JPH08226909A - Catalytic combustion type carbon monoxide gas sensor - Google Patents
Catalytic combustion type carbon monoxide gas sensorInfo
- Publication number
- JPH08226909A JPH08226909A JP3329995A JP3329995A JPH08226909A JP H08226909 A JPH08226909 A JP H08226909A JP 3329995 A JP3329995 A JP 3329995A JP 3329995 A JP3329995 A JP 3329995A JP H08226909 A JPH08226909 A JP H08226909A
- Authority
- JP
- Japan
- Prior art keywords
- carbon monoxide
- gas sensor
- type carbon
- monoxide gas
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
(57)【要約】
【目的】一酸化炭素ガスのみに高い感度を有するガス選
択性の良好な接触燃焼式一酸化炭素ガスセンサを提供す
る。
【構成】ブリッジ回路の枝辺に組み込まれて用いられる
ガス検知素子3と補償素子4とが、絶縁体のベース5に
貫通固定されている金属製のピン6に保持され、キャッ
プを被せられている接触燃焼式一酸化炭素ガスセンサに
おいて、ガス検知素子3は、測温抵抗体および測温抵抗
体を被覆する酸化燃焼触媒層からなり、酸化燃焼触媒層
は金触媒を担持したα酸化第二鉄微粉末と、白金触媒と
パラジウム触媒とを担持したアルミナ粉末との混合物の
焼結体であり、補償素子4は、測温抵抗体および測温抵
抗体を被覆する金属酸化物層とからなり、金属酸化物層
はα酸化第二鉄微粉末とアルミナ粉末との混合物の焼結
体である。また、素子にはガラス繊維濾紙とポリフロン
フィルタよりなるキャップ8が被せられている。
(57) [Summary] [Object] To provide a catalytic combustion type carbon monoxide gas sensor having high gas selectivity and having high sensitivity only to carbon monoxide gas. A gas detecting element 3 and a compensating element 4, which are used by being incorporated in a branch side of a bridge circuit, are held by a metal pin 6 which is fixed through a base 5 made of an insulating material and covered with a cap. In the catalytic combustion type carbon monoxide gas sensor, the gas detection element 3 is composed of a resistance temperature detector and an oxidation combustion catalyst layer covering the resistance temperature detector, and the oxidation combustion catalyst layer is an α-ferric oxide carrying a gold catalyst. The compensating element 4 is a sintered body of a mixture of fine powder and alumina powder carrying a platinum catalyst and a palladium catalyst, and the compensating element 4 comprises a resistance temperature detector and a metal oxide layer covering the resistance temperature detector, The metal oxide layer is a sintered body of a mixture of α-ferric oxide fine powder and alumina powder. The element is covered with a cap 8 made of glass fiber filter paper and polyflon filter.
Description
【0001】[0001]
【産業上の利用分野】本発明はガス機器の不完全燃焼の
検知に適用する、特に一酸化炭素ガスに対する選択性が
良好な接触燃焼式一酸化炭素ガスセンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalytic combustion type carbon monoxide gas sensor applicable to detection of incomplete combustion of a gas appliance, and particularly to a carbon monoxide gas sensor having good selectivity for carbon monoxide gas.
【0002】[0002]
【従来の技術】一酸化炭素ガスを検出するセンサとして
は現在、赤外線ガスセンサ,半導体式ガスセンサおよび
接触燃焼式一酸化炭素ガスセンサが知られている。赤外
線ガスセンサは赤外線のガスの吸収を利用するものであ
り、高精度で信頼性が高いが高価である。半導体式ガス
センサは酸化物半導体のガスの吸着による抵抗値の変化
を利用するものであり、かなり高感度ではあるが、ガス
の選択性に欠けまた安定性も良くない。接触燃焼式一酸
化炭素ガスセンサは一酸化炭素ガスの燃焼熱を利用する
ものであるが、特に低濃度のガスを検知するのは難し
く、ガスの選択性も十分ではない。2. Description of the Related Art Infrared gas sensors, semiconductor gas sensors and catalytic combustion carbon monoxide gas sensors are currently known as sensors for detecting carbon monoxide gas. Infrared gas sensors use absorption of infrared gas, and are highly accurate and highly reliable, but expensive. The semiconductor gas sensor utilizes a change in resistance value due to adsorption of a gas of an oxide semiconductor, and has a considerably high sensitivity, but lacks gas selectivity and is poor in stability. The catalytic combustion type carbon monoxide gas sensor uses the combustion heat of carbon monoxide gas, but it is difficult to detect a gas having a low concentration, and the gas selectivity is not sufficient.
【0003】図6は従来の接触燃焼式一酸化炭素ガスセ
ンサのガス検知素子を示す要部破断図である。白金コイ
ルなどの測温抵抗体1の周囲に白金とパラジウムなどの
触媒を担持しているアルミナなどの金属酸化物担体2が
焼結固着されている。補償素子はガス検知素子と同一の
構造であるが、ガス検知素子に担持されている白金およ
びパラジウム触媒に替えて酸化銅が担持されている。FIG. 6 is a fragmentary sectional view showing a gas detecting element of a conventional catalytic combustion type carbon monoxide gas sensor. A metal oxide carrier 2 such as alumina carrying a catalyst such as platinum and palladium is sintered and fixed around a resistance temperature detector 1 such as a platinum coil. The compensating element has the same structure as the gas detecting element, but copper oxide is carried in place of the platinum and palladium catalysts carried by the gas detecting element.
【0004】図7は従来の接触燃焼式一酸化炭素ガスセ
ンサの透視斜視図である。絶縁性材料のベース5に貫通
固定されているピン6の各2本にそれぞれガス検知素子
3と補償素子4とが保持されている。素子には通気のた
めの孔9が開けられているキャップ8aが被せられる。
2つの素子の間には熱遮蔽板7が立てられている。図8
は一般の接触燃焼式ガスセンサを組み込んだブリッジ回
路の結線図である。ガス検知素子3(抵抗値R3)と補
償素子4(抵抗値R4)が2つの隣接する枝辺に直列接
続されており、他の2つの隣接する枝辺には固定抵抗R
1、R2(抵抗値も表している)が直列接続されてい
る。ブリッジ回路には電源Eが接続され、素子同志の接
続点と固定抵抗同志の接続点とには負荷Vが接続されて
いる。FIG. 7 is a perspective view of a conventional catalytic combustion type carbon monoxide gas sensor. The gas detecting element 3 and the compensating element 4 are respectively held by two pins 6 which are fixed through the insulating material base 5. The element is covered with a cap 8a having holes 9 for ventilation.
A heat shield plate 7 is erected between the two elements. FIG.
FIG. 3 is a connection diagram of a bridge circuit incorporating a general catalytic combustion type gas sensor. The gas detecting element 3 (resistance value R3) and the compensating element 4 (resistance value R4) are connected in series to the two adjacent branches, and the fixed resistance R is provided on the other two adjacent branches.
1, R2 (which also indicates the resistance value) are connected in series. A power supply E is connected to the bridge circuit, and a load V is connected to the connection point between the elements and the connection point between the fixed resistors.
【0005】一酸化炭素ガスが存在しないときはブリッ
ジ回路はバランスして、R1×R4=R2×R3の状態
にあり、負荷Vにかかる電圧は0Vである。雰囲気に一
酸化炭素ガスが含まれるとガス検知素子3において一酸
化炭素が燃焼し、白金コイルの温度が上昇して、その抵
抗値R4が増大する。これに対し補償素子4においては
一酸化炭素ガスは燃焼せずその抵抗値R3は変化しな
い。このようにしてブリッジ回路の平衡が破れて負荷V
に電圧が印加される。When the carbon monoxide gas is not present, the bridge circuit is in balance and in the state of R1 × R4 = R2 × R3, and the voltage applied to the load V is 0V. When the atmosphere contains carbon monoxide gas, carbon monoxide burns in the gas detection element 3, the temperature of the platinum coil rises, and its resistance value R4 increases. On the other hand, in the compensating element 4, the carbon monoxide gas does not burn and its resistance value R3 does not change. In this way, the balance of the bridge circuit is broken and the load V
A voltage is applied to.
【0006】雰囲気にアルコールガスが含まれる場合
は、アルコールガスはガス検知素子3と補償素子4の両
方で燃焼する。そのために抵抗R3、R4はともに増大
してブリッジ回路のバランスは崩れず電圧は発生しな
い。このようにしてアルコールガスに対する補償が行わ
れる。この補償素子4は温度に対する補償を行ってい
る。室温の変化により補償素子4またはガス検知素子3
の白金コイルの温度が変化しても両者が同一の温度にあ
る限り温度係数が同一であるためにブリッジ回路の平衡
は崩れない。白金コイルに固着されているアルミナは補
償素子とガス検知素子とにおいて、同形であり、これら
の燃焼熱を保持して両者を同一の温度に維持する。When the atmosphere contains alcohol gas, the alcohol gas burns in both the gas detecting element 3 and the compensating element 4. Therefore, the resistors R3 and R4 both increase, the balance of the bridge circuit is not lost, and no voltage is generated. In this way, compensation for alcohol gas is performed. The compensating element 4 compensates for temperature. Compensation element 4 or gas detection element 3 depending on changes in room temperature
Even if the temperature of the platinum coil changes, the equilibrium of the bridge circuit is not broken because the temperature coefficients are the same as long as they are at the same temperature. Alumina fixed to the platinum coil has the same shape in the compensating element and the gas detecting element, and retains the combustion heat of these elements and maintains them at the same temperature.
【0007】このような従来の接触燃焼式一酸化炭素ガ
スセンサのガス検知素子および補償素子は次のようにし
て製造される。直径60μmの白金線を用い、外形0.
6mm,巻回数10ターン,長さ1.5mmのコイルを
製造する。白金コイルにアルミナ粉末とアルミナゾルの
混合したペーストを付着させ800℃で焼成してアルミ
ナ担体を白金コイルに固着させる。アルミナ担体を塩化
白金酸と塩化パラジウムを溶かした水溶液中に含浸し、
600℃で加熱分解して、白金と酸化パラジウムの混合
触媒をアルミナ担体に担持させる。The gas detecting element and compensating element of such a conventional catalytic combustion type carbon monoxide gas sensor are manufactured as follows. Using a platinum wire with a diameter of 60 μm, the outer shape is 0.
A coil having a length of 6 mm, a winding number of 10 turns, and a length of 1.5 mm is manufactured. A paste containing a mixture of alumina powder and alumina sol is attached to the platinum coil and fired at 800 ° C. to fix the alumina carrier to the platinum coil. Impregnate the alumina carrier into an aqueous solution of chloroplatinic acid and palladium chloride,
It is decomposed by heating at 600 ° C. to support a mixed catalyst of platinum and palladium oxide on an alumina carrier.
【0008】同様に、補償素子4はガス検知素子と同形
の白金コイルにアルミナ粉末とアルミナゾルの混合した
ペーストを付着させ、800℃で焼成し白金コイルに固
着させ、アルミナ担体とする。アルミナ担体を硫酸銅を
溶かした水溶液中に含浸し、加熱分解して、酸化銅触媒
を担持させる。上述のような従来の接触燃焼式一酸化炭
素ガスセンサは動作原理が簡単なこと、長期安定性が比
較的優れていること、周囲温度や湿度による影響が少な
い等の特徴を有し、約300mWの消費電力で一酸化炭
素中毒防止用として0.1ないし1%の濃度範囲のガス
検知に広く使用されている。Similarly, as the compensating element 4, a paste having a mixture of alumina powder and alumina sol is attached to a platinum coil having the same shape as the gas detecting element, and the paste is baked at 800 ° C. and fixed to the platinum coil to form an alumina carrier. An alumina carrier is impregnated in an aqueous solution in which copper sulfate is dissolved and decomposed by heating to support a copper oxide catalyst. The conventional catalytic combustion type carbon monoxide gas sensor as described above has features such as a simple operation principle, relatively long-term stability, and little influence by ambient temperature and humidity. It is widely used for gas detection in the concentration range of 0.1 to 1% for preventing carbon monoxide poisoning with power consumption.
【0009】[0009]
【発明が解決しようとする課題】しかしながら、上述の
ような従来の接触燃焼式一酸化炭素ガスセンサは一酸化
炭素のみならず水素に対しても高い感度を有し、不完全
燃焼の度合いにより一酸化炭素と水素の割合が変わる
と、出力も変化してしまうという問題がある。この発明
は上述の点に鑑みてなされ、その目的は、一酸化炭素の
みに高い感度を有しガス選択性の良好な、新規の接触燃
焼式一酸化炭素ガスセンサを提供することにある。However, the conventional catalytic combustion type carbon monoxide gas sensor as described above has a high sensitivity not only to carbon monoxide but also to hydrogen, and it depends on the degree of incomplete combustion. When the ratio of carbon and hydrogen changes, there is a problem that the output also changes. The present invention has been made in view of the above points, and an object thereof is to provide a novel catalytic combustion type carbon monoxide gas sensor having high sensitivity only to carbon monoxide and good gas selectivity.
【0010】[0010]
【課題を解決するための手段】上述の目的を達成するた
めに、本発明は、ブリッジ回路の枝辺に組み込まれて用
いられるガス検知素子と補償素子とが、絶縁体のベース
に貫通固定されている金属製のピンに保持され、キャッ
プを被せられている接触燃焼式一酸化炭素ガスセンサに
おいて、ガス検知素子は、測温抵抗体および測温抵抗体
を被覆する酸化燃焼触媒層からなり、酸化燃焼触媒層は
金触媒を担持したα酸化第二鉄微粉末と、白金触媒とパ
ラジウム触媒とを担持したアルミナ粉末との混合物の焼
結体であり、補償素子は、測温抵抗体および測温抵抗体
を被覆する金属酸化物層とからなり、金属酸化物層はα
酸化第二鉄微粉末とアルミナ粉末との混合物の焼結体で
あるものとする。 前記2つの素子は、それぞれの前記
混合物がアルミナゾルとコロイダルシリカと混合され、
焼結されたものであると良い。In order to achieve the above-mentioned object, according to the present invention, a gas detecting element and a compensating element, which are used by being incorporated in a side of a bridge circuit, are fixed through a base of an insulator. In a catalytic combustion carbon monoxide gas sensor that is held by a metal pin that is covered with a cap, the gas detection element consists of a resistance temperature detector and an oxidation combustion catalyst layer that covers the resistance temperature detector. The combustion catalyst layer is a sintered body of a mixture of α-ferric oxide fine powder supporting a gold catalyst and alumina powder supporting a platinum catalyst and a palladium catalyst, and the compensating element includes a resistance temperature detector and a temperature measuring resistor. It consists of a metal oxide layer covering the resistor, and the metal oxide layer is α
It shall be a sintered body of a mixture of ferric oxide fine powder and alumina powder. The two elements are formed by mixing each of the mixtures with alumina sol and colloidal silica,
It is good that it is sintered.
【0011】ガス検知素子と補償素子とはガラス繊維濾
紙とポリフロンフィルタよりなるキャップで覆われてい
ると良い。The gas detecting element and the compensating element are preferably covered with a cap made of glass fiber filter paper and polyflon filter.
【0012】[0012]
【作用】この発明によれば、ガス検知素子は、常温で一
酸化炭素を酸化燃焼できる能力を有する酸化第二鉄担体
に金を担持した触媒が酸化燃焼層として用いられている
ので、150℃以下の比較的低温で一酸化炭素を燃焼さ
せることができる。また、水素を燃焼させることもでき
る。、一方、本発明の補償素子には、触媒を担持しな
い、α酸化第二鉄とアルミナの混合物を用いているた
め、一酸化炭素を燃焼させることは出来ないが、水素を
燃焼することができる。従って、本発明の接触燃焼式一
酸化炭素ガスセンサはブリッジ回路に組み込まれたと
き、一酸化炭素に対しては比較的低温で従来のものに比
べ1.5倍の感度を持ち、水素に対しては従来のものに
比べ1/2以下の感度をもつ。According to the present invention, in the gas detecting element, the catalyst in which gold is supported on the ferric oxide carrier having the ability to oxidize and burn carbon monoxide at room temperature is used as the oxidative combustion layer, and therefore, the temperature is 150 ° C. Carbon monoxide can be burned at the following relatively low temperatures. It is also possible to burn hydrogen. On the other hand, since the compensating element of the present invention uses a mixture of α-ferric oxide and alumina which does not carry a catalyst, carbon monoxide cannot be burned, but hydrogen can be burned. . Therefore, when the catalytic combustion type carbon monoxide gas sensor of the present invention is incorporated in a bridge circuit, it has a sensitivity of 1.5 times as much as that of a conventional one at a relatively low temperature for carbon monoxide and a sensitivity for hydrogen. Has a sensitivity less than half that of the conventional one.
【0013】測温抵抗体コイルにα酸化第二鉄微粉末に
金触媒を担持した一酸化炭素酸化燃焼触媒と白金、パラ
ジウム担持アルミナ触媒を固着させる場合に、アルミナ
ゾルとコロイダルシリカを混合して用いることにより、
低温で焼結することが可能となり、高温焼結による触媒
の性能を落とすことがなく固着させることができる。ガ
ス検知素子と補償素子とが、ガラス繊維濾紙とポリフロ
ンフィルタのキャップで覆われているため、フィルタは
大気中のNOx SOx などの被毒物質を吸着し、被毒物
質をキャップ内のガス検知素子に触れさせないため、被
毒物質から素子を保護することが期待できる。また、こ
のキャップは風による、素子の温度変動を抑えるので、
ガスセンサの出力の安定性の向上が期待できる。Alumina sol and colloidal silica are used as a mixture when a carbon monoxide oxidation combustion catalyst carrying a gold catalyst on α-ferric oxide fine powder and an alumina catalyst carrying platinum and palladium are adhered to the resistance temperature detector coil. By
It becomes possible to sinter at a low temperature, and it is possible to fix the catalyst without deteriorating the performance of the catalyst due to high temperature sintering. Since the gas detection element and the compensating element are covered with the glass fiber filter paper and the cap of the polyflon filter, the filter adsorbs poisoning substances such as NO x SO x in the atmosphere, and the poisoning substances are stored in the cap. Since the gas detection element is not touched, it can be expected to protect the element from poisonous substances. Also, since this cap suppresses the temperature fluctuation of the element due to wind,
It is expected that the output stability of the gas sensor will be improved.
【0014】[0014]
【実施例】以下に本発明に係るガスセンサの実施例につ
いて図面に基づいて説明する。図1にこの発明に係る接
触燃焼式一酸化炭素ガスセンサの斜視図を示す。耐熱性
樹脂製のベース5にはピン6が4本貫通して固定されて
いる。各2本ずつにガス検知素子3および補償素子4が
保持される。ガス検知素子と補償素子の間には熱遮蔽板
7が配置される。これはセンサ内での熱対流を防ぎ、取
り付けの姿勢差による出力変動を小さくするためのもの
である。Embodiments of the gas sensor according to the present invention will be described below with reference to the drawings. FIG. 1 shows a perspective view of a catalytic combustion type carbon monoxide gas sensor according to the present invention. Four pins 6 are fixed to the base 5 made of heat-resistant resin so as to penetrate therethrough. The gas detecting element 3 and the compensating element 4 are held by two pieces each. A heat shield 7 is arranged between the gas sensing element and the compensating element. This is to prevent thermal convection in the sensor and reduce the output fluctuation due to the mounting posture difference.
【0015】測温抵抗体として、直径20μmの白金線
を100μmの間隔で巻き回数12ターン巻いて用い
た。ここでは金属線に白金を用いているが温度係数が大
きく、体積固有抵抗が大きな金属であればこれに限定さ
れるものではなく、ニッケルまたはニッケル合金などを
用いることができる。本発明のガス検知素子は白金測温
抵抗体コイル上に、コイル全体を覆うように、金触媒を
担持したα酸化第二鉄微粉末と、白金とパラジウムを担
持したアルミナ粉末との混合物の焼結体である酸化燃焼
触媒層を被覆してなるものであり、補償素子は測温抵抗
体コイルにα酸化第二鉄微粉末とアルミナ粉末との混合
物の焼結体である金属酸化物層を被覆してなるものであ
る。As the resistance temperature detector, a platinum wire having a diameter of 20 μm was wound at an interval of 100 μm and wound 12 times. Although platinum is used for the metal wire here, it is not limited to this as long as the metal has a large temperature coefficient and a large volume resistivity, and nickel or nickel alloy can be used. The gas sensing element of the present invention comprises a platinum resistance thermometer coil, and a mixture of α-ferric oxide fine powder carrying a gold catalyst and alumina powder carrying platinum and palladium so as to cover the entire coil. The oxidization combustion catalyst layer, which is a unit, is coated, and the compensating element is a resistance temperature sensor coil that is provided with a metal oxide layer that is a sintered body of a mixture of α-ferric oxide fine powder and alumina powder. It is formed by coating.
【0016】このようなガス検知素子は以下のようにし
て製造される。測温抵抗体の製造方法は次の通りであ
る。直径0.6mm長さ1.2mmに太さ20μmの白
金線1を100μmの間隔で巻き回数12ターン巻かれ
る。このコイルはほぼ6Ωの抵抗値を有し、従来の素子
に用いられるものの5倍以上の抵抗値である。コイルの
両端は電極とのリードとして10mm残しておく。Such a gas detecting element is manufactured as follows. The method of manufacturing the resistance temperature detector is as follows. A platinum wire 1 having a diameter of 0.6 mm and a length of 1.2 mm and a thickness of 20 μm is wound 12 turns at intervals of 100 μm. This coil has a resistance value of about 6Ω, which is five times or more that of a conventional element. Both ends of the coil are left as 10 mm as leads for the electrodes.
【0017】次にガス検知素子の製造法を述べる。特開
昭60−238148号公報に開示された方法に従い、
硝酸第二鉄5水塩46.04gと塩化金酸4水塩2.4
7gを600mlの超純水に撹拌しながら添加し、添加
終了後も70℃の温度で2時間撹拌を続けた。続いて、
炭酸ナトリウム29.04gを400mlの超純水に溶
かし、70℃の温度で1時間撹拌した。硝酸第二鉄と塩
化金酸が溶けた水溶液を炭酸ナトリウム水溶液中に撹拌
しながら10分間で添加し、添加終了後も1時間撹拌を
続ける。撹拌後得られた沈殿物を数回遠心分離を行い、
十分に水洗いし、所定のpHに調整した。その後、吸引
濾過を行ったものを真空凍結乾燥で10時間乾燥した。
得られた粉末を電気炉で400℃,4時間の熱処理を行
った。Next, a method of manufacturing the gas detecting element will be described. According to the method disclosed in JP-A-60-238148,
Ferric nitrate pentahydrate 46.04 g and chloroauric acid tetrahydrate 2.4
7 g was added to 600 ml of ultrapure water while stirring, and stirring was continued for 2 hours at a temperature of 70 ° C. even after the addition was completed. continue,
29.04 g of sodium carbonate was dissolved in 400 ml of ultrapure water and stirred at a temperature of 70 ° C. for 1 hour. An aqueous solution in which ferric nitrate and chloroauric acid are dissolved is added to the sodium carbonate aqueous solution with stirring for 10 minutes, and stirring is continued for 1 hour after the addition is completed. The precipitate obtained after stirring is centrifuged several times,
It was thoroughly washed with water and adjusted to a predetermined pH. Then, the product obtained by suction filtration was dried by vacuum freeze drying for 10 hours.
The obtained powder was heat-treated at 400 ° C. for 4 hours in an electric furnace.
【0018】次に塩化白金酸と塩化パラジウムを純水に
所定量溶かした液にγ−アルミナ粉末を入れ、撹拌し蒸
発乾固したものを粉砕し、電気炉で600℃で1時間熱
処理した。以上のように調整された、アルミナに白金と
パラジウムを担持した触媒粉末と先程のα酸化鉄に金を
担持した触媒粉末とを1:1の割合で混合し、良く粉砕
し一酸化炭素燃焼触媒を調整した。この比率は1:0.
8〜1.2が良く、α酸化鉄触媒が多いと、焼結が困難
となり、アルミナ系触媒が多いとガスセンサの出力が不
足する。Then, γ-alumina powder was added to a liquid obtained by dissolving a predetermined amount of chloroplatinic acid and palladium chloride in pure water, stirred, evaporated to dryness, pulverized, and heat-treated in an electric furnace at 600 ° C. for 1 hour. A carbon monoxide combustion catalyst prepared by mixing the catalyst powder prepared by supporting platinum and palladium on alumina and the catalyst powder prepared by carrying gold on α iron oxide prepared as described above at a ratio of 1: 1 and pulverized well. Was adjusted. This ratio is 1: 0.
A value of 8 to 1.2 is good, and if the α-iron oxide catalyst is large, sintering becomes difficult, and if the alumina-based catalyst is large, the output of the gas sensor is insufficient.
【0019】この一酸化炭素燃焼触媒にコロイダルシリ
カとアルミナゾル1:1に混合したバインダーを40重
量%の量で加え混合し、ペーストにした。このコロイダ
ルシリカとアルミナゾルの混合物は触媒粉末に適当な粘
度と表面張力を持たせ塗布しやすくするという目的と難
焼結性の触媒を低温で焼結出来るようにするという目的
がある。得られたペーストを測温抵抗体のコイル部分を
覆うように塗布し、室温で2時間ほど乾燥させる。乾燥
後、電気炉を用い300ないし400℃の温度で3ない
し5時間熱処理を行った。コロイダルシリカとアルミナ
ゾルバインダーの働きにより、この条件で十分な機械的
強度を有する焼結体を得ることができる。バインダーの
量は30〜40重量%が良く、これより少ないとペース
トが固すぎ、多いとペーストの粘度が低すぎ、いずれの
場合も測温抵抗体1への塗布が困難となる。To this carbon monoxide combustion catalyst, a binder mixed with colloidal silica and alumina sol 1: 1 in an amount of 40% by weight was added and mixed to form a paste. This mixture of colloidal silica and alumina sol has the purpose of providing the catalyst powder with an appropriate viscosity and surface tension to facilitate coating and for the purpose of enabling the sintering of a hardly sinterable catalyst at a low temperature. The obtained paste is applied so as to cover the coil portion of the resistance temperature detector, and dried at room temperature for about 2 hours. After drying, heat treatment was performed in an electric furnace at a temperature of 300 to 400 ° C. for 3 to 5 hours. The function of colloidal silica and alumina sol binder makes it possible to obtain a sintered body having sufficient mechanical strength under these conditions. The amount of the binder is preferably 30 to 40% by weight. When the amount is less than the above range, the paste is too hard, and when the amount is more than the above range, the viscosity of the paste is too low.
【0020】本発明の補償素子は次のようにして製造さ
れる。硝酸第二鉄5水塩48.47gを600mlの超
純水に撹拌しながら添加し、添加終了後も70℃の温度
で2時間撹拌を続けた。続いて、炭酸ナトリウム29.
04gを400mlの超純水に溶かし、70℃の温度で
1時間撹拌した。硝酸第二鉄が溶けた水溶液を炭酸ナト
リウム水溶液中に撹拌しながら10分間で添加し、添加
終了後も1時間撹拌を続ける。撹拌後得られた沈殿物を
数回遠心分離を行い、十分に水洗いし、所定のpHに調
整した。その後、吸引濾過を行ったものを真空凍結乾燥
で10時間乾燥した。得られた粉末を電気炉で400
℃,4時間の熱処理を行った。この粉末にアルミナ粉末
を1:1に混ぜ良く撹拌し、粉砕した。The compensating element of the present invention is manufactured as follows. Ferric nitrate pentahydrate (48.47 g) was added to 600 ml of ultrapure water with stirring, and the stirring was continued at a temperature of 70 ° C. for 2 hours after the addition was completed. Then, sodium carbonate 29.
04 g was dissolved in 400 ml of ultrapure water and stirred at a temperature of 70 ° C. for 1 hour. An aqueous solution in which ferric nitrate is dissolved is added to the sodium carbonate aqueous solution with stirring over 10 minutes, and stirring is continued for 1 hour after the addition is completed. The precipitate obtained after stirring was centrifuged several times, washed thoroughly with water, and adjusted to a predetermined pH. Then, the product obtained by suction filtration was dried by vacuum freeze drying for 10 hours. The obtained powder is 400 in an electric furnace.
Heat treatment was performed at 4 ° C. for 4 hours. Alumina powder was mixed with this powder in a ratio of 1: 1 and stirred well to be pulverized.
【0021】このようにして調整したα酸化鉄の混合粉
末にコロイダルシリカとアルミナゾルバインダーを40
重量%の量で加え混合し、ペーストにした。得られたペ
ーストを測温抵抗体1のコイル部分を覆うように塗布
し、室温で2時間ほど乾燥させる。乾燥後、電気炉を用
い300ないし400℃の温度で3ないし5時間熱処理
を行う。To the mixed powder of α-iron oxide thus prepared, 40 parts of colloidal silica and alumina sol binder are added.
A weight% amount was added and mixed to form a paste. The obtained paste is applied so as to cover the coil portion of the resistance temperature detector 1, and dried at room temperature for about 2 hours. After drying, heat treatment is performed in an electric furnace at a temperature of 300 to 400 ° C. for 3 to 5 hours.
【0022】次に、図1に示したように、ピン6の各2
本に、上記のガス検知素子3、補償素子4を接続、保持
し、キャップ8を被せる。図2は本発明に係るキャップ
の断面図である。キャップ8は、2枚の金網81で成型
されているガラス繊維濾紙82とポリフロンフィルタ8
3を挟み込んだ構造である。このキャップは風によるセ
ンサへの出力の0点変動の影響をなくし、センサへの水
分の影響や被毒物質の影響も防ぐことが出来る。Next, as shown in FIG.
The gas detecting element 3 and the compensating element 4 are connected to and held on the book, and the cap 8 is covered. FIG. 2 is a sectional view of the cap according to the present invention. The cap 8 includes a glass fiber filter paper 82 formed by two wire nets 81 and a polyflon filter 8
It is a structure in which 3 is sandwiched. This cap eliminates the influence of zero-point fluctuation of the output to the sensor due to the wind, and can also prevent the influence of moisture and poisonous substances on the sensor.
【0023】図3にこの発明に係る接触燃焼式一酸化炭
素ガスセンサの一酸化炭素に対する出力特性を示す。比
較のため、従来の接触燃焼式一酸化炭素ガスセンサの出
力も付記してある。実線イは本発明によるガスセンサの
出力であり、実線ロは従来のガスセンサの出力である。
ブリッジ回路には1Vの電圧を印加し、測温抵抗体コイ
ルには0.1Wの電力がかかっており素子の温度はほぼ
100℃である。常温CO酸化触媒を混合した本発明品
は従来品の1.5倍の出力が得られる。これは金担持酸
化鉄触媒が常温では100%のCO酸化燃焼力をもつた
めである。FIG. 3 shows the output characteristics of the catalytic combustion type carbon monoxide gas sensor according to the present invention for carbon monoxide. For comparison, the output of the conventional catalytic combustion type carbon monoxide gas sensor is also shown. The solid line a is the output of the gas sensor according to the present invention, and the solid line b is the output of the conventional gas sensor.
A voltage of 1 V is applied to the bridge circuit, a power of 0.1 W is applied to the resistance temperature detector coil, and the temperature of the element is approximately 100 ° C. The product of the present invention in which the room temperature CO oxidation catalyst is mixed can obtain an output 1.5 times that of the conventional product. This is because the gold-supported iron oxide catalyst has 100% CO oxidation combustion power at room temperature.
【0024】図4にこの発明に係る接触燃焼式一酸化炭
素ガスセンサの水素に対する出力特性を示す。比較のた
め、従来の接触燃焼式一酸化炭素ガスセンサの出力も付
記してある。実線ハは本発明によるガスセンサの出力で
あり、実線ニは従来のガスセンサの出力である。本発明
のガスセンサは従来のものに比べ水素出力が半分以下に
なっている。これは補償素子に触媒を担持しないとアル
ミナにより水素が多少燃焼されるためブリッジ出力が相
殺されるためである。FIG. 4 shows output characteristics of the catalytic combustion type carbon monoxide gas sensor according to the present invention with respect to hydrogen. For comparison, the output of the conventional catalytic combustion type carbon monoxide gas sensor is also shown. The solid line C is the output of the gas sensor according to the present invention, and the solid line D is the output of the conventional gas sensor. The hydrogen output of the gas sensor of the present invention is less than half that of the conventional one. This is because if the catalyst is not supported on the compensating element, the hydrogen is burned to some extent by the alumina and the bridge output is canceled.
【0025】図5は、この発明に係る接触燃焼式一酸化
炭素ガスセンサのCO出力の経時安定性を示す線図であ
る。比較のため、金属キャップを被せた場合も付記す
る。曲線ホはフィルタをつけた場合の出力の経時変化、
曲線ヘは金属キャップ付けた場合の出力の経時変化であ
る。経時安定性はフィルタを被せないものが時間ととも
にセンサが劣化し出力が低下するが、フィルタを被せた
ものは安定であることが判る。このガラス繊維濾紙とポ
リフロンフィルタを重ねたフィルタはセンサに対して大
気中の水分による影響と大気中の微粒子の影響を受けな
いようにすることが出来る。またセンサへの被毒物質の
影響を少なくし、風によるゼロ点変動を小さくすること
が出来る。FIG. 5 is a diagram showing the temporal stability of CO output of the catalytic combustion type carbon monoxide gas sensor according to the present invention. For the sake of comparison, the case where a metal cap is covered is also added. Curve E shows the change over time in the output when a filter is attached,
The curve F is the change over time in the output when a metal cap is attached. Regarding the temporal stability, it can be seen that the sensor without a filter deteriorates with time and the output decreases, but the filter with a filter is stable. The filter obtained by stacking the glass fiber filter paper and the polyflon filter can prevent the sensor from being affected by moisture in the atmosphere and by the particles in the atmosphere. Further, it is possible to reduce the influence of poisonous substances on the sensor and to reduce the zero point fluctuation due to wind.
【0026】[0026]
【発明の効果】この発明によれば、ガス検知素子は、常
温で一酸化炭素を酸化燃焼できる能力を有する酸化第二
鉄担体に金を担持した触媒が酸化燃焼層として用いられ
ており、補償素子には、触媒を担持しない、α酸化第二
鉄とアルミナの混合物が用いられているので、本発明の
接触燃焼式一酸化炭素ガスセンサはブリッジ回路に組み
込まれたとき、比較的低温で従来の1.5倍の一酸化炭
素に感度を持ち、水素に対しては従来のものに比べ1/
2以下の感度となる。According to the present invention, in the gas detecting element, the catalyst in which gold is carried on the ferric oxide carrier having the ability to oxidize and burn carbon monoxide at room temperature is used as the oxidative combustion layer. Since the device uses a mixture of α-ferric oxide and alumina, which does not carry a catalyst, the catalytic combustion type carbon monoxide gas sensor of the present invention has a conventional structure at a relatively low temperature when incorporated into a bridge circuit. It is 1.5 times more sensitive to carbon monoxide and is 1/1
The sensitivity is 2 or less.
【0027】測温抵抗体コイルにα酸化第二鉄微粉末に
金触媒を担持した一酸化炭素酸化燃焼触媒と白金、パラ
ジウム担持アルミナ触媒を固着させる場合に、アルミナ
ゾルとコロイダルシリカを混合して用いることにより、
低温で焼結することが可能となり、高温焼結による触媒
の性能を落とすことがなく固着させることができる。ガ
ス検知素子と補償素子とが、ガラス繊維濾紙とポリフロ
ンフィルタのキャップで覆われているため、被毒物質か
ら素子を保護することができ、信頼性が向上する。この
キャップは風による、素子の温度変動を抑え、ガスセン
サの出力の安定性が向上する。Alumina sol and colloidal silica are used as a mixture when a carbon monoxide oxidation combustion catalyst in which a gold catalyst is supported on α-ferric oxide fine powder and an alumina catalyst in which platinum and palladium are supported are fixed to the resistance temperature detector coil. By
It becomes possible to sinter at a low temperature, and it is possible to fix the catalyst without deteriorating the performance of the catalyst due to high temperature sintering. Since the gas detecting element and the compensating element are covered with the glass fiber filter paper and the cap of the polyflon filter, the element can be protected from poisoning substances and reliability is improved. This cap suppresses the temperature variation of the element due to the wind and improves the stability of the output of the gas sensor.
【0028】さらに、本発明の接触燃焼式一酸化炭素ガ
スセンサは常温で動作できるので、動作に必要な電力は
小さく、電源の負担が小さくて済み、このセンサを用い
た一酸化炭素ガス検知装置のコスト低減に寄与できる。
また、補償素子に特別に触媒を担持させなくても、アル
コールや水素の影響を受けないので、素子の製造歩留り
の向上とコスト低減に寄与できる。Further, since the catalytic combustion type carbon monoxide gas sensor of the present invention can be operated at room temperature, the electric power required for the operation is small and the load on the power source is small, and the carbon monoxide gas detecting device using this sensor can be used. It can contribute to cost reduction.
Further, even if the compensating element is not specially loaded with a catalyst, it is not affected by alcohol or hydrogen, so that it is possible to contribute to the improvement of the manufacturing yield of the element and the cost reduction.
【図1】この発明に係る接触燃焼式一酸化炭素ガスセン
サの斜視図FIG. 1 is a perspective view of a catalytic combustion type carbon monoxide gas sensor according to the present invention.
【図2】この発明に係る接触燃焼式一酸化炭素ガスセン
サのキャップの断面図FIG. 2 is a sectional view of the cap of the catalytic combustion type carbon monoxide gas sensor according to the present invention.
【図3】この発明に係る接触燃焼式一酸化炭素ガスセン
サの一酸化炭素濃度に対するブリッジ出力の線図FIG. 3 is a diagram of a bridge output with respect to the carbon monoxide concentration of the catalytic combustion type carbon monoxide gas sensor according to the present invention.
【図4】この発明に係る接触燃焼式一酸化炭素ガスセン
サの水素に対するブリッジ出力の線図FIG. 4 is a diagram of a bridge output for hydrogen of the catalytic combustion type carbon monoxide gas sensor according to the present invention.
【図5】この発明に係る素子に本発明のキャップを被せ
た接触燃焼式一酸化炭素ガスセンサの出力の経時変化を
示す線図FIG. 5 is a diagram showing changes with time in the output of a catalytic combustion type carbon monoxide gas sensor in which the element according to the present invention is covered with the cap of the present invention.
【図6】従来の接触燃焼式一酸化炭素ガスセンサのガス
検知素子を示す要部破断図FIG. 6 is a fragmentary cutaway view showing a gas detection element of a conventional catalytic combustion type carbon monoxide gas sensor.
【図7】従来の接触燃焼式一酸化炭素ガスセンサの透視
斜視図FIG. 7 is a perspective view of a conventional catalytic combustion type carbon monoxide gas sensor.
【図8】一般の接触燃焼式ガスセンサに用いられるブリ
ッジ回路の結線図FIG. 8 is a connection diagram of a bridge circuit used in a general catalytic combustion gas sensor.
1 測温抵抗体 2 担体 3 ガス検知素子 4 補償素子 5 ベース 7 熱遮蔽板 6 ピン 8 キャップ 81 金網 82 ガラス繊維濾紙 83 ポリフロンフィルタ E 電源 V 負荷 R1 抵抗 R2 抵抗 1 resistance thermometer 2 carrier 3 gas detection element 4 compensation element 5 base 7 heat shield plate 6 pin 8 cap 81 wire net 82 glass fiber filter paper 83 polyflon filter E power supply V load R1 resistance R2 resistance
Claims (3)
れるガス検知素子と補償素子とが、絶縁体のベースに貫
通固定されている金属製のピンに保持され、キャップを
被せられている接触燃焼式一酸化炭素ガスセンサにおい
て、ガス検知素子は、測温抵抗体および測温抵抗体を被
覆する酸化燃焼触媒層からなり、酸化燃焼触媒層は金触
媒を担持したα酸化第二鉄微粉末と、白金触媒とパラジ
ウム触媒とを担持したアルミナ粉末との混合物の焼結体
であり、補償素子は、測温抵抗体および測温抵抗体を被
覆する金属酸化物層とからなり、金属酸化物層はα酸化
第二鉄微粉末とアルミナ粉末との混合物の焼結体である
ことを特徴とする接触燃焼式一酸化炭素ガスセンサ。1. A contact in which a gas detecting element and a compensating element, which are used by being incorporated in a branch side of a bridge circuit, are held by a metal pin which is fixed through a base of an insulator and covered with a cap. In the combustion type carbon monoxide gas sensor, the gas detection element is composed of a resistance temperature detector and an oxidation combustion catalyst layer covering the resistance temperature detector, and the oxidation combustion catalyst layer is an α-ferric oxide fine powder carrying a gold catalyst. , A sintered body of a mixture of an alumina powder carrying a platinum catalyst and a palladium catalyst, wherein the compensating element comprises a resistance temperature detector and a metal oxide layer covering the resistance temperature detector. Is a sintered body of a mixture of α-ferric oxide fine powder and alumina powder, which is a catalytic combustion type carbon monoxide gas sensor.
スセンサにおいて、前記ガス検知素子および補償素子
は、それぞれの前記混合物がアルミナゾルおよびコロイ
ダルシリカと混合され、焼結されたものであることを特
徴とする接触燃焼式一酸化炭素ガスセンサ。2. The catalytic combustion type carbon monoxide gas sensor according to claim 1, wherein the gas detecting element and the compensating element are obtained by mixing the mixture of alumina sol and colloidal silica and sintering the mixture. A catalytic combustion type carbon monoxide gas sensor characterized by:
スセンサにおいて、ガス検知素子と補償素子とはガラス
繊維濾紙とポリフロンフィルタよりなるキャップで覆わ
れていることを特徴とする接触燃焼式一酸化炭素ガスセ
ンサ。3. The catalytic combustion type carbon monoxide gas sensor according to claim 1, wherein the gas detecting element and the compensating element are covered with a cap made of glass fiber filter paper and a polyflon filter. Type carbon monoxide gas sensor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3329995A JPH08226909A (en) | 1995-02-22 | 1995-02-22 | Catalytic combustion type carbon monoxide gas sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3329995A JPH08226909A (en) | 1995-02-22 | 1995-02-22 | Catalytic combustion type carbon monoxide gas sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH08226909A true JPH08226909A (en) | 1996-09-03 |
Family
ID=12382678
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP3329995A Pending JPH08226909A (en) | 1995-02-22 | 1995-02-22 | Catalytic combustion type carbon monoxide gas sensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH08226909A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005017242A (en) * | 2003-06-30 | 2005-01-20 | Fuji Electric Holdings Co Ltd | Thin film gas sensor and manufacturing method thereof |
| KR100806876B1 (en) * | 2006-12-14 | 2008-02-22 | 주식회사 가스트론 | Contact Combustion Gas Sensor for Combustible Gas Leak Detector |
| US8156789B2 (en) | 2008-02-05 | 2012-04-17 | Yamatake Corporation | Gas sensor chip and gas sensor provided therewith |
| JP2013160523A (en) * | 2012-02-01 | 2013-08-19 | New Cosmos Electric Corp | Gas detector ans driving method thereof |
| EP3006927A1 (en) * | 2014-10-09 | 2016-04-13 | General Electric Company | System with catalyst based co sensor and method for protecting the sensor against sulfur poison and coke deposition |
| CN109917069A (en) * | 2019-04-16 | 2019-06-21 | 泰州职业技术学院 | A kind of novel catalytic combustion type gas sensor |
-
1995
- 1995-02-22 JP JP3329995A patent/JPH08226909A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005017242A (en) * | 2003-06-30 | 2005-01-20 | Fuji Electric Holdings Co Ltd | Thin film gas sensor and manufacturing method thereof |
| KR100806876B1 (en) * | 2006-12-14 | 2008-02-22 | 주식회사 가스트론 | Contact Combustion Gas Sensor for Combustible Gas Leak Detector |
| US8156789B2 (en) | 2008-02-05 | 2012-04-17 | Yamatake Corporation | Gas sensor chip and gas sensor provided therewith |
| CN101504384B (en) | 2008-02-05 | 2012-10-03 | 阿自倍尔株式会社 | Gas sensor chip and gas sensor provided therewith |
| JP2013160523A (en) * | 2012-02-01 | 2013-08-19 | New Cosmos Electric Corp | Gas detector ans driving method thereof |
| EP3006927A1 (en) * | 2014-10-09 | 2016-04-13 | General Electric Company | System with catalyst based co sensor and method for protecting the sensor against sulfur poison and coke deposition |
| CN105572166A (en) * | 2014-10-09 | 2016-05-11 | 通用电气公司 | System using catalyst-based carbon monoxide sensor, and method for preventing catalyst-based carbon monoxide sensor from damage caused by sulfur and carbon deposition |
| CN109917069A (en) * | 2019-04-16 | 2019-06-21 | 泰州职业技术学院 | A kind of novel catalytic combustion type gas sensor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2007099933A1 (en) | Hydrogen gas sensor | |
| KR0166930B1 (en) | Contact combustion gas sensor and its manufacturing method | |
| JPH08226909A (en) | Catalytic combustion type carbon monoxide gas sensor | |
| JPH0468586B2 (en) | ||
| JP2004020377A (en) | Contact combustion type gas sensor | |
| JPH09127036A (en) | Contact combustion gas sensor | |
| JPH0875692A (en) | Contact combustion gas sensor | |
| JPS5840695B2 (en) | gas sensing element | |
| JPS6137577B2 (en) | ||
| JP3171734B2 (en) | Carbon monoxide gas sensing element | |
| JPH0875691A (en) | Gas sensor | |
| JPH07120425A (en) | Contact combustion gas sensor | |
| JP3191544B2 (en) | Thick film type gas sensor | |
| JPH0949819A (en) | Carbon monoxide gas detector | |
| JP2726886B2 (en) | Contact combustion type carbon monoxide sensor | |
| JPH07107524B2 (en) | Oxygen gas detector | |
| JPH11183421A (en) | Contact combustion type gas sensor and method of manufacturing the same | |
| JPH08313471A (en) | Contact combustion type incomplete combustion gas sensor and method of manufacturing the same | |
| JPH09145656A (en) | Contact combustion gas sensor | |
| JPH09101279A (en) | Contact combustion gas sensor | |
| JP3456346B2 (en) | Gas sensor catalyst and method for producing the same | |
| JPH0473744B2 (en) | ||
| JPH0447658Y2 (en) | ||
| JPH11271255A (en) | Semiconductor gas sensor | |
| JPH02206749A (en) | gas sensor |