JPH08201340A - Gas sensor element - Google Patents
Gas sensor elementInfo
- Publication number
- JPH08201340A JPH08201340A JP7031822A JP3182295A JPH08201340A JP H08201340 A JPH08201340 A JP H08201340A JP 7031822 A JP7031822 A JP 7031822A JP 3182295 A JP3182295 A JP 3182295A JP H08201340 A JPH08201340 A JP H08201340A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- catalyst layer
- carbon monoxide
- interference
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 claims abstract description 31
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000010931 gold Substances 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 5
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 89
- 238000001514 detection method Methods 0.000 claims description 28
- 239000010416 ion conductor Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 230000001603 reducing effect Effects 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 229910001020 Au alloy Inorganic materials 0.000 claims 1
- 229910001260 Pt alloy Inorganic materials 0.000 claims 1
- 239000003353 gold alloy Substances 0.000 claims 1
- 239000007787 solid Substances 0.000 claims 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 22
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 22
- 230000000694 effects Effects 0.000 abstract description 6
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 2
- 239000001569 carbon dioxide Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- -1 oxygen ions Chemical class 0.000 description 2
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
Landscapes
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、主に燃焼排気ガス中の
干渉ガスの存在下において、目的とするガスを検知する
ガスセンサ素子に好適な構造であって、高温の排気ガス
中に挿入して使用できる高温作動型のガスセンサを提供
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure suitable for a gas sensor element for detecting a target gas mainly in the presence of an interference gas in a combustion exhaust gas. It is intended to provide a high-temperature operation type gas sensor which can be used by using.
【0002】[0002]
【従来の技術】NOxガスを検知するガスセンサとして
は、濃淡電池式、半導体式のものが知られているが、半
導体式のものは干渉ガスの影響が大きく、また高温作動
には適さない等の欠点がある。一方、濃淡電池式のもの
では、検知極の副電極部に硝酸塩を使用することで、干
渉ガスの影響を排除し、選択性の良好なものが得られて
いる。しかし、硝酸塩として高融点のものは高々600
℃弱であり、センサに使用した場合の実用温度は高々4
50℃以下となり、自動車等の高温排気中に直接挿入し
て使用するには、耐熱性が十分とは言えないのが、現状
である。また、濃淡電池式のセンサにあっては基準極が
必要で、通常は大気雰囲気に基準極を曝して使用するた
め、構成、製造上の煩わしさがある。2. Description of the Related Art As a gas sensor for detecting NOx gas, there are known gas sensors of a concentration cell type and a semiconductor type. However, a semiconductor type sensor has a large influence of an interference gas and is not suitable for high-temperature operation. There are drawbacks. On the other hand, in the case of the concentration cell type, by using nitrate for the sub-electrode portion of the detection electrode, the influence of the interference gas is eliminated, and a good selectivity is obtained. However, nitrates having a high melting point are at most 600
℃, and the practical temperature when used for a sensor is at most 4
At present, the temperature is not higher than 50 ° C., and it cannot be said that the heat resistance is sufficient for use by directly inserting into a high-temperature exhaust gas of an automobile or the like. Further, a reference electrode is necessary for a concentration cell type sensor, and since the reference electrode is usually used by exposing the reference electrode to the atmosphere, there is a trouble in configuration and manufacturing.
【0003】そこで、基準極を設けず、固体電解質体に
接して構成の異なる1対の電極を設け、一方の電極を酸
化物を副電極として使用した検知極とし、両電極をとも
に検知対象雰囲気に曝し、両電極間の化学ポテンシャル
差により生じる起電力でガス検知方式が考えられ、本発
明者等は、この構成を基本とした NOxガスセンサ素子の
構造に関する発明を出願した(特願平5−352765
号)。その基本構成を図1に示す(以下プレーナー型と
呼ぶ)。Therefore, a pair of electrodes having different structures is provided in contact with the solid electrolyte body without providing a reference electrode, and one electrode is used as a detection electrode using an oxide as an auxiliary electrode, and both electrodes are used as a detection target atmosphere. The present inventors have applied for an invention relating to the structure of a NOx gas sensor element based on this configuration by using an electromotive force generated by a chemical potential difference between both electrodes. 352765
issue). The basic configuration is shown in FIG. 1 (hereinafter referred to as a planar type).
【0004】プレーナー型は、酸素イオン伝導体の固体
電解質体に接して単体酸化物あるいは、ペロブスカイト
酸化物を検知極の副電極材として使用し、その上に集電
体として貴金属あるいは導電性酸化物を積層する。対極
は検知極とは構成を変え、集電体としての貴金属で構成
される。この場合、集電体としては、金あるいは白金等
の貴金属が形成しやすく、且つ耐酸化性もあり好適であ
る。[0004] The planar type uses a simple oxide or perovskite oxide as a sub-electrode material of a detection electrode in contact with a solid electrolyte body of an oxygen ion conductor, and further has a noble metal or a conductive oxide as a current collector thereon. Are laminated. The counter electrode has a different configuration from the detection electrode, and is formed of a noble metal as a current collector. In this case, as the current collector, a noble metal such as gold or platinum is easily formed, and it is preferable because it has oxidation resistance.
【0005】しかしながら、自動車の排気ガスの NOxガ
スの大部分はNOガスであり、エンジン排気管内の高温で
はNOガスは還元性ガスとして作用するものと考えられ
る。この構成のセンサにおいては、NOガスに対しては、
その還元性に起因する化学ポテンシャルを拾っていると
推定されるが、このため同じく還元性ガスである一酸化
炭素ガスの干渉が大きく実用上問題であることが判っ
た。すなわち、自動車等の燃焼排気ガス中には通常数百
ppm レベル以上の一酸化炭素ガスが含まれており、無視
できないレベルである。However, most of the NOx gas in automobile exhaust gas is NO gas, and it is considered that NO gas acts as a reducing gas at high temperatures in the engine exhaust pipe. In the sensor of this configuration, for NO gas,
It is presumed that the chemical potential caused by the reducing property is picked up. Therefore, it has been found that the interference of the carbon monoxide gas, which is also a reducing gas, is large and poses a practical problem. In other words, there are usually several hundreds of
It contains carbon monoxide gas at ppm level or higher, and cannot be ignored.
【0006】一方、半導体式ガスセンサ等では、ガス感
応体である金属半導体の表面に干渉ガスと反応して、干
渉性のない無害なガスに変化させる触媒層を設ける等の
対策を施すことはすでに実施されており公知である(例
えば、特開昭63−63064号公報他)。On the other hand, in the case of a semiconductor gas sensor or the like, it has already been taken to take measures such as providing a catalyst layer which reacts with an interference gas on the surface of a metal semiconductor which is a gas sensitive body to change it into a harmless gas having no interference. It is implemented and known (for example, JP-A-63-63064 and the like).
【0007】しかしながら、本発明者らは、従来技術か
ら類推できるように、検知極に、干渉ガスを無害化する
触媒層を被覆するだけではプレーナー型センサで効果的
に目的とするガスを検出できないことを確認した。However, as can be inferred from the prior art, the present inventors cannot effectively detect a target gas with a planar sensor simply by coating the detection electrode with a catalyst layer that renders the interference gas harmless. It was confirmed.
【0008】[0008]
【発明が解決しようとする課題】本発明は上述のプレー
ナー型センサの実用上での問題点である共存する干渉ガ
スの影響を排除し、目的とするガスを効果的に検出する
センサを提供することを課題としている。SUMMARY OF THE INVENTION The present invention provides a sensor for effectively detecting a target gas by eliminating the influence of coexisting interference gas, which is a practical problem of the above-mentioned planar type sensor. That is the task.
【0009】[0009]
【課題を解決するための手段及び作用】図1に示す構造
のプレーナー型センサにおいては、主としてイオン伝導
体1上の検知極集電体4に設けた副電極材3の NOxガス
による酸化還元により、検知極集電体4と対極2の間に
酸素イオンによる化学ポテンシャルが生じ起電力が発生
するものと推定される。すなわち、両電極の集電体を同
質の素材を用いて構成されている場合には、一つの酸素
イオン導電体に両極の集電体が接触していれば、集電体
に起因するポテンシャル差は生じないため、起電力発生
の原因は主として副電極材に起因する化学ポテンシャル
差となる。このことから、検知極を干渉ガス排除のため
の触媒層で被覆することは、従来技術からして常套手段
である。しかし、プレーナー型センサにおいて、検知極
集電体を触媒層で被覆するだけでは所期の目的を達する
には不十分であること、特に集電体として好適な、金、
白金あるいはその合金系を用いた場合には問題が大きい
ことを認め、本発明のセンサ構成によって所期の効果が
得られることを見いだした。In the planar type sensor having the structure shown in FIG. 1, the sub-electrode material 3 provided on the detection electrode current collector 4 on the ion conductor 1 is mainly oxidized and reduced by NOx gas. It is presumed that a chemical potential due to oxygen ions is generated between the detection electrode current collector 4 and the counter electrode 2 to generate an electromotive force. In other words, when the current collectors of both electrodes are made of the same material, if the current collectors of both electrodes are in contact with one oxygen ion conductor, the potential difference caused by the current collectors Does not occur, the cause of the generation of the electromotive force is mainly the chemical potential difference caused by the sub-electrode material. For this reason, it is common practice in the prior art to coat the sensing electrode with a catalyst layer for eliminating interference gas. However, in the planar type sensor, it is not enough to achieve the intended purpose only by covering the detection electrode current collector with the catalyst layer.
The use of platinum or an alloy thereof was recognized as having a serious problem, and it was found that the intended effect could be obtained by the sensor configuration of the present invention.
【0010】本発明になるセンサ構成例を図3及び図5
に示す。以下に干渉ガスとして一酸化炭素ガスを含むNO
ガスのNOガスを検知する本発明によるセンサを例にとっ
て説明する。即ち、本発明のセンサ構成は、プレーナー
型の構成において、干渉ガスである一酸化炭素ガスを選
択酸化する触媒層5を、検知極集電体4のみに被覆する
のではなく、対極2にも被覆する、あるいは検知極集電
体のみ被覆する場合には、集電体と固体電解質体との接
触部を触媒層で完全に被覆せず集電体の一部を被覆せず
に残すことに特徴がある。FIGS. 3 and 5 show examples of a sensor configuration according to the present invention.
Shown in NO containing carbon monoxide gas as an interference gas below
The sensor according to the present invention for detecting NO gas will be described as an example. That is, in the sensor configuration of the present invention, in the planar type configuration, the catalyst layer 5 for selectively oxidizing the carbon monoxide gas, which is an interference gas, is not coated only on the detection electrode current collector 4 but also on the counter electrode 2. In the case of coating or only the sensing electrode current collector, the contact part between the current collector and the solid electrolyte body should not be completely covered with the catalyst layer and part of the current collector should be left uncovered. There are features.
【0011】いずれの方式においても考慮すべきこと
は、両極のNOガスおよび干渉ガスによる化学ポテンシャ
ル差(より厳密には、酸素イオン濃度差に関与する物質
の活量差)である。検知したいNOガスはなるべく酸化さ
れず、干渉ガスである一酸化炭素ガスを選択的に酸化
し、干渉性の少ない二酸化炭素に変える酸化触媒を担持
した触媒層を適宜使用して検知極を被覆し、一酸化炭素
ガスとの反応による起電力の発生を防止しようとするは
当然の手段といえる。What should be considered in any of the methods is a difference in chemical potential (more strictly, a difference in activity of a substance related to a difference in oxygen ion concentration) between the NO gas and the interference gas in both electrodes. The NO gas to be detected is not oxidized as much as possible, and the detection electrode is coated by using a catalyst layer carrying an oxidation catalyst that selectively oxidizes carbon monoxide gas, which is an interference gas, and converts it into carbon dioxide with low interference. It can be said that trying to prevent the generation of electromotive force due to the reaction with carbon monoxide gas is a natural measure.
【0012】しかしながら、検知極のみを図7に示すよ
うに被覆した場合には、対極における、一酸化炭素ガス
との反応による起電力差が生じるため、干渉を十分に排
除できないことが解った。特に、集電体として、金、白
金、およびその合金系を使用した場合は、影響が大き
く、また一酸化炭素ガスによる起電力の向きがNOガスの
場合と逆になるため、状況を悪化させる(図9)。However, it has been found that when only the detection electrode is coated as shown in FIG. 7, an electromotive force difference occurs due to the reaction with the carbon monoxide gas at the counter electrode, so that interference cannot be sufficiently eliminated. In particular, when gold, platinum, and alloys thereof are used as the current collector, the effect is large, and the direction of the electromotive force by the carbon monoxide gas is opposite to that of the NO gas, which worsens the situation. (FIG. 9).
【0013】この問題は、基本的には両極における一酸
化炭素ガスに起因する化学ポテンシャル差によるもので
あるならば、両極における一酸化炭素ガス濃度を等しく
することで、解決できる。This problem can be solved by making the concentration of carbon monoxide gas equal in both electrodes if it is basically caused by a chemical potential difference caused by carbon monoxide gas in both electrodes.
【0014】この観点から、本発明者等は、第一の手段
として、図3に示すように対極にも酸化触媒層を被覆し
て、両極表面での一酸化炭素ガス濃度をともにほぼゼロ
にすることで、一酸化炭素ガスに起因する起電力差を発
生させないことを試みた。From this point of view, as a first measure, the present inventors have proposed that the counter electrode is also coated with an oxidation catalyst layer as shown in FIG. By doing so, an attempt was made not to generate an electromotive force difference caused by the carbon monoxide gas.
【0015】第二の手段としては、図5に示すように検
知極の集電体として、対極と同じ材質を用いるか、一酸
化炭素ガスに対して同程度の活性を有する材料を用い、
その一部分を酸素イオン導電体に接触させるとともに、
この部分には酸化触媒層を被覆せず、露出させることを
採用した。この場合は、両極表面での一酸化炭素ガス濃
度はゼロにはならないが、同一濃度となるために一酸化
炭素ガスに起因する起電力は補償されて、両極間には起
電力差が生じない。本発明者等は、上述のいずれの手段
も実施例に述べるごとく、実際に有効であることを確認
した。As a second means, as shown in FIG. 5, as the current collector of the detection electrode, the same material as that of the counter electrode is used, or a material having a similar activity to carbon monoxide gas is used.
While contacting a part of it with the oxygen ion conductor,
It was adopted that this portion was not covered with the oxidation catalyst layer but was exposed. In this case, the concentration of carbon monoxide gas at the surfaces of the two electrodes does not become zero, but since the concentration is the same, the electromotive force caused by the carbon monoxide gas is compensated, and there is no difference between the two electrodes. . The present inventors have confirmed that any of the above-described means is actually effective as described in Examples.
【0016】本発明になるセンサ構成は、検知対象がNO
ガスで干渉ガスが一酸化炭素ガスに特定されるものでは
なく、他の還元性ガス(例えば一酸化炭素)を検知対象
ガスとし、同じく還元性の干渉ガス(NO、炭化水素系ガ
ス等)が問題となる場合にも適用可能であり、また、酸
化性ガス(例えばオゾン)が検知対象となる場合は、酸
化性ガスの干渉を還元触媒を使用して無害化する場合に
も適用可能であることは、上述の議論からあきらかであ
る。一方、イオン伝導体としては、プレーナー型センサ
であれば各種のイオン伝導体を用いて本発明の構成を採
用できることも明かである。In the sensor configuration according to the present invention, the detection target is NO.
Interference gas is not specified as carbon monoxide gas, but other reducing gas (for example, carbon monoxide) is used as the detection target gas. Similarly, reducing interfering gas (NO, hydrocarbon-based gas, etc.) The present invention is also applicable to a case where a problem occurs, and also applicable to a case where an oxidizing gas (for example, ozone) is to be detected, in which interference of the oxidizing gas is made harmless using a reduction catalyst. That is clear from the above discussion. On the other hand, it is also apparent that the configuration of the present invention can be adopted using various ion conductors as long as it is a planar sensor as the ion conductor.
【0017】触媒層は、基本的に干渉ガスを選択的に反
応させ無害化するものであればよく、特定の触媒に拘束
されるものではないが、検知対象ガスがNOの場合は、一
酸化炭素ガスを選択的に酸化するアルミナ担持白金触媒
が有効であった。触媒層は本センサの機能上からガス拡
散抵抗が十分小さいことが必要であるが、通常の多孔質
を形成する条件で得られる程度の通気性(気孔率で60
〜80%程度)で十分である。また、実用に際して、セ
ンサに自己加熱のためのヒーターを設けて、最適温度で
センサを作動させる等の手段を付加することを妨げるも
のではない。The catalyst layer is basically required to selectively react the interfering gas to render it harmless. The catalyst layer is not limited to a specific catalyst. An alumina-supported platinum catalyst that selectively oxidizes carbon gas was effective. The gas diffusion resistance of the catalyst layer is required to be sufficiently small from the viewpoint of the function of the present sensor.
8080%) is sufficient. Further, in practical use, it does not prevent adding a means such as providing a heater for self-heating in the sensor and operating the sensor at an optimum temperature.
【0018】本発明のセンサは、基準極が不要なプレー
ナー型ガスセンサにおいて、干渉ガスの影響を排除する
ための有効な手段を提供するものである。その構成は、
簡素で製造が容易であるばかりでなく、各種の検知対象
ガスに適用できるという汎用性がある。特に、検知対象
ガスがNOガスの場合には、最も問題である一酸化炭素ガ
スの干渉を排除するのに実際上有効である。The sensor of the present invention provides an effective means for eliminating the influence of an interference gas in a planar gas sensor which does not require a reference pole. Its composition is
Not only is it simple and easy to manufacture, but it is versatile in that it can be applied to various detection target gases. In particular, when the detection target gas is NO gas, it is practically effective to eliminate the most problematic interference of carbon monoxide gas.
【0019】以下に干渉ガスとしてCOが共存する場合の
NOガス検出について具体的に本発明を説明する。 (実施例1)図10に示したように、酸素イオン伝導体
イットリア安定化ジルコニア(YSZ)1上に対極集電
体としてPt極2を、検知極副電極3として酸化クロムを
使用し、Ptを用いた検知極集電体4を図5に示すように
設置し、両集電体にリード線6が接続されている。その
両集電体を図に示したように触媒層5で被覆した。触媒
層は、純アルミナ粉末単体に白金を5wt%担持した触媒
をアルミナゾルと混合し、両電極に塗布し650℃の温
度で焼成して形成した。このセンサを傍熱型ヒーターで
500℃に昇温させ、NOガスとCOガスに対するセンサ出
力を測定した結果を図12に示す。この結果からCOガス
の干渉がないことがわかる。In the following, the case where CO coexists as an interference gas
The present invention will be described specifically for NO gas detection. (Example 1) As shown in FIG. 10, a Pt electrode 2 was used as a counter electrode current collector and a chromium oxide was used as a detection electrode sub-electrode 3 on an oxygen ion conductor yttria-stabilized zirconia (YSZ) 1. 5 is installed as shown in FIG. 5, and lead wires 6 are connected to both current collectors. The two current collectors were covered with a catalyst layer 5 as shown in the figure. The catalyst layer was formed by mixing a catalyst in which 5 wt% of platinum was supported on pure alumina powder alone with alumina sol, applied to both electrodes, and fired at a temperature of 650 ° C. FIG. 12 shows the result of measuring the sensor output for NO gas and CO gas by raising the temperature of this sensor to 500 ° C. using an indirectly heated heater. This result indicates that there is no CO gas interference.
【0020】(実施例2)図13に示すごとく、触媒層
5を検知極集電体4の一部を残すように、検知極側のみ
に形成した。触媒層は実施例1と同じ材質、形成方法で
ある。図15に、実施例1と同様にNOガス、COガスに対
するセンサ出力を測定した結果を示す。この構成におい
ても、COガスの影響を排除できていることがわかる。Example 2 As shown in FIG. 13, the catalyst layer 5 was formed only on the detection electrode side so as to leave a part of the detection electrode current collector 4. The catalyst layer has the same material and the same forming method as in the first embodiment. FIG. 15 shows the results of measuring the sensor output for NO gas and CO gas as in Example 1. It can be seen that even in this configuration, the influence of the CO gas was eliminated.
【0021】[0021]
【発明の効果】本発明によるガスセンサは共存する干渉
ガスの影響を簡単な方法で排除して目的とするガスのみ
を効率よく検出できるとともに、検知集電体に使用する
検知極副電極材及び触媒層を適宜選択することにより干
渉ガスの影響を排除して各種ガスを対象とするガスセン
サにも適用できる。The gas sensor according to the present invention can efficiently detect only the target gas by eliminating the influence of coexisting interfering gas by a simple method, and also has a detection electrode sub-electrode material and a catalyst used for the detection current collector. By appropriately selecting the layer, the influence of the interference gas can be eliminated and the invention can be applied to a gas sensor for various gases.
【図1】従来のプレーナー型センサの概略を示した図で
ある。FIG. 1 is a diagram schematically illustrating a conventional planar sensor.
【図2】図1のプレーナー型センサの矢視A−Aよりみ
た断面図である。FIG. 2 is a cross-sectional view of the planar type sensor of FIG.
【図3】本発明によるセンサの一例の概略を示した図で
ある。FIG. 3 is a diagram schematically showing an example of a sensor according to the present invention.
【図4】図3のセンサの矢視A−Aよりみた断面図であ
る。FIG. 4 is a cross-sectional view of the sensor of FIG.
【図5】本発明によるセンサの別の例の概略を示した図
である。FIG. 5 schematically shows another example of a sensor according to the present invention.
【図6】図5のセンサの矢視A−Aよりみた断面図であ
る。6 is a cross-sectional view of the sensor of FIG. 5 as viewed from the direction of arrows AA.
【図7】検知極集電体のみを全面被覆したセンサの概略
を示した図である。FIG. 7 is a diagram schematically showing a sensor in which only a detection electrode current collector is entirely covered;
【図8】図7のセンサの矢視A−Aよりみた断面図であ
る。8 is a sectional view of the sensor of FIG.
【図9】図7に示したセンサのセンサ出力を示したグラ
フ図である。FIG. 9 is a graph showing a sensor output of the sensor shown in FIG. 7;
【図10】実施例1に示したセンサの概略図である。FIG. 10 is a schematic diagram of the sensor shown in the first embodiment.
【図11】図10の矢視A−Aよりみた断面図である。FIG. 11 is a cross-sectional view taken along line AA of FIG. 10;
【図12】実施例1のセンサ出力を示したグラフ図であ
る。FIG. 12 is a graph showing a sensor output of the first embodiment.
【図13】実施例2に示したセンサの概略図である。FIG. 13 is a schematic diagram of the sensor shown in the second embodiment.
【図14】図13の矢視A−Aよりみた断面図である。FIG. 14 is a sectional view taken along line AA of FIG. 13;
【図15】実施例2のセンサ出力を示したグラフ図であ
る。FIG. 15 is a graph showing a sensor output of the second embodiment.
1 イオン伝導体 2 対極 3 検知副電極 4 検知極集電体 5 触媒層 6 リード線 DESCRIPTION OF SYMBOLS 1 Ion conductor 2 Counter electrode 3 Detection sub-electrode 4 Detection electrode current collector 5 Catalyst layer 6 Lead wire
Claims (4)
は構成の異なる対極及び検知極よりなる一対の電極を設
け、当該両電極を同一雰囲気に曝して、両電極間に発生
する起電力によりガスを検知するセンサにおいて、干渉
ガスを選択的に酸化あるいは還元する触媒層で当該両電
極を各々完全に覆うか、あるいは検知極の一部に当該触
媒層を被覆したことを特徴とするガスセンサ素子。1. A pair of electrodes comprising a counter electrode and a detection electrode having different materials or configurations are provided in contact with a solid ion conductor, and both electrodes are exposed to the same atmosphere to generate an electromotive force generated between the electrodes. In a sensor for detecting gas, a gas sensor element characterized in that both of the electrodes are completely covered with a catalyst layer for selectively oxidizing or reducing an interference gas, or the catalyst layer is partially covered with the catalyst layer. .
あって、当該電極の少なくとも一方が、酸化物を含む構
成となっていることを特徴とする請求項1記載のガスセ
ンサ素子。2. The gas sensor element according to claim 1, wherein the ionic conductor is an oxygen ionic conductor, and at least one of the electrodes includes an oxide.
合金を含む構成であることを特徴とする請求項1又は2
記載のガスセンサ素子。3. The method according to claim 1, wherein the electrodes include platinum, gold, a platinum alloy, and a gold alloy.
The gas sensor element according to any one of the preceding claims.
属として含むもので、検知対象ガスがNOであることを特
徴とする請求項1乃至3のいずれか1項に記載のガスセ
ンサ素子。4. The gas sensor element according to claim 1, wherein the catalyst layer contains gold or platinum as a catalyst metal, and the detection target gas is NO.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7031822A JPH08201340A (en) | 1995-01-30 | 1995-01-30 | Gas sensor element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7031822A JPH08201340A (en) | 1995-01-30 | 1995-01-30 | Gas sensor element |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH08201340A true JPH08201340A (en) | 1996-08-09 |
Family
ID=12341786
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7031822A Pending JPH08201340A (en) | 1995-01-30 | 1995-01-30 | Gas sensor element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH08201340A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009511916A (en) * | 2005-10-14 | 2009-03-19 | アピーロン インコーポレイティド | Reduction of carbon monoxide interference in gas analyte detectors |
| CN104792846B (en) * | 2014-12-10 | 2017-10-03 | 中国第一汽车股份有限公司 | Available for NOXThe Multi-function protective cover and its coating production of sensor |
| US10591437B2 (en) * | 2017-03-06 | 2020-03-17 | Hyundai Motor Company | Solid electrolyte-type carbon dioxide sensor having reduced influence from volatile organic compounds |
-
1995
- 1995-01-30 JP JP7031822A patent/JPH08201340A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009511916A (en) * | 2005-10-14 | 2009-03-19 | アピーロン インコーポレイティド | Reduction of carbon monoxide interference in gas analyte detectors |
| CN104792846B (en) * | 2014-12-10 | 2017-10-03 | 中国第一汽车股份有限公司 | Available for NOXThe Multi-function protective cover and its coating production of sensor |
| US10591437B2 (en) * | 2017-03-06 | 2020-03-17 | Hyundai Motor Company | Solid electrolyte-type carbon dioxide sensor having reduced influence from volatile organic compounds |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100347643B1 (en) | Electrochemical Sensors for Determining Oxygen Concentrations in Gas Mixtures | |
| JP3090479B2 (en) | Gas sensor | |
| JP3524980B2 (en) | Nitrogen oxide sensor | |
| CA2214571C (en) | Nitrogen oxide detector | |
| JPS6156779B2 (en) | ||
| JPH0513260B2 (en) | ||
| JPH10510622A (en) | Method for measuring the gas concentration in a gas mixture and an electrochemical sensor for determining the gas concentration | |
| JP2003149199A (en) | Gas sensor | |
| JP2004271515A (en) | Gas sensor element, method of controlling and manufacturing method of same | |
| JP3775704B2 (en) | Solid electrolyte hydrogen sensor | |
| JP2002139468A (en) | Gas sensor | |
| JP2002243692A (en) | Nitrogen oxide gas sensor | |
| JPH08201340A (en) | Gas sensor element | |
| JP2006133039A (en) | Nitrogen oxide sensor | |
| JP2004258033A (en) | Sensor element for gas sensor | |
| JP3696494B2 (en) | Nitrogen oxide sensor | |
| JPH11352096A (en) | Gas sensor element | |
| JPH0980014A (en) | Nitrogen oxide sensor | |
| JP3541968B2 (en) | Hydrogen sulfide gas sensor | |
| JP2002005883A (en) | Nitrogen oxide gas sensor | |
| JP3371358B2 (en) | Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method | |
| JP7499736B2 (en) | Gas detection equipment | |
| JP4213939B2 (en) | Gas detector | |
| JP3850518B2 (en) | Nitrogen oxide sensor | |
| US20050214170A1 (en) | Gas sensor and process for producing a gas sensor |