bundle 24 is opened.

【0014】前記筒体21は、1.5度程度の角度で上
部(図中上方)にいくほど拡径するテーパ状に形成され
ている。筒体21の下部に装着される蓋体22bには、
筒体21内部に血液を導入する導入口突管26(血液導
入口)が設けられている。この導入口突管26は、蓋体
22bの内方に突出され、蓋体22bを筒体21に装着
することによりその先端が筒体21内に内装された中空
糸集束体24の下部のポッティング材25に中央部空間
24aと連通して設けられた嵌合穴24bと嵌合される
ようになっている。この導入口突管26の先端部には、
その内径が先端方向に行くほどテーパ状に拡径された放
射部27が形成されている。筒体21の上には、導入口
突管26から筒体21内に供給された血液を排出する排
出突管28が設けられている。
The cylindrical body 21 is formed in a tapered shape whose diameter increases toward the top (upward in the figure) at an angle of about 1.5 degrees. The lid 22b attached to the bottom of the cylinder 21 has
An inlet projection tube 26 (blood inlet) for introducing blood is provided inside the cylindrical body 21. The inlet projection tube 26 is projected inward of the lid body 22b, and when the lid body 22b is attached to the tubular body 21, the tip thereof is potted at the lower portion of the hollow fiber focusing body 24 which is housed in the tubular body 21. The material 25 is fitted into a fitting hole 24b provided in communication with the central space 24a. At the tip of this inlet port projection tube 26,
The radiating portion 27 is formed so that its inner diameter increases in a taper shape as it goes in the distal direction. A discharge projection tube 28 for discharging the blood supplied from the introduction port projection tube 26 into the cylinder body 21 is provided on the cylinder body 21.

【0015】前記筒体21の中央部には、外面視略円柱
状のコア部29が配置されている。コア部29は、ポリ
プロピレン等の樹脂製であって中実に形成され、上端部
が上部に位置されたポッティング材25内に没してあ
り、上端部の位置が保持されている。このコア部29の
外周面は平滑面に形成され、また、この外周面には、図
2および図3に示すように、該コア部29の軸方向に沿
って延在するリブ30がコア部29の放射状に等間隔に
計8本配置されている。コア部29外周面において各リ
ブ30の間に形成される溝部31には、軸線方向に異な
る場所の半径方向の寸法が相対的に拡大縮小する形態の
起伏部32が設けられている。この起伏部32は、コア
部29の長さ方向に沿って拡径部の頂点を結ぶ直線が上
方に行くほどコア部29の中心軸線に対して1.5度傾
斜して離間するテーパ状に形成されている。コア部29
の下端部には、図1に示すように、前記導入口突管26
から導入する血液をコア部29半径方向に拡散させる円
錐部33が設けられている。
At the central portion of the cylindrical body 21, a core portion 29 having a substantially cylindrical shape when viewed from the outside is arranged. The core portion 29 is made of a resin such as polypropylene and is solidly formed. The upper end portion of the core portion 29 is submerged in the potting material 25 located at the upper portion, and the position of the upper end portion is maintained. The outer peripheral surface of the core portion 29 is formed into a smooth surface, and a rib 30 extending along the axial direction of the core portion 29 is formed on the outer peripheral surface as shown in FIGS. 2 and 3. A total of eight are arranged in a radial pattern of 29 at equal intervals. In the groove portion 31 formed between the ribs 30 on the outer peripheral surface of the core portion 29, an undulating portion 32 having a shape in which the radial dimension at different locations in the axial direction is relatively enlarged or reduced is provided. The undulating portion 32 has a tapered shape in which the straight line connecting the vertices of the expanded diameter portion along the lengthwise direction of the core portion 29 is inclined upward by 1.5 degrees with respect to the central axis of the core portion 29 and is spaced apart. Has been formed. Core part 29
As shown in FIG. 1, the lower end portion of the inlet pipe 26
A conical portion 33 is provided for diffusing blood introduced from the core portion 29 in the radial direction.

【0016】前記人工肺は、蓋体22aを上方に位置さ
せ、この状態で導入口突管26から筒体21内に血液を
導入させ、かつ流通管23aから酸素や酸素と空気と二
酸化炭素の混合ガスを導入させることにより、血液のガ
ス交換を行なう。導入口突管26より導入された血液
は、円錐部33を流通する際に、均一に流路に分配され
る。また、コア部29内部に血液が流通や浸透すること
はないので、血液は円錐部33から各流路に向かってス
ムーズに流れる。コア部29外周面に沿って上昇する血
液が起伏部32に当たることにより中空糸集束体24の
半径方向に流路を変更して流れ、血液の流れが中空糸集
束体24全体に分散される。筒体21内を上昇する血液
は、上部のポッティング材25に当たるまで上昇を続
け、上昇の間に中空糸膜を介して血液とガスとがガス交
換する。上部のポッティング材25に至った血液は、排
出突管28を介して筒体21外に排出される。
In the artificial lung, the lid 22a is positioned above, blood is introduced into the cylindrical body 21 through the inlet projection tube 26 in this state, and oxygen or oxygen, air and carbon dioxide are introduced through the flow tube 23a. By introducing the mixed gas, the gas of blood is exchanged. The blood introduced from the inlet port projection tube 26 is uniformly distributed in the flow path when flowing through the conical portion 33. Further, since blood does not flow or permeate into the core portion 29, blood flows smoothly from the conical portion 33 toward each flow path. When the blood rising along the outer peripheral surface of the core portion 29 hits the undulating portion 32, the flow path is changed in the radial direction of the hollow fiber focusing body 24 to flow, and the blood flow is dispersed throughout the hollow fiber focusing body 24. The blood that rises in the tubular body 21 continues to rise until it hits the potting material 25 on the upper side, and during the rise, blood and gas exchange gas through the hollow fiber membrane. The blood that has reached the upper potting material 25 is discharged to the outside of the cylindrical body 21 via the discharge projection tube 28.

【0017】したがって、前記人工肺によれば、導入口
突管26より導入された血液が中空糸集束体24内全体
に分散されて流れる上、コア部29近傍を流れる血液が
起伏部32に当たって筒体21の外周方向に分散される
ので、血液と中空糸集束体24との接触面積が確保さ
れ、高ガス交換効率が保持されるとともに、筒体21内
全体に常時血液が流通されて筒体21における血液の滞
留部分がなくなり、ガス交換効率が向上する。加えて、
導入口付近の血液の流れの向きの変更を少なくしたの
で、血液損傷の問題が少なくない。コア部29内部を血
液が流通しないので、コア部29中央空間内の血液充填
量を無くせる上、コア部29外周面を円錐部33から流
路に向かって血液がスムーズに流れるので、ガス交換効
率が一層向上する。
Therefore, according to the artificial lung, the blood introduced from the introduction port projecting tube 26 flows while being dispersed throughout the hollow fiber converging body 24, and the blood flowing in the vicinity of the core portion 29 hits the undulating portion 32 to form a cylinder. Since it is dispersed in the outer peripheral direction of the body 21, a contact area between the blood and the hollow fiber concentrating body 24 is secured, high gas exchange efficiency is maintained, and blood is constantly circulated throughout the body 21 to form a body. The stagnant portion of blood in 21 is eliminated, and the gas exchange efficiency is improved. in addition,
Since the change in the direction of blood flow near the inlet is reduced, there are many problems of blood damage. Since blood does not circulate inside the core portion 29, the amount of blood filled in the central space of the core portion 29 can be eliminated, and blood flows smoothly from the conical portion 33 toward the flow path on the outer peripheral surface of the core portion 29. Efficiency is further improved.

【0018】以下、本発明の第2実施例を図4を参照し
て説明する。本実施例の人工肺は、コア部29の外周部
に複数の螺旋状のリブ34を有するものである。このリ
ブ34は、コア部29の外周面の軸方向において前記第
1実施例のリブ30と同様の範囲に取り付けられ、かつ
コア部29の外周面に断面周方向4分の1程度卷回され
た形状に形成されている。本実施例の人工肺によれば、
導入口突管26より流れる血液は、リブ34に沿って流
れることによって流れの向きが中空糸集束体24の外周
方向に変えられて中空糸集束体24内全体に分散されつ
つ旋回流を形成し、中空糸集束体24を構成する各中空
糸との接触面積の確保や、筒体21内における血液の滞
留防止等がより確実かつ効率良くなされ、ガス交換の効
率が一層向上する。また、血液損傷および血液充填量に
関しても、前記第1実施例に記載の人工肺と同様の効果
を有する。
A second embodiment of the present invention will be described below with reference to FIG. The artificial lung of the present embodiment has a plurality of spiral ribs 34 on the outer peripheral portion of the core portion 29. The ribs 34 are attached to the same extent as the ribs 30 of the first embodiment in the axial direction of the outer peripheral surface of the core portion 29, and are wound around the outer peripheral surface of the core portion 29 by about 1/4 in the circumferential direction of the cross section. It is formed in a curved shape. According to the artificial lung of this example,
The blood flowing from the inlet projection tube 26 changes its flow direction toward the outer peripheral direction of the hollow fiber focusing body 24 by flowing along the ribs 34 and is dispersed throughout the hollow fiber focusing body 24 to form a swirling flow. The area of contact with each hollow fiber constituting the hollow fiber bundle 24 is secured, the blood is prevented from staying in the tubular body 21 more reliably and efficiently, and the efficiency of gas exchange is further improved. Further, regarding the blood damage and the blood filling amount, the same effect as that of the artificial lung described in the first embodiment is obtained.

【0019】なお、排出突管28は、筒体21の上部以
外の場所に設けても構わない。起伏部32は、コア部2
9の周方向の各所が相対的に半径方向に拡大縮小する形
状であっても構わない。前記第2実施例において、リブ
34の卷回は、血液を十分に中空糸集束体24全体に拡
散可能であれば、コア部29の4分の1周以外であって
も構わない。この場合、起伏部32は設置しなくてもよ
い。
The discharge projection tube 28 may be provided in a place other than the upper portion of the cylindrical body 21. The undulating portion 32 is the core portion 2
It is also possible for each part of the circumferential direction of 9 to have a shape that relatively expands and contracts in the radial direction. In the second embodiment, the winding of the rib 34 may be other than one quarter of the core portion 29 as long as blood can be sufficiently diffused throughout the hollow fiber bundle 24. In this case, the undulations 32 need not be installed.

【0020】[0020]

【発明の効果】以上説明したように、請求項1記載の人
工肺によれば、前記コア部の複数の血液流路に前記コア
部に外接する中空糸集束体に向けて端部の血液導入口よ
り導入された血液の流れの向きを積極的にコア部の外周
側から遠ざけるように変更する手段が設けられているの
で、血液が流量広範囲で中空糸集束体へ向けて流れ、高
ガス交換率が得られる。
As described above, according to the oxygenator of the first aspect, the blood is introduced into the end portions of the plurality of blood flow passages of the core portion toward the hollow fiber bundle circumscribing the core portion. Since a means is provided to positively change the direction of the flow of blood introduced from the mouth so that it is moved away from the outer peripheral side of the core part, blood flows toward the hollow fiber concentrator in a wide range of flow rate and high gas exchange. The rate is obtained.

【0021】請求項2記載の人工肺では、前記コア部の
複数の流路が端部の血液導入口から下流に向かって螺旋
状に配置されているので、流路に導入された血液がコア
部の輪切りにした断面から接線方向に流れの向きが変更
されることになり血液は中空糸集束体に向かって流れ、
高ガス交換率が得られる。
In the oxygenator of the second aspect, since the plurality of flow passages of the core portion are spirally arranged from the blood introduction port at the end portion toward the downstream side, the blood introduced into the flow passage is the core. The flow direction will be changed tangentially from the cross section of the section, and blood will flow toward the hollow fiber bundle,
A high gas exchange rate is obtained.

【0022】請求項3記載の人工肺では、前記コア部の
複数の各流路の断面積が、血液導入口から下流に向かっ
て縮小と拡大を繰り返す形態とされているので、血液の
流れ方向が主に断面積縮小部分で変更されることにな
り、断面積縮小と拡大とを複数繰り返すごとに血液は中
空糸集束体へ向かって流れ、高ガス交換率が得られる。
In the artificial lung according to the third aspect, the cross-sectional area of each of the plurality of flow paths of the core portion is configured to be repeatedly contracted and expanded from the blood introduction port to the downstream side. Is mainly changed in the cross-sectional area reduction part, and the blood flows toward the hollow fiber converging body every time a plurality of cross-sectional area reductions and expansions are repeated, and a high gas exchange rate is obtained.

【0023】請求項4記載の人工肺では、コア部の内部
を血液が流通しないので、流路に流通する前にほとんど
血液の流れの向きが変更されていないので、中空糸集束
体への流れ方に悪影響を与えず、しかも血液損傷の問題
も少なく、中央空間内への充填量を無くせ、コア部外周
面を流路に向かって血液がスムーズに流れてガス交換効
率が一層向上する。
In the artificial lung according to the fourth aspect, since the blood does not flow through the inside of the core portion, the direction of the flow of the blood is hardly changed before flowing through the flow path. In addition, the problem of blood damage is small, the amount of filling in the central space is eliminated, and blood smoothly flows toward the flow path along the outer peripheral surface of the core portion, further improving gas exchange efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の人工肺の第1実施例を示す正断面図で
ある。
FIG. 1 is a front sectional view showing a first embodiment of an artificial lung of the present invention.

【図2】同実施例に使用されるコア部を示す平面図であ
る。
FIG. 2 is a plan view showing a core portion used in the embodiment.

【図3】同実施例に使用されるコア部をの詳細を示す部
分破断図である。
FIG. 3 is a partial cutaway view showing details of a core portion used in the embodiment.

【図4】本発明の人工肺の第2実施例を示す正断面図で
ある。
FIG. 4 is a front sectional view showing a second embodiment of the artificial lung of the present invention.

【図5】従来の人工肺を示す正断面図である。FIG. 5 is a front sectional view showing a conventional artificial lung.

【符号の説明】[Explanation of symbols]

21 筒体 24 中空糸集束 23a ガス導入口(流通管) 25 ポッティング材 26 血液導入口(導入口突管) 28 排出突管 29 コア部 30 リブ 32 起伏部 34 リブ 21 Cylindrical Body 24 Hollow Fiber Focusing 23a Gas Inlet Port (Distribution Pipe) 25 Potting Material 26 Blood Inlet Port (Inlet Port Spouting Tube) 28 Discharge Spouting Tube 29 Core Part 30 Rib 32 Undulating Part 34 Rib

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 片端部に血液流出口が突設されている筒
体内に中空糸を筒状に集束してなる中空糸集束体が収納
されるとともに、この中空糸集束体の中央部に端部の血
液導入口より導入された血液の複数の流路を外周側に有
する柱状のコア部が収納され、これら中空糸集束体およ
びコア部がポッティング材により固定され、血液導入口
とガス導入口を各々有するキャップ状の蓋体が前記筒体
の両端部に一体に連結された中空糸膜型人工肺におい
て、 前記コア部の複数の血液流路に前記コア部に外接する中
空糸集束体に向けて端部の血液導入口より導入された血
液の流れの向きを積極的にコア部の外周側から遠ざける
ように変更する手段が設けられていることを特徴とする
人工肺。
1. A hollow fiber converging body formed by concentrating hollow fibers in a tubular shape is housed in a cylindrical body having a blood outlet port projecting from one end thereof, and the hollow fiber converging body has an end at the center thereof. A columnar core part having a plurality of flow paths of blood introduced from the blood introduction port of the outer peripheral side is housed, and these hollow fiber bundles and core parts are fixed by a potting material, and a blood introduction port and a gas introduction port In a hollow fiber membrane-type artificial lung in which cap-shaped lids each having are integrally connected to both ends of the tubular body, in a hollow fiber bundle circumscribing the plurality of blood channels of the core part. An artificial lung, characterized in that means is provided for positively changing the direction of the flow of blood introduced from the blood inlet port of the end portion so as to be positively moved away from the outer peripheral side of the core portion.
【請求項2】 前記コア部の複数の流路が端部の血液導
入口から下流に向かって螺旋状に配置されていることを
特徴とする請求項1記載の人工肺。
2. The artificial lung according to claim 1, wherein the plurality of flow paths of the core portion are arranged in a spiral shape from the blood inlet port at the end portion toward the downstream side.
【請求項3】 前記コア部の複数の各流路の断面積が、
血液導入口から下流に向かって縮小と拡大を繰り返す形
態を特徴とする請求項1記載の人工肺。
3. The cross-sectional area of each of the plurality of flow paths of the core portion is
The artificial lung according to claim 1, wherein the artificial lung has a form in which contraction and expansion are repeated downstream from the blood inlet.
【請求項4】 前記コア部の内部を血液が流通しないこ
とを特徴とする請求項1から3のいずれかに記載の人工
肺。
4. The artificial lung according to claim 1, wherein blood does not flow inside the core portion.
JP15771394A 1994-07-08 1994-07-08 Artificial lung Pending JPH0819601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15771394A JPH0819601A (en) 1994-07-08 1994-07-08 Artificial lung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15771394A JPH0819601A (en) 1994-07-08 1994-07-08 Artificial lung

Publications (1)

Publication Number Publication Date
JPH0819601A true JPH0819601A (en) 1996-01-23

Family

ID=15655754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15771394A Pending JPH0819601A (en) 1994-07-08 1994-07-08 Artificial lung

Country Status (1)

Country Link
JP (1) JPH0819601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762875A (en) * 1996-01-16 1998-06-09 Medtronic, Inc. Core structure for blood oxygenators
EP1810704A3 (en) * 2006-01-19 2007-08-29 Terumo Kabushiki Kaisha Oxygenator
US7431754B2 (en) 2004-07-23 2008-10-07 Terumo Kabushiki Kaisha Artificial lung
CN113599605A (en) * 2021-07-29 2021-11-05 深圳汉诺医疗科技有限公司 Membrane oxygenator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5762875A (en) * 1996-01-16 1998-06-09 Medtronic, Inc. Core structure for blood oxygenators
US7431754B2 (en) 2004-07-23 2008-10-07 Terumo Kabushiki Kaisha Artificial lung
US7947113B2 (en) 2004-07-23 2011-05-24 Terumo Kabushiki Kaisha Artificial lung
US8142546B2 (en) 2004-07-23 2012-03-27 Terumo Kabushiki Kaisha Artificial lung
EP1810704A3 (en) * 2006-01-19 2007-08-29 Terumo Kabushiki Kaisha Oxygenator
US7749435B2 (en) 2006-01-19 2010-07-06 Terumo Kabushiki Kaisha Oxygenator
US8685320B2 (en) 2006-01-19 2014-04-01 Terumo Kabushiki Kaisha Oxygenator
CN113599605A (en) * 2021-07-29 2021-11-05 深圳汉诺医疗科技有限公司 Membrane oxygenator
CN113599605B (en) * 2021-07-29 2024-02-20 深圳汉诺医疗科技有限公司 A membrane oxygenator

Similar Documents

Publication Publication Date Title
JP6740399B2 (en) Oxygen feeder module, oxygen feeder, and manufacturing method
CA1158510A (en) Hollow fiber-type artificial lung having enclosed heat exchanger
USRE36774E (en) Cylindrical blood heater/oxygenator
US5733398A (en) Efficient methods of manufacturing hollow fiber exchangers
US4749551A (en) Hollow-fiber oxygenators for blood
JPH06205945A (en) Device for transfer of mass and/or heat
US4242203A (en) Hollow fibre apparatus
EP0460132A1 (en) Blood oxygenation system
JP2002306592A (en) Compact membrane-type oxygenator concentrically provided with heat exchanger and improved manifold
EP0167162B1 (en) Hollow fiber type oxygenator
EP0895786A1 (en) Oxygenator of hollow fiber membrane type
CA2120829C (en) Hollow fiber blood oxygenator
JPH0819601A (en) Artificial lung
AU708373B2 (en) Core structure for blood oxygenators
EP0548065B1 (en) Cylindrical blood heater/oxygenator
JP3878675B2 (en) Hollow fiber oxygenator
US5858233A (en) Transition manifold for blood oxygenator apparatus
JPS587300B2 (en) Dialysis cartridge for extracorporeal artificial kidney, etc.
JP7457711B2 (en) Diffusion Device
CN116036397B (en) A vertical membrane oxygenation device
JPH0628127Y2 (en) Hollow fiber membrane blood treatment device
JPH06154313A (en) Implement for medical treatment
JPH0224545B2 (en)
AU4739299A (en) Blood oxygenator with heat exchanger

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040323

Free format text: JAPANESE INTERMEDIATE CODE: A02