[go: up one dir, main page]

JPH08201696A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH08201696A
JPH08201696A JP3166295A JP3166295A JPH08201696A JP H08201696 A JPH08201696 A JP H08201696A JP 3166295 A JP3166295 A JP 3166295A JP 3166295 A JP3166295 A JP 3166295A JP H08201696 A JPH08201696 A JP H08201696A
Authority
JP
Japan
Prior art keywords
group
lens
refractive power
positive
aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3166295A
Other languages
Japanese (ja)
Inventor
Chiaki Terasawa
千明 寺沢
Atsushi Hosoya
淳 細矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3166295A priority Critical patent/JPH08201696A/en
Publication of JPH08201696A publication Critical patent/JPH08201696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

(57)【要約】 【目的】 4群ズームレンズにおいて第1群中の複数の
レンズ群をフローティングさせてフォーカスを行い高い
光学性能を有したズームレンズを得ること。 【構成】 物体側より順に正の屈折力の第1群、変倍用
の負の屈折力の第2群、変倍に伴なう像面変動を補正す
る正又は負の屈折力の第3群、そして変倍中固定の結像
作用を有する第4群とを有したズームレンズにおいて、
該第1群は負の屈折力の第A群、正の屈折力の第B1
群、そして正の屈折力の第B2群の3つのレンズ群を有
し、無限遠物体から近距離物体へのフォーカスの際に該
第A群を移動させると共に該第B1群と第B2群とを異
なる移動量で物体側へ移動させて行ったこと。
(57) [Summary] [Objective] To obtain a zoom lens having high optical performance by floating a plurality of lens units in the first lens unit in a four-unit zoom lens to perform focusing. A first lens unit having a positive refractive power, a second lens unit having a negative refractive power for zooming, and a third lens unit having a positive or negative refractive power for correcting an image plane variation due to zooming in order from the object side. A zoom lens having a group, and a fourth group having a fixed image forming action during zooming,
The first group is the negative refractive power group A, and the positive refractive power group B1.
Group, and three lens groups of a positive refractive power group B2, which moves the group A when focusing from an infinitely distant object to a short-distance object, and at the same time the group B1 and the group B2. Was moved to the object side with different movement amounts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はテレビカメラ、ビデオカ
メラ、写真用カメラ等に好適なズームレンズに関し、特
に物体側の第1群を構成する複数のレンズ群の移動量を
各々異ならしめてフォーカスを行う、所謂フローティン
グを用いた至近物体距離の短い広角端のFナンバー1.
75、ズーム比が14倍以上の大口径、高変倍比のズー
ムレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a television camera, a video camera, a camera for photography, etc. F-number at the wide-angle end with a short object distance using so-called floating.
75, a zoom lens having a large aperture ratio of 14 times or more and a high zoom ratio.

【0002】[0002]

【従来の技術】従来よりテレビカメラ等のズームレンズ
にはテレビカメラの小型化に伴い、レンズ系全体が小型
で、しかも大口径比、高変倍比のものが要望されてい
る。
2. Description of the Related Art Conventionally, with the miniaturization of television cameras, zoom lenses for television cameras and the like have been required to have a compact overall lens system with a large aperture ratio and a high zoom ratio.

【0003】ズームレンズとして変倍レンズ群より物体
側に位置するレンズ群によりフォーカシング(合焦)を
行う方式では、ズーミング(変倍)とフォーカシングが
独立に行える為、移動の為の機構を簡略化でき、ズーミ
ングによるピント移動が生じず、一定の物体距離に対し
てはズーム位置に依らず一定の繰り出し量でフォーカシ
ングを行えるという特長を有している。
In a system in which focusing (focusing) is performed by a lens unit located closer to the object side than a variable power lens unit as a zoom lens, zooming (variable power) and focusing can be performed independently, so that a mechanism for movement is simplified. The advantage of this is that focusing does not occur due to zooming, and focusing can be performed with a constant amount of extension for a constant object distance regardless of the zoom position.

【0004】このようなズームレンズのうち物体側から
順に合焦用の正の屈折力の第1群(合焦レンズ群)、変
倍用の負の屈折力の第2群(変倍レンズ群)、変倍に伴
って変動する像面を補正する為の正又は負の屈折力の第
3群(補正レンズ群)、開口絞り、そして結像用の正の
屈折力の第4群(リレーレンズ群)の4つのレンズ群よ
り成る所謂4群ズームレンズにおいて、第1群中の一部
のレンズ群を移動させてフォーカスを行なう、所謂イン
ナーフォーカス式を採用したものが、例えば特公昭59
−4686号公報で提案されている。
Among such zoom lenses, a first group (focusing lens group) having a positive refractive power for focusing and a second group (magnifying lens group having a negative refractive power for zooming) are arranged in order from the object side. ), A third group (correction lens group) having a positive or negative refractive power for correcting an image surface that varies with zooming, an aperture stop, and a fourth group (relay) having a positive refractive power for image formation. In a so-called four-group zoom lens composed of four lens groups (lens groups), a so-called inner focus type in which a part of the lens groups in the first group is moved for focusing is disclosed in, for example, Japanese Patent Publication No. Sho 59.
It is proposed in Japanese Patent No. 4686.

【0005】同公報では第1群を負の屈折力の第11
群、正の屈折力の第12群そして正の屈折力の第13群
の3つのレンズ群より構成し、無限遠物体から至近距離
物体にかけてのフォーカスを第12群を像面側へ移動さ
せて行なっている。
In the same publication, the first group is referred to as an eleventh lens having a negative refractive power.
Group consisting of three lens groups, a positive refractive power twelfth lens group and a positive refractive power thirteenth lens group, and moving the twelfth lens group toward the image plane side for focusing from an object at infinity to an object at a close range. I am doing it.

【0006】又、特開昭52−109952号公報,特
開昭55−57815号公報,特開昭55−11711
9号公報,特公昭61−53696号公報,特公昭52
−41068号公報等では、4群ズームレンズにおいて
第1群を複数のレンズ群に分割し、そのうち最も物体側
のレンズ群をフォーカシング時に固定とし、それより後
方の像面側のレンズ群の一部をフォーカシング時に移動
させるインナーフォーカシングとしている。
Further, JP-A-52-109952, JP-A-55-57815 and JP-A-55-11711.
9, Japanese Patent Publication No. 61-53696, Japanese Patent Publication No. 52
In the -41068 publication, etc., in a 4-group zoom lens, the first group is divided into a plurality of lens groups, and the lens group closest to the object side is fixed during focusing, and a part of the lens group on the image plane side behind that is fixed. Is the inner focusing that moves during focusing.

【0007】又、特開昭52−128153号公報では
第1群を2つのレンズ群に分割し、その2つのレンズ群
の間隔を無限遠物体から有限距離物体へのフォーカシン
グに際し、大きくなるように移動させフォーカシングを
行っている。
Further, in Japanese Unexamined Patent Publication No. 52-128153, the first lens unit is divided into two lens units, and the distance between the two lens units is increased when focusing from an object at infinity to an object at a finite distance. We are moving and focusing.

【0008】一般にインナーフォーカス式のズームレン
ズは第1群全体を移動させてフォーカスを行なうズーム
レンズに比べて第1群の有効径が小さくなり、レンズ系
全体の小型化が容易となり、又近接撮影、特に極近接撮
影が容易となり、更に比較的小型軽量のレンズ群を移動
させて行なっているのでレンズ群の駆動力が小さくてす
み、迅速な焦点合わせができる等の特長を有している。
Generally, in an inner focus type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens in which the entire first lens group is moved to perform focusing, which facilitates downsizing of the entire lens system and close-up photography. In particular, it is easy to perform extremely close-up photography, and since the relatively small and lightweight lens group is moved to perform the operation, the driving force of the lens group is small and quick focusing can be performed.

【0009】[0009]

【発明が解決しようとする課題】ズームレンズにおいて
大口径比(例えばFナンバー1.75〜3.3)、高変
倍比(例えば変倍比14以上)程度で、しかも全変倍範
囲及び全フォーカス範囲にわたり高い光学性能を得るに
各レンズ群の屈折力(パワー)やレンズ構成、そして色
消分担等を適切に設定する必要がある。
The zoom lens has a large aperture ratio (for example, an F number of 1.75 to 3.3), a high zoom ratio (for example, a zoom ratio of 14 or more), and the entire zoom range and total zoom ratio. In order to obtain high optical performance over the focus range, it is necessary to appropriately set the refractive power (power) of each lens group, the lens configuration, and the achromatic share.

【0010】一般に全変倍範囲及び全フォーカス範囲に
わたり収差変動が少なく高い光学性能を得るには、例え
ば各レンズ群のパワーを小さくして各レンズ群で発生す
る収差量を小さくするか、各レンズ群のレンズ枚数を増
加させて収差補正上の自由度を増やすことが必要となっ
てくる。この為、大口径比で高変倍比のズームレンズを
達成しようとすると、どうしても各レンズ群間の空気間
隔が大きくなったり、レンズ枚数が増加するなどして、
レンズ系全体が重厚長大化してくるという問題点が生じ
てくる。
Generally, in order to obtain high optical performance with little aberration variation over the entire zoom range and the entire focus range, for example, the power of each lens group is reduced to reduce the aberration amount generated in each lens group, or each lens group is reduced. It becomes necessary to increase the degree of freedom in aberration correction by increasing the number of lenses in the group. Therefore, when trying to achieve a zoom lens with a large aperture ratio and a high zoom ratio, the air gap between the lens groups will inevitably increase, the number of lenses will increase, and so on.
There is a problem that the entire lens system becomes heavy and large.

【0011】又、最近の放送用ズームレンズにおいて
は、より広角化、より高変倍比化が望まれており、更に
近距離性能の向上やM.O.D(最短撮影距離)の短縮
が、仕様上、映像効果上、重要な要素の1つとなりつつ
ある。
In recent broadcast zoom lenses, there is a demand for wider angles and higher zoom ratios, and further improvements in short-distance performance and M.D. O. Shortening the D (shortest shooting distance) is becoming an important factor in terms of specifications and image effects.

【0012】しかしながら、放送用ズームレンズにおい
てはフォーカシングによる諸収差の変動、特に球面収
差、軸上色収差、非点収差等の変動が顕著で光学性能を
良好に維持するのが大変難しかった。このときの収差変
動は、一般に焦点距離が大きい程、Fナンバーが小さく
大口径比な程、そしてM.O.Dが短い程、大きくなる
傾向があった。
However, in the zoom lens for broadcasting, variations in various aberrations due to focusing, particularly variations in spherical aberration, axial chromatic aberration, astigmatism, etc. are remarkable, and it is very difficult to maintain good optical performance. The aberration variation at this time is generally as the focal length becomes larger, the F number becomes smaller, and the aperture ratio becomes larger. O. The shorter D was, the larger the tendency was.

【0013】前述のフォーカシング方式についていえ
ば、特開昭52−109952号公報,特開昭55−5
7815号公報,特開昭55−117119号公報のズ
ームレンズでは収差補正上、第1群の構成レンズ枚数が
多い為、レンズ全系が大型化,複雑化し、重量も重くな
ってしまう。
Regarding the focusing method described above, Japanese Patent Laid-Open Nos. 52-109952 and 55-5 are available.
In the zoom lenses of Japanese Patent No. 7815 and Japanese Patent Laid-Open No. 55-117119, the number of constituent lenses of the first lens group is large in terms of aberration correction, so that the entire lens system becomes large, complicated, and heavy.

【0014】特公昭61−53696号公報のズームレ
ンズでは、第1群は比較的簡易な構成となっているが、
無限遠フォーカス時の第1群と変倍レンズ群との空気間
隔が大きく開いており、更に近距離フォーカス時に負の
屈折力のフォーカス群が像面側へ移動する為、広角側で
の軸外光線の高さが第1群にて高くなり、レンズ系が大
型化してしまう。
In the zoom lens disclosed in Japanese Patent Publication No. 61-53696, the first lens group has a relatively simple structure.
The air gap between the first lens group and the zoom lens group at the time of focusing at infinity is wide, and the focus lens group having negative refractive power moves toward the image plane side at the time of focusing at a close distance, so that it is off-axis on the wide angle side. The height of the light beam becomes high in the first group, and the lens system becomes large.

【0015】第1群の繰り出し方式のズームレンズで
は、第1群は比較的簡易な構成にでき小型化に適する
が、特にフォーカシングによる球面収差、軸上色収差の
変動が大きくなってくる。例えば、近距離フォーカスに
なるにつれて球面収差はアンダーへ倒れ、軸上色収差も
アンダーとなる。
In the first-group extension type zoom lens, the first group has a relatively simple structure and is suitable for downsizing, but in particular, fluctuations in spherical aberration and axial chromatic aberration due to focusing become large. For example, as the focus becomes closer, spherical aberration falls to under, and axial chromatic aberration also becomes under.

【0016】以下にこのときの収差変動のメカニズムに
ついて説明する。図18は第1群を負の屈折力の第11
群(凹群)L11と正の屈折力の第12群(凸群)L1
2で構成したときの薄肉近軸系の説明図である。図19
は4群ズームレンズにおける代表的な第1群L1のレン
ズ断面図である。
The mechanism of aberration variation at this time will be described below. FIG. 18 shows that the first lens group has a negative refractive power of 11th.
Group (concave group) L11 and 12th group (convex group) L1 having positive refractive power
It is explanatory drawing of the thin-walled paraxial system when it comprised by 2. FIG.
FIG. 6 is a lens cross-sectional view of a representative first group L1 in a 4-group zoom lens.

【0017】図18において、実線が無限遠物体フォー
カス時の位置、点線がM.O.D時の位置である。実線
で示す無限遠フォーカス時の近軸光線の第11群と第1
2群への入射高を各々ha,hb、第11群と第12群
間の傾角をα、点線で示すM.O.D時の近軸光線の第
1群と第2群への入射高を各々ha′,hb′、第11
群と第12群間の傾角をα′とするとα′<αであるか
ら、 hb−ha<hb′−ha′ である。
In FIG. 18, the solid line indicates the position when the object at infinity is in focus, and the dotted line indicates the M.I. O. This is the position at D. The 11th group and the 1st group of paraxial rays at infinity focus shown by the solid line
The incident heights to the second group are ha and hb, the tilt angles between the 11th and 12th groups are α, and M. O. The incident heights of paraxial rays on the first and second groups at D are ha ′, hb ′, and 11th, respectively.
If the tilt angle between the group and the twelfth group is α ', then α'<α, and therefore hb-ha <hb'-ha '.

【0018】ここで3次収差理論では軸上色収差の3次
収差係数Lは近軸光線高hの2乗に比例し、球面収差の
3次収差係数Iは近軸光線高hの4乗に比例する。この
フォーカス方式では無限遠物体時よりM.O.D時の方
が係数Lはプラス方向に大きくなる為、軸上色収差はア
ンダーへ、係数Iも同様にプラス方向に大きくなる為、
球面収差もアンダーへ変動する。
In the third-order aberration theory, the third-order aberration coefficient L of axial chromatic aberration is proportional to the square of the paraxial ray height h, and the third-order aberration coefficient I of spherical aberration is the fourth axis of the paraxial ray height h. Proportional. In this focusing method, the M.D. O. At the time of D, the coefficient L becomes larger in the plus direction, so the axial chromatic aberration becomes under, and the coefficient I also becomes larger in the plus direction.
Spherical aberration also changes to under.

【0019】特公昭52−41068号公報のズームレ
ンズでは、図21に示すように第1群を2つのレンズ群
に分割し、そのうち物体側の第11群L11に略ノーパ
ワーの弱い負の屈折力を持たせフォーカシングに際し固
定とし、像面側の正の屈折力の第12群L12を移動さ
せることによりフォーカシングを行なっている。これを
第11群と第12群の薄肉近軸系とし図20に示す。図
20に示すように第12群については、その主点の移動
として示している。
In the zoom lens of Japanese Examined Patent Publication No. 52-41068, as shown in FIG. 21, the first group is divided into two lens groups, of which the eleventh group L11 on the object side has a weak negative refractive power of substantially no power. And is fixed during focusing, and focusing is performed by moving the twelfth lens unit L12 having a positive refractive power on the image side. This is shown in FIG. 20 as a thin-walled paraxial system of the 11th group and the 12th group. As shown in FIG. 20, the twelfth group is shown as the movement of its principal point.

【0020】実線が無限遠物体のフォーカス時の近軸光
線で、このときの第11群,第12群への入射高を各々
hf,hm、点線で示すM.O.D時の近軸光線の第1
1群と第12群への入射高を各々hf′,hm′とすれ
ば図18(第1群繰り出し方式)と比較して、 hb −ha <hm −hf hb′−ha′≒hm′−hf′ である。
The solid lines are paraxial rays when an object at infinity is focused, and the incident heights on the 11th group and the 12th group at this time are hf and hm, respectively. O. First paraxial ray at D
Assuming that the incident heights on the first group and the twelfth group are hf 'and hm' respectively, hb-ha <hm-hf hb'-ha'.apprxeq.hm'-compared with FIG. 18 (first group feeding method). hf '.

【0021】従って同公報のズームレンズによれば、第
1群の繰り出し方式に比べて、無限遠時からM.O.D
時までの3次の球面収差係数I及び軸上色収差係数Lの
変化量を小さくすることが可能となる。よって第1群の
繰り出し方式よりも、フォーカシングによる球面収差、
軸上色収差の変動を減少させることができる。しかしな
がら依然として、その変動量は満足できるものではな
く、更なる改善が望まれている。
Therefore, according to the zoom lens of the above publication, compared with the first group moving-out method, the M.M. O. D
It is possible to reduce the amount of change in the third-order spherical aberration coefficient I and the axial chromatic aberration coefficient L until time. Therefore, spherical aberration due to focusing,
It is possible to reduce the fluctuation of the axial chromatic aberration. However, the variation is still unsatisfactory, and further improvement is desired.

【0022】特開昭52−128153号公報のズーム
レンズでは、第1群を2つのレンズ群に分割し、その双
方をフォーカシング時に移動させ、その2つのレンズ群
の間隔を近距離フォーカスになるに従い大きくすること
により主に周辺性能を改善している。しかし、実施例に
よると近距離フォーカス時に球面収差もアンダーに倒れ
ており、中心性能は逆に悪化している。
In the zoom lens disclosed in Japanese Unexamined Patent Publication No. 52-128153, the first lens unit is divided into two lens units, both of which are moved during focusing, and the distance between the two lens units becomes shorter as the focus becomes closer. By increasing the size, the peripheral performance is mainly improved. However, according to the example, the spherical aberration is also under-corrected at the time of focusing at a short distance, and the central performance is deteriorated.

【0023】本発明は4群ズームレンズを構成するフォ
ーカス用の第1群を3つのレンズ群より構成し、各々の
レンズ群を光軸上、異なって移動させてフォーカスを行
なうフローティング方式を採用しつつ、大口径化及び高
変倍化を図る際、各レンズ群のレンズ構成を適切に設定
することにより、変倍及びフォーカシングに伴う球面収
差、色収差等の諸収差の変動を減少させ、全変倍範囲及
び全フォーカス範囲にわたり高い光学性能を有した広角
端のFナンバー1.75程度、変倍比14以上の大口径
比かつ高変倍比のズームレンズの提供を目的とする。
The present invention adopts a floating system in which the first group for focusing which constitutes the four-group zoom lens is composed of three lens groups, and each lens group is moved differently on the optical axis for focusing. However, when increasing the aperture and increasing the zoom ratio, by appropriately setting the lens configuration of each lens group, it is possible to reduce the fluctuations of various aberrations such as spherical aberration and chromatic aberration due to zooming and focusing, and to achieve total zoom. An object of the present invention is to provide a zoom lens having a wide-angle end F number of about 1.75, a large aperture ratio of 14 or more and a high zoom ratio, which has high optical performance over the zoom range and the entire focus range.

【0024】[0024]

【課題を解決する為の手段】本発明のズームレンズは、
物体側より順に正の屈折力の第1群、変倍用の負の屈折
力の第2群、変倍に伴なう像面変動を補正する正又は負
の屈折力の第3群、そして変倍中固定の結像作用を有す
る第4群とを有したズームレンズにおいて、該第1群は
負の屈折力の第A群、正の屈折力の第B1群、そして正
の屈折力の第B2群の3つのレンズ群を有し、無限遠物
体から近距離物体へのフォーカスの際に該第A群を移動
させると共に該第B1群と第B2群とを異なる移動量で
物体側へ移動させて行ったことを特徴としている。
The zoom lens of the present invention comprises:
From the object side, a first group having a positive refractive power, a second group having a negative refractive power for zooming, a third group having a positive or negative refractive power that corrects an image plane variation due to zooming, and In a zoom lens having a fourth group having a fixed image forming action during zooming, the first group includes a negative refractive power group A, a positive refractive power group B1, and a positive refractive power group B1. It has three lens groups of the B2 group, and moves the A group at the time of focusing from an object at infinity to a short-distance object, and moves the B1 group and the B2 group to the object side with different movement amounts. It is characterized by having been moved.

【0025】その他本発明では、前記第B1群と第B2
群の移動量を各々MB1,MB2としたとき、 MB2/MB1<1 ‥‥‥(1) なる条件を満足することや、前記第A群と第B1群の無
限遠物体のフォーカス位置から至近物体のフォーカス位
置までの距離を像面側に測ったときを正とし、Δd,Δ
Xとしたとき、 −1.1<Δd/ΔX<0.105 ‥‥‥(2) なる条件を満足することや、望遠端における全系の屈折
力とFナンバーを各々φT,FNT、該第1群の屈折力
とFナンバーを各々φ1,FN1としたとき、 1.05<FN1 ‥‥‥(3) 但し、 FN1=(φT/φ1)×FNT なる条件を満足すること、等を特徴としている。
Others In the present invention, the above-mentioned B1 group and B2 group
When the moving amounts of the groups are MB1 and MB2, respectively, the following condition is satisfied: MB2 / MB1 <1 (1), and the infinite distance object from the focus position of the infinitely distant objects of the A group and the B1 group. When the distance to the focus position of is measured on the image plane side is positive, Δd, Δ
When X, the condition of -1.1 <Δd / ΔX <0.105 (2) is satisfied, and the refractive power and F number of the entire system at the telephoto end are φT, FNT, and Assuming that the refractive power and F number of the first group are φ1 and FN1, respectively, 1.05 <FN1 (3) However, FN1 = (φT / φ1) × FNT There is.

【0026】[0026]

【実施例】図1,図2,図3,図4は各々本発明の数値
実施例1,2,3,4のあるズーム位置におけるレンズ
断面図である。図17は本発明のズームレンズの第1群
の近軸屈折力配置の説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2, 3 and 4 are lens sectional views at certain zoom positions according to Numerical Embodiments 1, 2, 3 and 4 of the present invention. FIG. 17 is an explanatory diagram of the paraxial refractive power arrangement of the first group of the zoom lens of the present invention.

【0027】図中、L1は第1群としての正の屈折力の
フォーカス群(前玉レンズ群)であり、負の屈折力のフ
ォーカス用の第A群LAと正の屈折力のフォーカス用の
第B1群LB1、そして正の屈折力のフォーカス用の第
B2群LB2とを有している。無限遠物体から至近距離
物体へのフォーカスは第A群LAを光軸上移動させると
共に第B1群LB1と第B2群LB2を各々独立に異な
った量だけ物体側へ移動させて行なっている。
In the figure, L1 is a positive refractive power focusing group (front lens group) as the first lens group, which has a negative refractive power focusing group A LA and a positive refractive power focusing group LA. It has a first lens group LB1 and a second lens group LB2 for focusing with a positive refractive power. Focusing from an object at infinity to an object at a close range is performed by moving the A-th group LA on the optical axis and independently moving the B1-th group LB1 and the B2-th group LB2 by different amounts to the object side.

【0028】L2は第2群としての変倍用の負の屈折力
のバリエータであり、光軸上像面側へ単調に移動させる
ことにより、広角端(ワイド)から望遠端(テレ)への
変倍を行なっている。第2群L2は変倍の際に結像倍率
が等倍(−1倍)を含む領域内で変化させている。
L2 is a variator of negative refracting power for zooming as the second lens unit, which is monotonically moved to the image plane side on the optical axis to move from the wide-angle end (wide) to the telephoto end (tele). We are changing the magnification. In the second group L2, the image-forming magnification is changed within a region including the same magnification (−1 ×) when the magnification is changed.

【0029】L3は第3群としての正又は負の屈折力の
コンペンセータであり、変倍に伴う像面変動を補正して
おり負の屈折力の場合は物体側に凸状の軌跡を有して移
動する。正の屈折力の場合は物体側へ単調に移動する。
SPは絞り、L4は第4群としての正の屈折力のリレー
群である。Pは色分解プリズムや光学フィルター等であ
り、同図ではガラスブロックとして示している。
L3 is a compensator for positive or negative refracting power as the third lens unit, which corrects the image plane variation due to zooming, and has a convex locus on the object side in the case of negative refracting power. To move. In the case of positive refracting power, it moves monotonically to the object side.
SP is a stop, and L4 is a relay group having a positive refractive power as the fourth group. P is a color separation prism, an optical filter, or the like, and is shown as a glass block in FIG.

【0030】一般に4群ズームレンズにおいて最も物体
側の第1群全体で焦点合わせを行なう、所謂前玉フォー
カス方式は各焦点距離において同一物体距離に対しては
第1群の繰り出し量が一定となる為、レンズ鏡筒構造が
簡単になるという特長がある。
Generally, in the so-called front lens focus system, in which focusing is performed on the entire first group closest to the object in the four-group zoom lens, the amount of extension of the first group is constant for the same object distance at each focal length. Therefore, it has a feature that the lens barrel structure is simple.

【0031】しかしながら、望遠端において物体距離の
変化があると光学性能、特に球面収差と軸上色収差の変
動が大きくなり、M.O.Dを短くすることが難しくな
ると共に良好なる画像を得るのが難しくなってくる。
However, if there is a change in the object distance at the telephoto end, the optical performance, in particular the spherical aberration and the axial chromatic aberration, will fluctuate greatly. O. It becomes difficult to shorten D and it becomes difficult to obtain a good image.

【0032】そこで本発明においては前述の構成を有し
たズームレンズにおいて、無限遠物体から至近距離物体
への焦点合わせを第A群LAを光軸上移動させると共に
第B1群LB1と第B2群LB2を物体側へ各々異なっ
た量だけ移動させて行なうフローティングフォーカス方
式を採用し、良好なる光学性能を得ている。
Therefore, in the present invention, in the zoom lens having the above-described structure, focusing is performed from the object at infinity to the object at the closest distance by moving the A lens unit LA on the optical axis and the B1 lens unit LB1 and the B2 lens unit LB2. We adopted a floating focus method by moving the lens to the object side by different amounts, and obtained good optical performance.

【0033】即ち本発明では物体距離が変化して合焦す
る際に移動するレンズ群内のある任意の空気間隔を、繰
り出しに応じて拡大或いは縮小するフローティングを利
用することにより、光線の通過する角度や高さを変化さ
せて収差変動を良好に補正している。
That is, in the present invention, light rays pass by using a floating that expands or contracts an arbitrary air space in the lens group that moves when the object distance changes and the object is focused. Aberration variation is corrected well by changing the angle and height.

【0034】特に無限遠物体から近距離物体へのフォー
カスの際に、該第B1群と第B2群の移動量を各々MB
1,MB2、無限遠物体からM.O.Dへのフォーカス
の際の該第A群と第B1群の移動距離を各々Δd,Δ
X、望遠端における全系の屈折力とFナンバーを各々φ
T、FNT、該第1群の屈折力とFナンバーを各々φ
1,FN1としたとき、前述の条件式(1),(2),
(3)を満足するように各要素を設定し、これにより全
フォーカス範囲にわたり収差変動を少なくして高い光学
性能を得ている。
In particular, when focusing from an object at infinity to a near object, the moving amounts of the B1 group and the B2 group are respectively set to MB.
1, MB2, M. O. The moving distances of the group A and the group B1 when focusing on D are Δd and Δ, respectively.
The refractive power and F number of the entire system at X and the telephoto end are respectively φ
T, FNT, the refracting power and F number of the first group are φ
1, FN1, the above conditional expressions (1), (2),
Each element is set so as to satisfy the condition (3), whereby variation in aberration is reduced over the entire focus range and high optical performance is obtained.

【0035】次に本発明のズームレンズにおいて、第1
群L1の第A群LAと第B1群LB1と第B2群LB2
とを用いてフォーカスを行なうときの光学的作用につい
て図17を用いて説明する。
Next, in the zoom lens of the present invention,
A group LA of the group L1, a B1 group LB1 and a B2 group LB2
The optical action when focusing is performed using and will be described with reference to FIG.

【0036】第1群L1は物体側から順にフォーカスの
際に移動する第A群LA、フォーカスの際に移動する第
B1群LB1、フォーカスの際に移動する第B2群LB
2を配置している。無限遠物体時の近軸光線を実線で示
し、このときの第A群と第B1群と第B2群の光軸上の
位置をa,b1,b2、b1とb2の間隔をt、各々の
近軸光線高をHa,Hb1,Hb2として示している。
The first lens unit L1 is, in order from the object side, the A lens unit LA that moves during focusing, the B lens unit LB1 that moves during focusing, and the B lens unit LB that moves during focusing.
2 are arranged. The paraxial ray at an object at infinity is shown by a solid line, and the positions on the optical axis of the A group, the B1 group, and the B2 group at this time are a, b1, b2, and the intervals between b1 and b2 are t, respectively. The paraxial ray heights are shown as Ha, Hb1, and Hb2.

【0037】一方、ある有限距離物体時の近軸光線を点
線で示し、このときの第A群と第B1群と第B2群の光
軸上の位置をa′,b1′,b2′、b1′とb2′の
間隔をT(t<Tのとき)、各々の近軸光線高をH
a′,Hb1′,Hb2′として示している。
On the other hand, the paraxial ray at a certain finite distance object is shown by the dotted line, and the positions on the optical axis of the A group, the B1 group and the B2 group at this time are a ', b1', b2 ', b1. ′ And b2 ′ is T (when t <T), and each paraxial ray height is H
It is shown as a ', Hb1', Hb2 '.

【0038】同じ有限距離物体に対して第A群を固定と
し、無限遠物体時と等しい位置関係に配置した第B1群
と第B2群間の間隔tを保ったとき(t=Tの時)の光
軸上の位置は、第B1群については位置b1′より像面
側で位置b1″、第B2群については位置b2′より物
体側で位置b2″となり、今各々の位置での近軸光線高
をHa″,Hb1″,Hb2″とする。
When the group A is fixed with respect to the same finite distance object and the distance t between the groups B1 and B2 arranged in the same positional relationship as that of the object at infinity is maintained (when t = T). The position on the optical axis of the second optical axis is a position b1 ″ on the image plane side from the position b1 ′ for the B1th group, and a position b2 ″ on the object side from the position b2 ′ for the B2th group. The ray heights are Ha ″, Hb1 ″, and Hb2 ″.

【0039】本発明では無限遠物体時の第A群と第B1
群との間隔を離すことで、Hb1−Haと、有限距離物
体時の例えばHb1′−Ha′との差を小さくして、ま
ず球面収差と軸上色収差の変動をある程度減少させてい
る。
In the present invention, the A-th group and the B1-th group at the time of an object at infinity
By separating the distance from the group, the difference between Hb1-Ha and, for example, Hb1'-Ha 'when the object is at a finite distance is reduced, and fluctuations in spherical aberration and axial chromatic aberration are reduced to some extent.

【0040】次にt<Tの時と、t=Tの時について第
B1群,第B2群の近軸光線高の変化に着目すると、 Hb1′ > Hb1″ Hb2′ < Hb2″ である。
Next, focusing on changes in paraxial ray heights of the B1 and B2 groups when t <T and when t = T, Hb1 ′> Hb1 ″ Hb2 ′ <Hb2 ″.

【0041】従って、前述したように球面収差と軸上色
収差の3次収差係数の変化は、t<Tの時の方がt=T
の時より第B1群と第B2群は、 (イ)第B1群:球面収差の3次収差係数Iはプラス方
向へ、軸上色収差の3次収差係数Lもプラス方向へ変化
するので、球面収差はアンダーへ、軸上色収差もアンダ
ーへ変化する。
Therefore, as described above, the change of the third-order aberration coefficient of spherical aberration and axial chromatic aberration is t = T when t <T.
From the time of, the B1 group and the B2 group are (a) B1 group: the third-order aberration coefficient I of spherical aberration changes in the positive direction, and the third-order aberration coefficient L of axial chromatic aberration also changes in the positive direction. Aberration changes to under and axial chromatic aberration also changes to under.

【0042】(ロ)第B2群:球面収差の3次収差係数
Iはマイナス方向へ、軸上色収差の3次収差係数Lもマ
イナス方向へ変化するので、球面収差はオーバーへ、軸
上色収差もオーバーへ変化する。 という作用が生じる。
(B) Group B2: The third-order aberration coefficient I of the spherical aberration changes in the negative direction, and the third-order aberration coefficient L of the axial chromatic aberration also changes in the negative direction. Change to over. The action occurs.

【0043】更に第A群LAの近軸光線高の変化に着目
すると第A群LAを像面側へ移動させたときと物体側へ
移動させたときでは、 (ハ)像面側へ移動;Ha′が大きくなる為、球面収差
の3次収差係数Iはマイナス方向へ、軸上色収差の3次
収差係数Lもマイナス方向へ変化し、球面収差はオーバ
ーへ、軸上色収差もオーバーへ変化する。
Further, paying attention to the change in paraxial ray height of the A-th group LA, when the A-th group LA is moved to the image plane side and moved to the object side, (c) movement to the image plane side; Since Ha 'becomes large, the third-order aberration coefficient I of spherical aberration changes in the negative direction, the third-order aberration coefficient L of axial chromatic aberration also changes in the negative direction, spherical aberration changes to over, and axial chromatic aberration changes to over. .

【0044】(ニ)物体側へ移動;Ha′が小さくなる
為、球面収差の3次収差係数Iはプラス方向へ、軸上色
収差の3次収差係数Lもプラス方向へ変化し、球面収差
はアンダーへ、軸上色収差もアンダーへ変化する。 という作用が生じる。
(D) Moving to the object side: Since Ha 'becomes smaller, the third-order aberration coefficient I of spherical aberration changes in the positive direction, and the third-order aberration coefficient L of axial chromatic aberration also changes in the positive direction, and the spherical aberration Under, the axial chromatic aberration also changes to under. The action occurs.

【0045】本発明では上記第A群と第B1群と第B2
群という3つのレンズ群の移動による収差変化を巧みに
利用し、フォーカシングによる収差変動を抑制してい
る。
In the present invention, the above-mentioned group A, group B1 and group B2
The aberration variation due to the movement of the three lens groups, which is a group, is skillfully used to suppress the aberration variation due to focusing.

【0046】M.O.D近傍の物体距離では第B1群が
物体側に繰り出す為に、第A群と第B1群との間隔が狭
まり、t<TのときのHb1′とHa′との差、Hb
1′−Ha′と、t=TのときのHb1″とHa″との
差、Hb1″−Ha″は略等しく、 Hb1′−Ha′≒Hb1″−Ha″ である。
M. O. At an object distance in the vicinity of D, the distance between the A group and the B1 group is narrowed because the B1 group moves toward the object side, and the difference between Hb1 ′ and Ha ′ when t <T, Hb
The difference between 1'-Ha 'and Hb1 "-Ha" at t = T, that is, Hb1 "-Ha" is approximately equal, and Hb1'-Ha'≈Hb1 "-Ha".

【0047】従って、第A群と第B1群にて発生する球
面収差、軸上色収差の総和も略等しくなるが、t<Tの
ときでは上記(ロ)の作用により第B2群での収差発生
量を減少させることが可能となり、M.O.D近傍の物
体距離でのアンダーの球面収差、アンダーの軸上色収差
を補正している。
Therefore, the total sum of spherical aberration and axial chromatic aberration generated in the A-th group and the B1-th group becomes substantially equal, but when t <T, the aberration generation in the B2 group occurs due to the action of (b). It is possible to reduce the amount of M. O. Under spherical aberration and under axial chromatic aberration at an object distance near D are corrected.

【0048】更に無限遠物体時においてM.O.Dと比
べて第A群を物体側に位置させる場合は、図18,図2
0の従来方式と比較して、 Hb1−Ha>hm−hf>hb−ha となる為、無限遠物体時のHb1−Haの値とM.O.
DのHb1′−Ha′の値との差を小さくすることが可
能となり、従って無限遠物体とM.O.Dでの球面収差
係数Iと色収差係数Lの変化も小さくなり、球面収差と
軸上色収差の物体距離変動を補正できる。
Further, when an object at infinity is used, the M. O. When the group A is located closer to the object side than the group D,
Compared with the conventional method of 0, Hb1-Ha>hm-hf> hb-ha, so the value of Hb1-Ha at infinity object and M. O.
It is possible to reduce the difference between the value of Hb1'-Ha 'of D. Therefore, the object at infinity and M. O. The changes in the spherical aberration coefficient I and the chromatic aberration coefficient L at D are also small, and the object distance fluctuations of the spherical aberration and the axial chromatic aberration can be corrected.

【0049】一方、無限遠物体近傍で第B1群の繰り出
し量が少なく、第A群と第B1群との間隔が比較的大き
い物体距離では上記(イ),(ロ)の両方の作用を利用
した収差補正が可能である。
On the other hand, when the object distance is small in the vicinity of the infinitely distant object and the distance between the A group and the B1 group is relatively large, both the effects of (a) and (b) are used. The aberration correction can be performed.

【0050】例えば無限遠物体からある有限距離物体へ
フォーカスによる収差変動が球面収差はオーバー、軸上
色収差はアンダーとなる場合、上記(イ),(ロ)によ
る球面収差と軸上色収差の各々の効き量の違いを利用
し、球面収差をアンダー、軸上色収差をオーバー側に補
正している。又、望遠側のズーム位置で無限遠物体から
M.O.Dへのフォーカスにかけて球面収差と軸上色収
差が共に単調に補正過剰から補正不足へと変動する場合
には、主に第A群の移動の作用(ハ)を適用するのが良
い。即ち、無限遠物体からM.O.Dへのフォーカスの
際には第A群を像面側へ単調に移動させる。
For example, when the aberration variation due to focusing from an object at infinity to an object at a certain finite distance causes spherical aberration to be over and axial chromatic aberration to be under, axial aberration and axial chromatic aberration due to the above (a) and (b) are respectively caused. By taking advantage of the difference in effectiveness, spherical aberration is corrected to under and axial chromatic aberration is corrected to over. Also, at the zoom position on the telephoto side, the M. O. When both spherical aberration and axial chromatic aberration monotonously change from overcorrection to undercorrection upon focusing on D, it is preferable to mainly apply the action (C) of moving the A-th group. That is, from an object at infinity to M. O. When focusing on D, the A-th group is monotonically moved to the image plane side.

【0051】又、望遠側で無限遠物体からM.O.Dへ
のフォーカスにかけて球面収差が変曲点を有するように
変動する場合には、例えば、 アンダー → オーバー → アンダー へと変化する場合に主に第A群の移動により補正効果を
持たせるには(ハ),(ニ)両方の作用を適用するのが
良い。即ち、第A群を変曲点を境にして物体側へ凸状の
軌跡を有するように移動させるのが良い。
On the telephoto side, an M. O. When the spherical aberration fluctuates so as to have an inflection point when focusing on D, for example, when a change is made from under → over → under, a correction effect is mainly given by the movement of the A group ( It is better to apply both of (c) and (d). That is, it is preferable to move the group A toward the object side so as to have a convex locus with the inflection point as a boundary.

【0052】本発明によれば物体距離の変化に対する合
焦に際し、第A群と第B1群と第B2群をその相対的位
置関係が変化するように移動させることにより、主に球
面収差と軸上色収差の変動を良好に補正している。
According to the present invention, when focusing on a change in the object distance, by moving the group A, the group B1 and the group B2 so that their relative positional relationship changes, the spherical aberration and the axis are mainly changed. The variation of the upper chromatic aberration is well corrected.

【0053】このとき第B1群と第B2群の移動方向は
無限遠物体からM.O.D物体への合焦に際し、物体側
に条件式(1)を満足するように単調に移動するように
して、第1群のレンズ全長の増大を防止しつつ、移動機
構の複雑化を抑えている。
At this time, the moving directions of the first and second lens groups B1 and B2 are M. O. D When the object is focused, the object side is moved monotonously so as to satisfy the conditional expression (1), and the increase in the total lens length of the first group is prevented, while suppressing the complication of the moving mechanism. There is.

【0054】MB2/MB1<1のときが上記説明のt
<Tに相当し、MB2/MB1=1のときがt=Tに相
当する。MB2/MB1>1のときでは第B2群の移動
量が第B1群の移動量より大きくなる為、無限遠物体時
の第B1群と第B2群の間隔を余分に開けておく必要が
生じ、第1群のレンズ全長、大きさが増大してくる。
When MB2 / MB1 <1 is t in the above description.
<Corresponding to T, and when MB2 / MB1 = 1 corresponds to t = T. When MB2 / MB1> 1, the movement amount of the B2 group becomes larger than the movement amount of the B1 group, so that it becomes necessary to additionally set an interval between the B1 group and the B2 group at the time of an object at infinity. The overall length and size of the first lens group increase.

【0055】又、第A群の移動を条件式(2)を満足す
るようにして球面収差、軸上色収差の補正効果を図りつ
つ、第1群のレンズ全長の増大を防止している。上限値
を越えるとM.O.Dでの第A群による球面収差、軸上
色収差の補正効果が消失し、第B2群による収差補正の
負担が増大してしまい、下限値を越えると第A群による
球面収差、軸上色収差の補正効果は増大するが、レンズ
全長が長くなってくるので良くない。
Further, by making the movement of the A group satisfy the conditional expression (2), the spherical aberration and the axial chromatic aberration are corrected, and the total lens length of the first group is prevented from increasing. If the upper limit is exceeded, M. O. The effect of correcting the spherical aberration and the axial chromatic aberration by the A group in D disappears, and the burden of the aberration correction by the B2 group increases, and when the lower limit is exceeded, the spherical aberration and the axial chromatic aberration by the A group are reduced. The correction effect increases, but it is not good because the total lens length becomes longer.

【0056】又、本発明のズームレンズは第1群に条件
式(3)を満足するような明るいレンズ系を用いて、1
4倍から44倍程度のズーム比を有し、ズーム全域にて
大口径比化を実現している。
The zoom lens of the present invention uses a bright lens system that satisfies the conditional expression (3) for the first lens unit, and
It has a zoom ratio of about 4 to 44 times, and realizes a large aperture ratio in the entire zoom range.

【0057】本発明では以上のように各要素を設定する
ことにより高い光学性能を得ているが、更に物体距離全
般にわたり、及びズーム範囲全般にわたり、高い光学性
能を得る為には次の諸条件を満足させるのが良い。
In the present invention, high optical performance is obtained by setting each element as described above, but in order to obtain high optical performance over the entire object distance and the entire zoom range, the following various conditions are required. Is good to satisfy.

【0058】前記第A群は少なくとも負の第A1レンズ
と正の第A2レンズの独立した2つのレンズを有し、該
第A群の屈折力をφA、第Aiレンズの屈折力φAiと
材質のアッベ数νAiの比の総和をΣA=φAi/νA
iとし、前記第B1群は少なくとも1つの正の第B1,1
レンズを有し、該第B1群の屈折力をφB1、第B1,1
レンズの屈折力φB1,iと材質のアッベ数νB1,iの比
の総和をΣB1=φB1,i/νB1,iとし、前記第B2
群は物体側に凸面を向けたメニスカス状の正の第B2,1
レンズを有し、該第B2群の屈折力をφB2、第B2,1
レンズの屈折力をφB2,1と材質のアッベ数νB2,1の
比をΣB2=φB2,1/νB2,1としたとき、 −0.30<φA/φ1<−0.02 ‥‥‥(4) −0.02<ΣA/φ1<−0.0095 ‥‥‥(5) −1.30<ΣA/(ΣB1+ΣB2)<−0.80 ‥‥‥(6) 0.25<φB2/φB1<0.90 ‥‥‥(7) 0.25<ΣB2/ΣB1<1.30 ‥‥‥(8) なる条件を満足することである。
The group A has at least two independent lenses, a negative first lens A1 and a positive second lens A2. The refractive power of the group A is φA, and the refractive power of the Ai lens is φAi. The sum of the ratios of Abbe number νAi is ΣA = φAi / νA
i, said group B1 comprises at least one positive group B1,1
A lens having a refracting power of the B1 group of φB1, B1,1
The sum of the ratio of the lens refracting power φB1, i and the Abbe number νB1, i of the material is ΣB1 = φB1, i / νB1, i,
The group is a positive meniscus B2,1 with the convex surface facing the object side.
A lens having a refracting power of B2, B2,1
When the ratio of the refractive power of the lens to φB2,1 and the Abbe number νB2,1 of the material is ΣB2 = φB2,1 / νB2,1, then −0.30 <φA / φ1 <−0.02 (4 ) −0.02 <ΣA / φ1 <−0.0095 (5) −1.30 <ΣA / (ΣB1 + ΣB2) <− 0.80 (6) 0.25 <φB2 / φB1 <0 .90 (7) 0.25 <ΣB2 / ΣB1 <1.30 (8).

【0059】本発明のズームレンズでは、第1群を通過
する軸上光線高が望遠端にて最も高くなる。そして第2
群以降の倍率により第1群で発生した収差が拡大される
為、望遠端の球面収差、軸上色収差は第1群での収差発
生量に大きく依存する。特に放送用ズームレンズでは高
仕様、高性能が要求され、望遠端の長焦点距離化、大口
径比化を図る必要があるので軸上光線高は著しく増加す
る。
In the zoom lens according to the present invention, the height of the axial ray passing through the first lens group is highest at the telephoto end. And the second
Since the aberration generated in the first lens group is magnified by the magnification after the lens group, the spherical aberration and the axial chromatic aberration at the telephoto end largely depend on the amount of aberration generated in the first lens group. In particular, the zoom lens for broadcasting is required to have high specifications and high performance, and it is necessary to increase the focal length at the telephoto end and increase the aperture ratio.

【0060】従ってズーミングやフォーカシングによる
球面収差、色収差等の諸収差の補正が困難になってく
る。これに対し設計的に各レンズのパワーを小さくした
り、レンズ枚数を増加して対処すれば、レンズ系全体が
大型化し、重量、製造コストが増大してしまう。
Therefore, it becomes difficult to correct various aberrations such as spherical aberration and chromatic aberration due to zooming and focusing. On the other hand, if the power of each lens is reduced by design or the number of lenses is increased to cope with the problem, the entire lens system becomes large, and the weight and the manufacturing cost increase.

【0061】そこで第1群の第A群を少なくとも負の屈
折力面を有し比較的小さい空気間隔を隔てた負の第A1
レンズと正の第A2レンズの2枚で構成している。この
空気間隔を設けることで設計自由度を増加させて諸収差
の変動を減少させ、諸収差をバランス良く容易にコント
ロールできるようにし、更に第1群の後側主点を押し出
すことによりレンズ系全体の小型化を図っている。
Therefore, the first group A is a negative group A1 having at least a negative refractive power surface and having a relatively small air space.
It is composed of two lenses, a positive A2 lens. By providing this air space, the degree of freedom in design is increased, variations in various aberrations are reduced, and various aberrations can be easily controlled in a well-balanced manner. Furthermore, by pushing out the rear principal point of the first lens group, the entire lens system The miniaturization of

【0062】フォーカス用の第B1群と第B2群は共に
少なくとも1つの正レンズを有するように構成し、諸収
差の発生量を小さくすると同時に第A群での残存収差を
打ち消している。特に第B2群では物体側に凸面を向け
たメニスカス形状の正の第B2、1レンズより構成し
て、単独で球面収差の発生量を小さくすると同時にディ
ストーション、非点収差等も良好に補正している。尚、
第B1群又は第B2群中に凹レンズを設ければ諸収差の
補正が容易になるので好ましい。
Both the B1 group for focus and the B2 group for focus are constructed so as to have at least one positive lens to reduce the amount of various aberrations and at the same time cancel the residual aberration in the A group. In particular, the second lens group B2 includes a positive meniscus second lens B1 having a convex surface directed toward the object side, which reduces the amount of spherical aberration generated by itself and at the same time corrects distortion and astigmatism well. There is. still,
It is preferable to provide a concave lens in the B1 group or the B2 group because various aberrations can be easily corrected.

【0063】次に前述の条件式(4)〜(8)の技術的
意味について説明する。条件式(4)は第1群に占める
第A群のパワーを制限するものである。条件式(4)の
下限値を越えるとパワーが大きくなる為、球面収差,コ
マ収差等の高次収差が発生しやすくなり、その残存高次
収差を補正する為には移動レンズ群B1,B2のパワー
も大きくし曲率半径を小さくしなければならず、この結
果ズーミング及びフォーカシングによる収差変動を補正
することが困難になる。又、上限値を越えると殆どノー
パワーに近くなる為、無限遠物体時の第A群と第B1群
の近軸光線高の差が小さくなってしまい、フォーカシン
グによる球面収差と軸上色収差の変動を良好に補正する
ことが難しくなってくる。
Next, the technical meaning of the conditional expressions (4) to (8) will be described. Conditional expression (4) limits the power of the A-th group in the first group. When the value goes below the lower limit of conditional expression (4), the power becomes large, so that high-order aberrations such as spherical aberration and coma easily occur, and the moving lens groups B1 and B2 are used to correct the residual higher-order aberrations. Power must also be increased and the radius of curvature must be reduced, which makes it difficult to correct aberration fluctuations due to zooming and focusing. Further, when the upper limit is exceeded, the power becomes almost no power, so that the difference in paraxial ray height between the A group and the B1 group at the time of an object at infinity becomes small, and fluctuations in spherical aberration and axial chromatic aberration due to focusing are reduced. It becomes difficult to correct it well.

【0064】条件式(5)は第A群の色消し条件を第1
群のパワーで規格化したものである。条件式(6)は第
1群を固定の第A群とフォーカス時に移動する第B1
群,第B2群の2つのレンズ群に分割したときの色消し
条件の分担値を規定したものである。条件式(5),
(6)ともフォーカシングによる軸上色収差の変動をバ
ランス良く保つ為のものである。
Conditional expression (5) defines the achromatic condition of the A-th group as the first condition.
It is standardized by the power of the group. Conditional expression (6) is defined by the first group A, which is fixed, and the first group B1, which is moved during focusing.
This is defined as the shared value of the achromatic condition when divided into two lens groups, that is, the first lens group and the second lens group B2. Conditional expression (5),
(6) is for keeping the variation of axial chromatic aberration due to focusing in good balance.

【0065】第1群の第A群,第B1群,第B2群の色
消し条件については、Σa≒Σb1+Σb2≒0が望ま
しいが、フォーカス移動群は通常は第1群のコンパクト
化及び軽量化を考慮すると凸レンズのみの構成となるの
で、フォーカス移動群の色消し条件は必ず正の値にな
る。
The achromatic condition of the first group A, the second group B1 and the second group B2 is preferably Σa≅Σb1 + Σb2≅0, but the focus moving group is usually compact and lightweight. Considering this, since only the convex lens is used, the achromatic condition of the focus moving group is always a positive value.

【0066】これを打ち消すように条件式(5)におい
ては、若干、負の値としている。条件式(5),(6)
において下限値を越えると補正過剰となり、フォーカス
全域にてオーバーの軸上色収差が残存し、上限値を越え
ると逆に補正不足となり、アンダーの軸上色収差が残存
してしまう。
In order to cancel this, conditional expression (5) has a slightly negative value. Conditional expressions (5), (6)
If the lower limit value is exceeded, overcorrection occurs, and over-axial chromatic aberration remains over the entire focus range. If the upper limit value is exceeded, undercorrection occurs, and under-axial chromatic aberration remains.

【0067】条件式(7),(8)は各々フォーカスの
際に移動する第B1群と第B2群のパワー分担、色消し
分担を規定している。
The conditional expressions (7) and (8) define the power sharing and the achromatizing sharing of the B1 group and the B2 group that move during focusing, respectively.

【0068】条件式(7)にて下限値を越えると相対的
に第B2群のパワーが弱くなる為に、前述した(ロ)の
作用が失われ、フォーカシングによる球面収差と軸上色
収差の変動を良好に補正するのが難しくなる。上限値を
越えると今度は相対的に第B1群のパワーが弱くなる為
に、前述した(イ)の作用が失われ、フォーカシングに
よる球面収差と軸上色収差の変動を良好に補正するのが
難しくなり、第B1群のフォーカス移動量が大きくな
り、第1群のレンズ全長又はレンズ系が増大してくるの
で良くない。
If the lower limit value of conditional expression (7) is exceeded, the power of the second lens group B2 becomes relatively weak, so that the effect of (B) is lost, and the spherical aberration and the axial chromatic aberration due to focusing fluctuate. Is difficult to correct satisfactorily. When the value exceeds the upper limit, the power of the B1 group becomes relatively weaker this time, so that the effect of the above (a) is lost, and it is difficult to satisfactorily correct the fluctuations of the spherical aberration and the axial chromatic aberration due to focusing. That is, the amount of focus movement of the first lens group B1 increases, and the total lens length or lens system of the first lens group increases, which is not good.

【0069】条件式(8)の下限値を越えると、前述し
た(イ)の作用において軸上色収差のアンダーへの変化
量が増加し、(ロ)の作用においてはオーバーへの変化
量が減少するので、全体的に軸上色収差のアンダーへの
変化量が増大し良くない。上限値を越えると逆に軸上色
収差のオーバーへの変化量が増大し良くない。
If the lower limit of conditional expression (8) is exceeded, the amount of change in axial chromatic aberration to under will increase due to the action of (a), and the amount of change to over will decrease in the action of (b). Therefore, the amount of change in the axial chromatic aberration to under is increased as a whole, which is not good. On the other hand, if the upper limit is exceeded, the amount of change in the axial chromatic aberration to the contrary increases, which is not good.

【0070】このように本発明においては、第1群をフ
ォーカシングによる収差変動を抑制できるように3つの
レンズ群に分割し、移動量を制限し、レンズ配置、パワ
ー分担、色消し分担等を規定することにより、主に球面
収差と軸上色収差の変動を良好に補正している。
As described above, in the present invention, the first group is divided into three lens groups so as to suppress the aberration variation due to focusing, the movement amount is limited, and the lens arrangement, the power sharing, the achromatic sharing, etc. are specified. By doing so, the fluctuations of the spherical aberration and the axial chromatic aberration are mainly corrected well.

【0071】次に図1〜図4の本発明の数値実施例1〜
4のレンズ構成について説明する。図1は本発明の数値
実施例1のレンズ断面図であり、物体距離が無限遠、
3.0m,0.9m(M.O.D)のときの望遠端での
収差図を、各々図5,6,7に示す。
Numerical Examples 1 to 1 of the present invention shown in FIGS.
The lens configuration of No. 4 will be described. 1 is a lens cross-sectional view of Numerical Embodiment 1 of the present invention, in which an object distance is infinity,
Aberration diagrams at the telephoto end for 3.0 m and 0.9 m (M.O.D.) are shown in FIGS.

【0072】本実施例では14倍のズーム比を有し、R
1〜R8は正の屈折力の第1群である。このうちR1〜
R4は負の屈折力の第A群、R5,R6は正の屈折力の
第B1群、R7,R8は正の屈折力の第B2群である。
In this embodiment, the zoom ratio is 14 times and R
1 to R8 are a first group having a positive refractive power. Of these, R1
R4 is a group A having a negative refractive power, R5 and R6 are a group B1 having a positive refractive power, and R7 and R8 are a group B2 having a positive refractive power.

【0073】R9〜R15は変倍の為、広角端から望遠
端にかけて像面側へ単調に移動し、途中で横倍率−1倍
を通過する負の屈折力の第2群である。R16〜R18
は変倍に伴う像面変動を補償する第3群で広角端から望
遠端にかけて物体側に凸状に移動する。R19(SP)
は絞りである。R20〜R37は結像作用を有する第4
群で、R38,R39は色分解プリズム、トリミングフ
ィルター等と等価なガラスブロックPである。
R9 to R15 are a second lens unit having a negative refracting power, which moves monotonically toward the image plane side from the wide-angle end to the telephoto end due to zooming and passes lateral magnification -1 × on the way. R16 to R18
Is a third lens group that compensates for image plane variation due to zooming, and moves in a convex shape toward the object side from the wide-angle end to the telephoto end. R19 (SP)
Is an aperture. R20 to R37 are the fourth having an image forming action
In the group, R38 and R39 are glass blocks P equivalent to a color separation prism, a trimming filter and the like.

【0074】本実施例では大口径化の視標として第1群
のFナンバーをFN1=(φT/φ1)×FNTと定義
したとき、FN1=1.145である。これに対し第1
群内では球面収差、軸上色収差の補正の為、第A群を
正,負レンズ各1枚により構成し、第B1群,第B2群
を各々正レンズ1枚で構成して収差の補正を分担させて
いる。
In this embodiment, when the F number of the first lens group is defined as FN1 = (φT / φ1) × FNT as a target for increasing the aperture, FN1 = 1.145. On the other hand, the first
In order to correct spherical aberration and axial chromatic aberration within the group, the A group is composed of one positive and one negative lens respectively, and the B1 group and the B2 group are composed of one positive lens respectively to correct the aberration. It is shared.

【0075】そして本発明のフローティングに関し、無
限遠物体からある有限距離物体までの第B1群の移動量
MB1と第B2群の移動量MB2及び、第B1群の移動
量MB1と第A群の移動量MAの関係は、 MB2= 0.83035 MB1+0.11110 MB12 +0.00966 MB13 MA =-1.48735 MB1+0.00331 MB12 +0.00535 MB13 で与えており、3.0m,0.9mにおけるパラメータ
ーを表1に示す。このときMB2/MB1の最大値は無
限遠近傍の0.830であり、最小値はMB1=−5.
751のときで0.511である。
With regard to the floating of the present invention, the moving amount MB1 of the B1 group and the moving amount MB2 of the B2 group, and the moving amount MB1 of the B1 group and the moving of the A group from the object at infinity to a certain finite object. The relationship of the amount MA is given by MB2 = 0.83035 MB1 + 0.11110 MB1 2 +0.00966 MB1 3 MA = -1.48735 MB1 + 0.00331 MB1 2 +0.00535 MB1 3 , and the parameters at 3.0 m and 0.9 m are shown in Table 1. Shown in. At this time, the maximum value of MB2 / MB1 is 0.830 near infinity, and the minimum value is MB1 = -5.
It is 0.511 at the time of 751.

【0076】本実施例では3mからM.O.Dにかけて
第B2群の第B1群に対する相対的移動量を約0.6と
小さくすることにより、上述(ロ)の作用を効果的に用
いつつ、Δd/ΔXを−1.096とすることにより、
第A群の像面側への移動距離を大きくし、かつ単調に移
動させることにより上述(ハ)の作用を効果的に用いて
球面収差と軸上色収差の変動を補正している。
In this embodiment, from 3 m to M. O. By reducing the relative movement amount of the B2 group with respect to the B1 group to about 0.6, the Δd / ΔX is set to -1.096 while effectively using the action of (b) above. ,
By increasing the moving distance of the group A toward the image plane side and moving it monotonically, the effect of the above (c) is effectively used to correct the fluctuations of the spherical aberration and the axial chromatic aberration.

【0077】又、第A群にて正レンズと負レンズのアッ
ベ数の差を約70と大きくすることにより、第1群内の
色収差の補正を有利としつつ、φA/φ1=−0.02
3と第A群の屈折力を相対的に小さくしている。第B1
群をアッベ数の大きい正レンズ1枚、第B2群を屈折率
の高い正レンズ1枚で構成して色収差及び球面収差等の
補正を有利としつつ、収差補正の自由度を補うようにパ
ワー分担、色消し分担の点でφB2/φB1=0.83
4,ΣB2/ΣB1=1.240としている。
Further, by increasing the Abbe number difference between the positive lens and the negative lens in the group A to be about 70, φA / φ1 = −0.02 while favoring correction of chromatic aberration in the first group.
The refracting powers of the third lens group and the third lens group A are relatively small. B1
Constituting one positive lens element with a large Abbe number and one positive lens element with a high refractive index for the second lens group B2 makes it advantageous to correct chromatic aberration, spherical aberration, etc., while sharing power to compensate for the degree of freedom in aberration correction. , ΦB2 / φB1 = 0.83 in terms of achromatization
4, ΣB2 / ΣB1 = 1.240.

【0078】図5〜図7の収差図に示すように、球面収
差と軸上色収差が特に良く補正されている。
As shown in the aberration diagrams of FIGS. 5 to 7, the spherical aberration and the axial chromatic aberration are corrected particularly well.

【0079】図2は本発明の数値実施例2のレンズ断面
図であり、物体距離が無限遠、3.0m,0.8m
(M.O.D)の望遠端での収差図を、各々図8,9,
10に示す。
FIG. 2 is a lens cross-sectional view of Numerical Embodiment 2 of the present invention, in which the object distances are infinity, 3.0 m and 0.8 m.
Aberration diagrams at the telephoto end of (MOD) are shown in FIGS.
Shown in 10.

【0080】本実施例では数値実施例1と略同じレンズ
構成ながら、それに比して望遠端のFナンバーが1.9
と大口径で、くわえてM.O.Dは0.8mと大変短く
なっている。第1群内ではFN1=1.069と非常に
明るくすると共に、球面収差と軸上色収差の補正の為、
第A群を正,負レンズ各1枚により構成し、第B1群を
正レンズ2枚、第B2群を正レンズ1枚で構成して収差
の補正を分担させている。
In this embodiment, although the lens configuration is substantially the same as in Numerical Embodiment 1, the F-number at the telephoto end is 1.9 as compared with that.
With a large diameter, in addition to M. O. D is very short at 0.8m. In the first group, FN1 = 1.069, which is very bright, and spherical aberration and axial chromatic aberration are corrected,
The A group is composed of one positive and one negative lens, the B1 group is composed of two positive lenses, and the B2 group is composed of one positive lens to share the aberration correction.

【0081】そして本発明のフローティングに関し、無
限遠物体からある有限距離物体までの第B1群の移動量
MB1と第B2群の移動量MB2及び第B1群の移動量
MB1と第A群の移動量MAの関係は、 MB2= 0.66467 MB1+0.11372 MB12 +0.01025 MB13 MA = 0.14832 MB1−0.09759 MB12 −0.00897 MB13 で与えており、3.0m,0.8mにおけるパラメータ
ーを表2に示す。このときMB2/MB1の最大値は
M.O.Dの0.696であり、最小値はMB1=−
5.547のときで0.349である。
Regarding the floating of the present invention, the moving amount MB1 of the B1st group, the moving amount MB2 of the B2th group, and the moving amount MB1 of the B1st group and the moving amount of the Ath group from the object at infinity to a certain finite object. The relationship of MA is given by MB2 = 0.66467 MB1 + 0.11372 MB1 2 +0.01025 MB1 3 MA = 0.14832 MB1-0.09759 MB1 2 -0.00897 MB1 3 and the parameters at 3.0 m and 0.8 m are shown in Table 2. At this time, the maximum value of MB2 / MB1 is M.M. O. D is 0.696, and the minimum value is MB1 =-
It is 0.349 at the time of 5.547.

【0082】従って、本実施例ではM.O.Dになるに
つれて第B2群の第B1群に対する相対的移動量の変化
率が小から大へと極小値を持つようにしながら上述
(ロ)の作用を用いている。又Δd/ΔX=0.099
と第A群をM.O.Dのときに無限遠のときより物体側
に位置させているが、移動軌跡としては物体側に凸状に
なるようにしてM.O.D近傍では上述(ハ)の作用を
用いている。そして全フォーカス領域での軸上色収差の
変動を補正している。
Therefore, in this embodiment, M. O. The action of (b) is used while the change rate of the relative movement amount of the B2 group with respect to the B1 group has a minimum value from small to large as it becomes D. Also Δd / ΔX = 0.099
And group A with M. O. In the case of D, the object is located closer to the object side than at infinity, but the movement locus is convex toward the object side. O. In the vicinity of D, the action of (c) above is used. Then, the variation of the axial chromatic aberration in the entire focus area is corrected.

【0083】又、上記Fナンバー,M.O.Dに対しコ
ンパクト化を図る為、第A群を強い発散系とし第1群の
後側主点を押し出している。その為、第B1群を正レン
ズ2枚、第B2群を正レンズ1枚で構成して、収差補正
の自由度を増加させている。このとき、 φA/φ1=−0.294, ΣA/φ1=−0.019, ΣA/(ΣB1+ΣB2)=−1.247 としている。
Further, the F number, M. O. In order to make it compact with respect to D, the group A is made to have a strong divergence system and the rear principal point of the first group is pushed out. Therefore, the B1 group is composed of two positive lenses and the B2 group is composed of one positive lens to increase the degree of freedom of aberration correction. At this time, φA / φ1 = −0.294, ΣA / φ1 = −0.019, ΣA / (ΣB1 + ΣB2) = − 1.247.

【0084】図8〜図10の収差図に示すように、軸上
色収差が良く補正されているだけでなく、0.8mとい
うM.O.Dにもかかわらず球面収差も良く補正されて
いる。
As shown in the aberration diagrams of FIGS. 8 to 10, not only the axial chromatic aberration is well corrected, but the M.M. O. Despite D, the spherical aberration is well corrected.

【0085】図3は本発明の数値実施例3のレンズ断面
図であり、物体距離が無限遠、10.0m,1.7m
(M.O.D)の望遠端での収差図を、各々図11,1
2,13に示す。
FIG. 3 is a lens sectional view of Numerical Embodiment 3 of the present invention, in which the object distance is infinity, 10.0 m and 1.7 m.
Aberration diagrams at the telephoto end of (MOD) are shown in FIGS.
2 and 13.

【0086】本実施例では44倍のズーム比を有し、R
1〜R10は正の屈折力の第1群である。このうちR1
〜R4はフォーカス、ズーミングの際、固定で負の屈折
力の第A群、R5〜R8は正の第B1群、R9,R10
は正の第B2群である。
In this embodiment, the zoom ratio is 44 times, and R
1 to R10 are the first group having a positive refractive power. Of these, R1
˜R4 are fixed and have a negative refractive power during the focusing and zooming, and R5 to R8 are the positive B1 group, R9 and R10.
Is a positive group B2.

【0087】R11〜R17は変倍の為、広角端から望
遠端にかけて像面側へ単調に移動し、途中で横倍率−1
倍を通過する負の屈折力の第2群である。R18〜R2
7は変倍作用と共に像面変動を補償し、物体側へ単調に
移動し、途中で横倍率−1倍を通過する正の屈折力の第
3群である。R28(SP)は絞りである。R29〜R
44は結像作用を有する第4群で、R45,R46は色
分解プリズム、トリミングフィルター等と等価なガラス
ブロックPである。
Since R11 to R17 are for zooming, they move monotonically toward the image side from the wide-angle end to the telephoto end, and the lateral magnification -1 on the way.
It is the second group of negative refracting power that passes double. R18-R2
Reference numeral 7 denotes a third lens unit having a positive refracting power that compensates for image plane variation as well as the zooming action, moves monotonically toward the object side, and passes lateral magnification -1 × on the way. R28 (SP) is a diaphragm. R29 to R
A fourth group 44 has an image forming action, and R45 and R46 are glass blocks P equivalent to a color separation prism, a trimming filter and the like.

【0088】本実施例では広角端の焦点距離が9.0m
mと広角化されているにもかかわらず、44倍と非常に
高ズーム比で望遠端の焦点距離が396.0mmとなっ
ている。これに対し第1群を球面収差、軸上色収差の補
正の為、第A群を正,負レンズ各1枚により構成し、第
B1群を正レンズ2枚、第B2群を正レンズ1枚で構成
して収差の補正を分担させている。
In this embodiment, the focal length at the wide angle end is 9.0 m.
Despite being widened to m, the focal length at the telephoto end is 396.0 mm with a very high zoom ratio of 44 times. On the other hand, in order to correct spherical aberration and axial chromatic aberration in the first group, the A group is composed of one positive lens and one negative lens, the B1 group is two positive lenses, and the B2 group is one positive lens. In this configuration, the aberration correction is shared.

【0089】そして本発明のフローティングに関し、無
限遠物体からある有限距離物体までの第B1群の移動量
MB1と第B2群の移動量MB2及び第B1群の移動量
MB1と第A群の移動量MAの関係は、 MB2= 0.47921 MB1+0.05718 MB12 +0.00351 MB13 MA = 0.08385 MB1−0.04012 MB12 −0.00207 MB13 で与えており、10.0m,1.7mにおけるパラメー
ターを表3に示す。このときMB2/MB1の最大値は
M.O.Dの0.987であり、最小値はMB1=−
8.145のときで0.246である。
Regarding the floating of the present invention, the moving amount MB1 of the B1st group, the moving amount MB2 of the B2th group, the moving amount MB1 of the B1st group, and the moving amount of the Ath group from the object at infinity to a certain finite object. The relationship of MA is given by MB2 = 0.47921 MB1 + 0.05718 MB1 2 +0.00351 MB1 3 MA = 0.08385 MB1-0.04012 MB1 2 −0.00207 MB1 3 and the parameters at 10.0 m and 1.7 m are shown in Table 3. At this time, the maximum value of MB2 / MB1 is M.M. O. D is 0.987, and the minimum value is MB1 =-
It is 0.246 at the time of 8.145.

【0090】従って、本実施例ではM.O.Dになるに
つれて第B2群の第B1群に対する相対的移動量の変化
率が小から大へと極小値を持つようにしている。特に1
0.0m近傍ではMB2/MB1=0.285と小さな
値とし、M.O.D(1.7m)ではMB2/MB1=
0.987と大きな値としている。又第A群を物体側に
凸状に移動させながらΔd/ΔX=−0.071として
いる。これは以下の理由による。
Therefore, in this embodiment, M. O. As it becomes D, the change rate of the relative movement amount of the B2 group with respect to the B1 group has a minimum value from small to large. Especially 1
In the vicinity of 0.0 m, MB2 / MB1 = 0.285, which is a small value, is used. O. MB / MB1 = at D (1.7m)
The value is as large as 0.987. Further, Δd / ΔX = −0.071 is set while moving the group A in a convex shape toward the object side. This is for the following reason.

【0091】・10.0m近傍のMB2/MB1=0.
285について 長焦点距離のズームレンズの特有の無限物体から10.
0m近傍の球面収差、軸上色収差の変動が各々オーバ
ー,アンダーとなるのを上述(イ),(ロ)の両方の作
用及び第A群の(ニ)の作用を利用し大胆に補正してい
る。
MB2 / MB1 = 0.0.0m near 10.0 m.
285 from the infinite object peculiar to the long focal length zoom lens.
The fluctuations of spherical aberration and axial chromatic aberration near 0 m are over and under, respectively, by boldly correcting the effects of both (a) and (b) and (d) of the A group. There is.

【0092】・M.O.D(2.0m)のMB2/MB
1=0.987について 広角化されたことによる第1群のレンズ径の増大を許容
範囲内に抑える為、M.O.D側にて第B1群の移動量
MB1を規制しつつ、第A群の(ハ)の作用を利用して
球面収差,軸上色収差をオーバー側に補正している。
M. O. MB / MB of D (2.0m)
1 = 0.987 In order to suppress the increase in the lens diameter of the first group due to the widening of the angle within the allowable range, M.I. O. While controlling the movement amount MB1 of the B1st lens group on the D side, spherical aberration and axial chromatic aberration are corrected to the over side by utilizing the action of (C) of the Ath lens group.

【0093】又、一般にズーム比が大きく、望遠端の焦
点距離が長い程、球面収差、軸上色収差の補正が困難に
なってくる。そこで本実施例においては第1群を第A群
が正,負レンズ各1枚、第B1側が正レンズ2枚、第B
2群が正レンズ1枚の計5枚で構成し、かつ正レンズは
全てアッベ数を90以上としている。そしてこのときパ
ワー分担、色消しの点でφB2/φB1=0.260,
ΣB2/ΣB1=0.259としている。
Generally, the larger the zoom ratio and the longer the focal length at the telephoto end, the more difficult it becomes to correct spherical aberration and axial chromatic aberration. Therefore, in the present embodiment, the first group includes one positive lens and one negative lens for the first group, two positive lenses for the B1 side, and the second lens for the second group.
The two groups are composed of a total of five positive lenses, and all the positive lenses have Abbe numbers of 90 or more. At this time, φB2 / φB1 = 0.260 in terms of power sharing and achromatization,
ΣB2 / ΣB1 = 0.259.

【0094】図11〜図13の収差図に示すように、球
面収差は良く補正されており、軸上色収差はM.O.D
で若干補正不足ぎみではあるが全体的に良く補正されて
いる。
As shown in the aberration diagrams of FIGS. 11 to 13, the spherical aberration is well corrected, and the axial chromatic aberration is M.I. O. D
Although it is slightly undercorrected, it is corrected well overall.

【0095】図4は本発明の数値実施例4のレンズ断面
図であり、物体距離が無限遠、10.0m,2.0m
(M.O.D)の望遠端での収差図を、各々図14,1
5,16に示す。
FIG. 4 is a lens cross-sectional view of Numerical Embodiment 4 of the present invention, in which the object distance is infinity, 10.0 m and 2.0 m.
Aberration diagrams at the telephoto end of (MOD) are shown in FIGS.
5,16.

【0096】本実施例ではズーム比44倍で数値実施例
3と略同じ構成ながら、望遠端の焦点距離が440.0
mmとより望遠側にシフトしているにもかかわらず、更
に望遠端のFナンバーが3.0と明るくなっている。こ
れに対し第1群を球面収差、軸上色収差の補正の為、第
A群を正,負レンズ各1枚により構成し、第B1群を正
レンズ2枚、第B2群を正レンズ1枚で構成して収差の
補正を分担させている。
In this embodiment, the zoom ratio is 44 times and the configuration is substantially the same as that of the numerical embodiment 3, but the focal length at the telephoto end is 440.0.
Despite shifting to the telephoto side by mm, the F number at the telephoto end became brighter at 3.0. On the other hand, in order to correct spherical aberration and axial chromatic aberration in the first group, the A group is composed of one positive lens and one negative lens, the B1 group is two positive lenses, and the B2 group is one positive lens. In this configuration, the aberration correction is shared.

【0097】そして本発明のフローティングに関し、無
限遠物体からある有限距離物体までの第B1群の移動量
MB1と第B2群の移動量MB2及び第B1群の移動量
MB1と第A群の移動量MAの関係は、 MB2= 0.58265 MB1+0.05363 MB12 +0.00368 MB13 MA =-0.19904 MB1−0.05107 MB12 −0.00450 MB13 で与えており、10.0m,2.0mにおけるパラメー
ターを表4に示す。このときMB2/MB1の最大値は
M.O.Dの0.949であり、最小値はMB1=−
7.287のときで0.387である。
Regarding the floating of the present invention, the moving amount MB1 of the B1st group, the moving amount MB2 of the B2th group, and the moving amount MB1 of the B1st group and the moving amount of the Ath group from an object at infinity to a certain finite object. The relationship of MA is given by MB2 = 0.58265 MB1 + 0.05363 MB1 2 +0.00368 MB1 3 MA = -0.19904 MB1-0.05107 MB1 2 -0.00450 MB1 3 and the parameters at 10.0 m and 2.0 m are shown in Table 4. . At this time, the maximum value of MB2 / MB1 is M.M. O. D is 0.949, and the minimum value is MB1 =-
It is 0.387 at 7.287.

【0098】従って、本実施例ではM.O.Dになるに
つれて第B2群の第B1群に対する相対的移動量の変化
率が小から大へと極小値を持つようにしている。特に1
0.0m近傍でMB2/MB1=0.407と小さな値
としているのは、数値実施例3と同様の理由によるが第
A群については略不動として作用させていない。M.
O.D(2.0m)ではMB2/MB1=0.949と
し、第B1群,第B2群を作用させていないが、Δd/
ΔX=−0.930と第A群を大きく像面側へ単調に移
動させることにより上述の(ハ)の作用を用いて球面収
差,軸上色収差を補正している。
Therefore, in this embodiment, M. O. As it becomes D, the change rate of the relative movement amount of the B2 group with respect to the B1 group has a minimum value from small to large. Especially 1
The reason why MB2 / MB1 = 0.407 is set to a small value in the vicinity of 0.0 m is for the same reason as in Numerical Example 3 but the group A is not substantially immobile. M.
O. At D (2.0 m), MB2 / MB1 = 0.949, and the groups B1 and B2 are not operated, but Δd /
ΔX = −0.930 and the group A is largely moved to the image plane side, whereby spherical aberration and axial chromatic aberration are corrected by using the effect of (C).

【0099】又、球面収差、軸上色収差の補正はFナン
バーが小さくなっても困難になってくる。そこで本実施
例においては第1群を第A群が正,負レンズ各1枚、第
B1群が正レンズ2枚、第B2群が正レンズ1枚の計5
枚で構成し、かつ第A群,第B1群の正レンズは全てア
ッベ数を90以上とし、第B2群の正レンズの屈折率を
他の正レンズより高くしている。そしてこのとき、ΣA
/φ1=−0.010,ΣA/(ΣB1+ΣB2)=−
0.839としている。
Correction of spherical aberration and axial chromatic aberration becomes difficult even if the F number becomes small. Therefore, in this embodiment, the first group includes one positive lens and one negative lens, each of the B1 group includes two positive lenses, and the second lens group includes one positive lens, for a total of five lenses.
The positive lenses of the A group and the B1 group all have Abbe numbers of 90 or more, and the positive lenses of the B2 group have a higher refractive index than other positive lenses. And at this time, ΣA
/Φ1=−0.010, ΣA / (ΣB1 + ΣB2) = −
It is set to 0.839.

【0100】図14〜図16の収差図に示すように、球
面収差、軸上色収差共に全体的に良く補正されている。
As shown in the aberration diagrams of FIGS. 14 to 16, the spherical aberration and the axial chromatic aberration are well corrected as a whole.

【0101】尚、以上の各実施例においてはフローティ
ングのMB1,MB2の関係式をMB1の3次の項まで
用いたがこれにこだわる必要はなく、更に高次の項まで
用いても良く、これによれば収差変動補正の自由度を高
めることもできる。
In each of the above embodiments, the relational expressions of floating MB1 and MB2 are used up to the third order term of MB1. However, it is not necessary to pay attention to this and higher order terms may be used. According to the method, it is possible to increase the degree of freedom in correcting aberration variation.

【0102】[0102]

【表1】 次に本発明の数値実施例を示す。数値実施例においてr
iは物体側より順に第i番目のレンズ面の曲率半径、d
iは物体側より第i番目のレンズ厚及び空気間隔、ni
とνiは各々物体側より順に第i番目のレンズd線に対
するのガラスの屈折率とアッベ数である。数値実施例に
おいて最終の2つのレンズ面はフェースプレートやフィ
ルター等のガラスブロックである。又、前述の各条件式
と数値実施例における諸数値との関係を表−5に示す。
[Table 1] Next, numerical examples of the present invention will be shown. In the numerical example, r
i is the radius of curvature of the i-th lens surface in order from the object side, d
i is the i-th lens thickness and air gap from the object side, ni
And νi are the refractive index and Abbe number of the glass with respect to the i-th lens d-line in order from the object side. In the numerical examples, the last two lens surfaces are glass blocks such as face plates and filters. Table 5 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples.

【0103】[0103]

【外1】 [Outside 1]

【0104】[0104]

【外2】 [Outside 2]

【0105】[0105]

【外3】 [Outside 3]

【0106】[0106]

【外4】 [Outside 4]

【0107】[0107]

【表2】 [Table 2]

【0108】[0108]

【発明の効果】本発明によれば以上のように、4群ズー
ムレンズを構成するフォーカス用の第1群のレンズ群を
3つのレンズ群に分割し、各々を光軸上移動させてフォ
ーカスを行なうフローティングフォーカス方式を採用し
つつ、大口径化及び高変倍化を図る際、各レンズ群のレ
ンズ構成を適切に設定することにより、変倍及びフォー
カシングに伴う球面収差、色収差等の諸収差の変動を減
少させ、全変倍範囲及び全フォーカス範囲にわたり高い
光学性能を有した広角端のFナンバー1.75程度、変
倍比14以上の大口径比かつ高変倍比のズームレンズを
達成することができる。
As described above, according to the present invention, the first lens group for focusing which constitutes the four-group zoom lens is divided into three lens groups, and each lens group is moved on the optical axis to focus. When increasing the aperture and increasing the magnification while adopting the floating focus method, by appropriately setting the lens configuration of each lens group, various aberrations such as spherical aberration and chromatic aberration associated with the magnification and focusing can be reduced. A wide-angle end F-number of about 1.75 with a wide-angle end and a high aperture ratio and a high zoom ratio that has high optical performance over the entire zoom range and the entire focus range. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の数値実施例1のレンズ断面図FIG. 1 is a lens cross-sectional view of Numerical Example 1 of the present invention.

【図2】本発明の数値実施例2のレンズ断面図FIG. 2 is a lens cross-sectional view of Numerical Example 2 of the present invention.

【図3】本発明の数値実施例3のレンズ断面図FIG. 3 is a lens sectional view of Numerical Example 3 of the present invention.

【図4】本発明の数値実施例4のレンズ断面図FIG. 4 is a lens cross-sectional view of Numerical Example 4 of the present invention.

【図5】本発明の数値実施例1の望遠端の無限遠物体の
ときの収差図
FIG. 5 is an aberration diagram of an object at infinity at the telephoto end according to Numerical Example 1 of the present invention.

【図6】本発明の数値実施例1の望遠端の3mのときの
収差図
FIG. 6 is an aberration diagram at 3 m at the telephoto end according to Numerical Example 1 of the present invention.

【図7】本発明の数値実施例1の望遠端の0.9mのと
きの収差図
FIG. 7 is an aberration diagram of the numerical example 1 of the present invention at the telephoto end at 0.9 m.

【図8】本発明の数値実施例2の望遠端の無限遠物体の
ときの収差図
FIG. 8 is an aberration diagram of a numerical example 2 of the present invention when an object at infinity is located at the telephoto end.

【図9】本発明の数値実施例2の望遠端の3mのときの
収差図
FIG. 9 is an aberration diagram at 3 m at the telephoto end according to Numerical Example 2 of the present invention.

【図10】本発明の数値実施例2の望遠端の0.8mの
ときの収差図
FIG. 10 is an aberration diagram of Numerical example 2 of the present invention at the telephoto end at 0.8 m.

【図11】本発明の数値実施例3の望遠端の無限遠物体
のときの収差図
FIG. 11 is an aberration diagram of a numerical example 3 of the present invention when an object at infinity is at the telephoto end.

【図12】本発明の数値実施例3の望遠端の10mのと
きの収差図
FIG. 12 is an aberration diagram at 10 m at the telephoto end according to Numerical Example 3 of the present invention.

【図13】本発明の数値実施例3の望遠端の1.7mの
ときの収差図
FIG. 13 is an aberration diagram of Numerical example 3 of the present invention at the telephoto end at 1.7 m.

【図14】本発明の数値実施例4の望遠端の無限遠物体
のときの収差図
FIG. 14 is an aberration diagram of an infinite object at the telephoto end according to Numerical Example 4 of the present invention.

【図15】本発明の数値実施例4の望遠端の10mのと
きの収差図
FIG. 15 is an aberration diagram of Numerical example 4 of the present invention at the telephoto end at 10 m.

【図16】本発明の数値実施例4の望遠端の2.0mの
ときの収差図
FIG. 16 is an aberration diagram of Numerical example 4 of the present invention at the telephoto end at 2.0 m.

【図17】本発明のズームレンズの第1群の近軸屈折力
配置の説明図
FIG. 17 is an explanatory diagram of a paraxial refractive power arrangement of the first group of the zoom lens of the present invention.

【図18】従来の4群ズームレンズの第1群の近軸屈折
力配置の説明図
FIG. 18 is an explanatory diagram of the paraxial refractive power arrangement of the first group of the conventional four-group zoom lens.

【図19】従来の4群ズームレンズの第1群のレンズ断
面図
FIG. 19 is a lens sectional view of a first group of a conventional four-group zoom lens.

【図20】従来の4群ズームレンズの第1群の近軸屈折
力配置の説明図
FIG. 20 is an explanatory diagram of the paraxial refractive power arrangement of the first group of the conventional four-group zoom lens.

【図21】従来の4群ズームレンズの第1群のレンズ断
面図
FIG. 21 is a lens cross-sectional view of a first group of a conventional four-group zoom lens.

【符号の説明】[Explanation of symbols]

L1 第1群 L2 第2群 L3 第3群 L4 第4群 LA 第A群 LB1 第B1群 LB2 第B2群 SP 絞り P ガラスブロック e e線 g g線 S サジタル像面 M メリディオナル像面 L1 1st group L2 2nd group L3 3rd group L4 4th group LA 4th group LA 1st group LB1 1st group 1st group LB2 2nd group 2nd SP SP diaphragm P glass block e e line g g line S sagittal image surface M meridional image surface

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、変
倍用の負の屈折力の第2群、変倍に伴なう像面変動を補
正する正又は負の屈折力の第3群、そして変倍中固定の
結像作用を有する第4群とを有したズームレンズにおい
て、該第1群は負の屈折力の第A群、正の屈折力の第B
1群、そして正の屈折力の第B2群の3つのレンズ群を
有し、無限遠物体から近距離物体へのフォーカスの際に
該第A群を移動させると共に該第B1群と第B2群とを
異なる移動量で物体側へ移動させて行ったことを特徴と
するズームレンズ。
1. A first group of positive refracting powers, a second group of negative refracting powers for zooming, and a positive or negative refracting powers for correcting image plane fluctuations associated with zooming in order from the object side. In a zoom lens having a third lens unit and a fourth lens unit having a fixed image-forming action during zooming, the first lens unit has a negative refractive power group A and a positive refractive power group B.
It has three lens groups, a first lens group and a second lens group B2 having a positive refractive power, and moves the first lens group A upon focusing from an object at infinity to a short distance object and at the same time, the first lens group B1 and the second lens group B2. The zoom lens is characterized in that and are moved to the object side by different movement amounts.
【請求項2】 前記第B1群と第B2群の移動量を各々
MB1,MB2としたとき、 MB2/MB1<1 なる条件を満足することを特徴とする請求項1のズーム
レンズ。
2. The zoom lens according to claim 1, wherein the condition that MB2 / MB1 <1 is satisfied, where MB1 and MB2 are the movement amounts of the B1 and B2 groups, respectively.
【請求項3】 前記第A群と第B1群の無限遠物体のフ
ォーカス位置から至近物体のフォーカス位置までの距離
を像面側に測ったときを正とし、Δd,ΔXとしたと
き、 −1.1<Δd/ΔX<0.105 なる条件を満足することを特徴とする請求項1のズーム
レンズ。
3. When the distance from the focus position of the infinitely distant object to the focus position of the closest object of the A-th group and the B1-th group is measured on the image plane side is positive, and Δd and ΔX are set, −1 2. The zoom lens according to claim 1, wherein the condition of 1 <Δd / ΔX <0.105 is satisfied.
【請求項4】 望遠端における全系の屈折力とFナンバ
ーを各々φT,FNT、該第1群の屈折力とFナンバー
を各々φ1,FN1としたとき、 1.05<FN1 但し、 FN1=(φT/φ1)×FNT なる条件を満足することを特徴とする請求項1のズーム
レンズ。
4. When the refractive power and F number of the entire system at the telephoto end are φT and FNT, respectively, and the refractive power and F number of the first group are φ1 and FN1, respectively, 1.05 <FN1 where FN1 = The zoom lens according to claim 1, wherein a condition of (φT / φ1) × FNT is satisfied.
【請求項5】 前記第A群は少なくとも負の第A1レン
ズと正の第A2レンズの独立した2つのレンズを有し、
該第A群の屈折力をφA、第Aiレンズの屈折力φAi
と材質のアッベ数νAiの比の総和をΣA=φAi/ν
Aiとし、前記第B1群は少なくとも1つの正の第B
1,1レンズを有し、該第B1群の屈折力をφB1、第B
1,iレンズの屈折力φB1,iと材質のアッベ数νB1,i
の比の総和をΣB1=φB1,i/νB1,iとし、前記第
B2群は物体側に凸面を向けたメニスカス状の正の第B
2,1レンズを有し、該第B2群の屈折力をφB2、第B
2,1レンズの屈折力φB2,1と材質のアッベ数νB2,1
の比をΣB2=φB2,1/νB2,1としたとき、 −0.30<φA/φ1<−0.02 −0.02<ΣA/φ1<−0.0095 −1.30<ΣA/(ΣB1+ΣB2)<−0.80 0.25<φB2/φB1<0.90 0.25<ΣB2/ΣB1<1.30 なる条件を満足することを特徴とする請求項1のズーム
レンズ。
5. The group A has at least two independent lenses, a negative A1 lens and a positive A2 lens,
The refractive power of the A-th group is φA, and the refractive power of the Ai-th lens is φAi.
And the Abbe number νAi of the material are summed up ΣA = φAi / ν
Ai, and said group B1 is at least one positive group B
It has a 1,1 lens and the refracting power of the B1 group is φB1,
1, i Lens refractive power φB1, i and material Abbe number νB1, i
The total sum of the ratios is ΣB1 = φB1, i / νB1, i, and the B2 group is a meniscus-shaped positive B-side lens with a convex surface facing the object side.
It has a 2,1 lens and the refractive power of the B2 group is φB2,
Refractive power of 2,1 lens φB2,1 and Abbe number of material νB2,1
When the ratio of is ΣB2 = φB2,1 / νB2,1, then −0.30 <φA / φ1 <−0.02 −0.02 <ΣA / φ1 <−0.0095 −1.30 <ΣA / ( The zoom lens according to claim 1, wherein a condition of ΣB1 + ΣB2) <− 0.80 0.25 <φB2 / φB1 <0.90 0.25 <ΣB2 / ΣB1 <1.30 is satisfied.
【請求項6】 前記第A群のフォーカスにおける光軸上
の位置は無限遠物体のフォーカス位置に比べて至近物体
のフォーカス位置が像面側に位置していることを特徴と
する請求項5のズームレンズ。
6. The position on the optical axis in the focus of the A-th group is such that the focus position of a near object is located closer to the image plane side than the focus position of an object at infinity. Zoom lens.
【請求項7】 前記第A群は無限遠物体から至近物体へ
のフォーカスの際、像面側に単調移動していることを特
徴とする請求項5のズームレンズ。
7. The zoom lens according to claim 5, wherein the A-th group moves monotonically toward the image plane when focusing from an object at infinity to a near object.
【請求項8】 前記第A群は無限遠物体から至近物体へ
のフォーカスの際に物体側に凸状の軌跡を有しつつ移動
していることを特徴とする請求項5のズームレンズ。
8. The zoom lens according to claim 5, wherein the A-th group moves while having a convex locus on the object side when focusing from an infinitely distant object to a close-up object.
JP3166295A 1995-01-27 1995-01-27 Zoom lens Pending JPH08201696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3166295A JPH08201696A (en) 1995-01-27 1995-01-27 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3166295A JPH08201696A (en) 1995-01-27 1995-01-27 Zoom lens

Publications (1)

Publication Number Publication Date
JPH08201696A true JPH08201696A (en) 1996-08-09

Family

ID=12337362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3166295A Pending JPH08201696A (en) 1995-01-27 1995-01-27 Zoom lens

Country Status (1)

Country Link
JP (1) JPH08201696A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195100A (en) * 1997-07-25 1999-04-09 Panavision Inc High performance zoom lens system
US6002528A (en) * 1997-04-01 1999-12-14 Canon Kabushiki Kaisha Zoom lens
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical device using the same
JP2005345507A (en) * 2004-05-31 2005-12-15 Canon Inc Zoom lens and imaging apparatus having the same
WO2013111222A1 (en) * 2012-01-25 2013-08-01 株式会社ニコン Zoom lens, optical apparatus, and zoom lens manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002528A (en) * 1997-04-01 1999-12-14 Canon Kabushiki Kaisha Zoom lens
JPH1195100A (en) * 1997-07-25 1999-04-09 Panavision Inc High performance zoom lens system
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical device using the same
JP2005345507A (en) * 2004-05-31 2005-12-15 Canon Inc Zoom lens and imaging apparatus having the same
WO2013111222A1 (en) * 2012-01-25 2013-08-01 株式会社ニコン Zoom lens, optical apparatus, and zoom lens manufacturing method
JP2013152374A (en) * 2012-01-25 2013-08-08 Nikon Corp Zoom lens, optical device, and manufacturing method of zoom lens
US9645366B2 (en) 2012-01-25 2017-05-09 Nikon Corporation Zoom lens, optical apparatus, and method for manufacturing the zoom lens

Similar Documents

Publication Publication Date Title
JP3376171B2 (en) Zoom lens
JP2000284177A (en) Three-group zoom lens
JPH08313803A (en) Wide angle lens
JPH1195105A (en) Focusing method of variable power optical system
JPH11160620A (en) Zoom lens
JP3495772B2 (en) Zoom lens and television camera having the same
JP2001021804A (en) Zoom lens
JPH0990221A (en) High-power zoom lens
JPH10282419A (en) Zoom lens
JPH06281861A (en) Small magnification lens
JP3412908B2 (en) Zoom lens
JPH0833514B2 (en) Compact high-magnification zoom lens
JP2006139187A (en) Zoom lens
JP2000284174A (en) Zoom lens
JP4194297B2 (en) Optical system capable of photographing at close range and optical apparatus using the same
JPH08114744A (en) Focusing system of zoom lens
JP4454731B2 (en) Zoom lens
JPH116958A (en) Zoom lens
JP2546293B2 (en) Small zoom lens
JPH08110470A (en) Wide-angle zoom lens
JPH08201696A (en) Zoom lens
JP3423508B2 (en) Rear focus zoom lens
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JPH08146294A (en) Zoom lens
JPH1144846A (en) Zoom lens