JPH08253399A - Production of dnbb single crystal - Google Patents
Production of dnbb single crystalInfo
- Publication number
- JPH08253399A JPH08253399A JP8341795A JP8341795A JPH08253399A JP H08253399 A JPH08253399 A JP H08253399A JP 8341795 A JP8341795 A JP 8341795A JP 8341795 A JP8341795 A JP 8341795A JP H08253399 A JPH08253399 A JP H08253399A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- temperature
- dnbb
- organic solvent
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 169
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- PBOPJYORIDJAFE-UHFFFAOYSA-N 2,4-dinitrobromobenzene Chemical compound [O-][N+](=O)C1=CC=C(Br)C([N+]([O-])=O)=C1 PBOPJYORIDJAFE-UHFFFAOYSA-N 0.000 claims abstract description 111
- 238000000034 method Methods 0.000 claims abstract description 95
- 239000003960 organic solvent Substances 0.000 claims abstract description 48
- 238000004090 dissolution Methods 0.000 claims description 35
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical group CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 20
- 239000002904 solvent Substances 0.000 claims description 18
- 238000001556 precipitation Methods 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 8
- 230000006866 deterioration Effects 0.000 claims description 8
- 239000011261 inert gas Substances 0.000 claims description 6
- 150000002576 ketones Chemical class 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 108
- 230000008859 change Effects 0.000 description 29
- 239000007789 gas Substances 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 11
- 239000000126 substance Substances 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000000935 solvent evaporation Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000012047 saturated solution Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- LSKONYYRONEBKA-UHFFFAOYSA-N 2-Dodecanone Chemical compound CCCCCCCCCCC(C)=O LSKONYYRONEBKA-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- AKGGYBADQZYZPD-UHFFFAOYSA-N benzylacetone Chemical compound CC(=O)CCC1=CC=CC=C1 AKGGYBADQZYZPD-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000004854 X-ray topography Methods 0.000 description 1
- GMITUCVJMILJSB-UHFFFAOYSA-N [1,4]benzoxazino[3,2-b][1,4]benzoxazine Chemical compound C1=CC=C2OC3=NC4=CC=CC=C4OC3=NC2=C1 GMITUCVJMILJSB-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000008710 crystal-8 Substances 0.000 description 1
- 239000011549 crystallization solution Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- ZAJNGDIORYACQU-UHFFFAOYSA-N methyl n-octyl ketone Natural products CCCCCCCCC(C)=O ZAJNGDIORYACQU-UHFFFAOYSA-N 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 1
- RIPZIAOLXVVULW-UHFFFAOYSA-N pentane-2,4-dione Chemical compound CC(=O)CC(C)=O.CC(=O)CC(C)=O RIPZIAOLXVVULW-UHFFFAOYSA-N 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、3,9−ジニトロ−5
a,6,11a,12−テトラヒドロ[1,4]ベンズ
オキサジノ[3,2−b][1,4]ベンズオキサジン
(本明細書において「DNBB」という)の単結晶の製
造方法に関する。DNBB単結晶は大きな2次非線形光
学効果を持ち、光学および情報分野、特に光通信、光記
録などに好適に用いられる。This invention relates to 3,9-dinitro-5
The present invention relates to a method for producing a single crystal of a, 6,11a, 12-tetrahydro [1,4] benzoxazino [3,2-b] [1,4] benzoxazine (herein referred to as "DNBB"). The DNBB single crystal has a large second-order nonlinear optical effect, and is preferably used in the fields of optics and information, especially optical communication, optical recording and the like.
【0002】[0002]
【従来の技術】DNBB単結晶は、特開平1−4538
8号で開示された、高性能2次非線形光学結晶である。
DNBBは、単結晶体として用いることにより、高い2
次非線形光学効果を発揮する。そのため、DNBBの単
結晶製造法の確立が望まれていた。2. Description of the Related Art DNBB single crystal is disclosed in Japanese Patent Laid-Open No. 1-4538.
It is a high-performance second-order nonlinear optical crystal disclosed in No. 8.
DNBB has a high 2 by using it as a single crystal.
Next, it exerts a nonlinear optical effect. Therefore, it has been desired to establish a method for producing a single crystal of DNBB.
【0003】一般に、有機単結晶の製造法としては、 1)結晶化させたい物質を溶質として結晶化溶液を調製
し、その後、溶液より何等かの方法で、溶質を再析出さ
せ単結晶化する方法(以下、溶液法と呼ぶ)、 2)結晶化させたい物質を溶融した後、再び融点以下の
温度に下げ単結晶を得る方法(以下、溶融法と呼ぶ)、 3)結晶化させたい物質を、昇華等の現象を利用して気
相状態にし、その後、気相状態の物質を再び固化するこ
とで単結晶を得る方法(以下、気相法と呼ぶ)、の3つ
がある。これらの方法については多くの解説がある。例
えば、Advanced Crystal Growth ,P.M.Dryburgh et al.
edit. 1987, Prentice Hall International(UK)Ltd.
中、p25〜p178には溶融法に関する記事が、また
p221〜p288には溶液法に関する記事が、さらに
はp289〜p434には気相法による結晶製造に関す
る記事が記載されている。さらに同誌上、p179〜p
220では、特に有機単結晶の製造法に関する記事が記
載されている。Generally, as a method for producing an organic single crystal, 1) a crystallization solution is prepared using a substance to be crystallized as a solute, and then the solute is re-precipitated from the solution by some method to form a single crystal. Method (hereinafter referred to as a solution method), 2) A method of melting a substance to be crystallized and then lowering the temperature to a temperature below the melting point to obtain a single crystal (hereinafter referred to as a melting method), 3) A substance to be crystallized Is made into a gas phase state by utilizing a phenomenon such as sublimation, and then a single crystal is obtained by solidifying the substance in the gas phase state again (hereinafter referred to as a gas phase method). There are many explanations about these methods. For example, Advanced Crystal Growth, PMDryburgh et al.
edit. 1987, Prentice Hall International (UK) Ltd.
Among them, articles about the melting method are described in p25 to p178, articles about the solution method are described in p221 to p288, and articles about crystal production by a gas phase method are described in p289 to p434. Furthermore, in the same magazine, p179-p
At 220, an article is specifically described regarding a method for producing an organic single crystal.
【0004】DNBBは、特開平1−45388号に記
載のように、融点が存在せず、常圧下で280℃付近で
分解してしまう。従って、溶融法による単結晶製造は用
いることができない。また、その分解温度から容易に想
像できるように昇華性が低く、気相法による単結晶製造
も適用が困難である。従って、専ら溶液法による単結晶
製造が適用されてきた。As described in JP-A-1-45388, DNBB has no melting point and decomposes at around 280 ° C. under normal pressure. Therefore, single crystal production by the melting method cannot be used. Further, the sublimability is low as can be easily imagined from the decomposition temperature, and it is difficult to apply the single crystal production by the vapor phase method. Therefore, single crystal production by the solution method has been applied exclusively.
【0005】溶液法による結晶製造法においては、何ら
かの方法で溶液を飽和状態にし、溶質を再析出させる必
要がある。その方法には、 ア)溶液中の溶媒を蒸発させ、溶質の析出を行う方法
(以下、溶媒蒸発法と呼ぶ)、 イ)溶液温度を変化させ、温度変化による溶解度差分の
溶質を析出させる方法(以下、温度変化法と呼ぶ)、の
ふたつがある。In the crystal production method by the solution method, it is necessary to make the solution saturated by some method and reprecipitate the solute. The methods are: a) a method of evaporating the solvent in the solution to precipitate the solute (hereinafter referred to as solvent evaporation method), and b) a method of changing the solution temperature to precipitate a solute having a difference in solubility due to temperature change. (Hereinafter referred to as the temperature change method).
【0006】ア)の溶媒蒸発法を用いたDNBBの結晶
製造法については、ケトン系等の有機溶媒を用いて、D
NBB単結晶を得る方法が、特開平1−45388号に
記載されている。Regarding the method for producing a crystal of DNBB using the solvent evaporation method of a), an organic solvent such as a ketone system is used, and
A method for obtaining an NBB single crystal is described in JP-A-1-45388.
【0007】溶媒蒸発法による単結晶製造法では、単結
晶製造に適当な速度で溶媒を蒸発させなければならな
い。しかし、容器の形状や温度、溶媒の種類、雰囲気
等、多くの要因を適切に組合わせる必要があり、溶媒の
蒸発速度を正確に制御することは極めて難しい。そのた
め、溶液が過飽和状態になり、溶質の析出が不安定にな
りやすい。この状態では、溶液中の不純物や容器壁面の
傷や汚染部分から、多数の微結晶もしくは多結晶(以
下、雑晶と呼ぶ)が析出することが多い。そのため、析
出した溶質の多くは、雑晶の発生に消費され、大型単結
晶を得ることは難しくなる。つまり、溶媒蒸発法を用い
たDNBBの単結晶製造法では、溶媒の蒸発制御が難し
いため、大型単結晶を得るには再現性に乏しいことが重
大な問題となっていた。In the method for producing a single crystal by the solvent evaporation method, the solvent must be evaporated at a rate suitable for producing the single crystal. However, it is necessary to appropriately combine many factors such as the shape and temperature of the container, the type of solvent, and the atmosphere, and it is extremely difficult to accurately control the evaporation rate of the solvent. Therefore, the solution is in a supersaturated state, and solute precipitation tends to be unstable. In this state, many microcrystals or polycrystals (hereinafter referred to as miscellaneous crystals) are often precipitated from impurities in the solution, scratches on the wall surface of the container, or contaminated portions. Therefore, most of the deposited solutes are consumed for the generation of miscellaneous crystals, and it becomes difficult to obtain a large single crystal. That is, in the method for producing a single crystal of DNBB using the solvent evaporation method, it is difficult to control the evaporation of the solvent, so that it is a serious problem that the reproducibility is poor to obtain a large single crystal.
【0008】一方、イ)の温度変化法では、溶質の析出
量の制御は、溶液の温度を制御することで対処すること
ができる。そのため、溶媒蒸発法に較べれば、比較的容
易に、溶質の析出量を制御することができると期待され
る。この方法による結晶化については、多くの成書に解
説があり、例えば、第4版実験化学講座2 基本操作II
日本化学会編 丸善 p354〜p364や、R.N.Hooper,B.
J.McArdle,R.S.Narangand J.N.Sherwood, Crystal Grow
th, 2nd ed.,Ed. B. Pamplin(Pergamon,Oxford,1975)p.
395 といったものには、有機材料の単結晶化に溶媒蒸発
法を利用した事例や、方法についての詳しい説明がなさ
れている。On the other hand, in the temperature change method of b), the amount of solute deposited can be controlled by controlling the temperature of the solution. Therefore, it is expected that the amount of solute deposited can be controlled relatively easily as compared with the solvent evaporation method. Crystallization by this method is explained in many books, for example, 4th edition Experimental Chemistry Course 2 Basic Operation II
The Chemical Society of Japan Maruzen p354-p364 and RN Hooper, B.
J. McArdle, RSNarangand JNSherwood, Crystal Grow
th, 2nd ed., Ed. B. Pamplin (Pergamon, Oxford, 1975) p.
For example, the case of using the solvent evaporation method for single crystallization of organic materials and detailed description of the method are given in 395 and the like.
【0009】DNBBにおいて、温度変化法を利用した
ものとしては、特開平5−186093号公報に記載さ
れている。ただし、ここで記載されている方法では、溶
液温度を変化させる事でDNBB溶質を析出させていく
ため、溶質の析出量を精密に制御することが難しいこと
や、変化をつけられる温度幅に装置上の制約などにより
限界が存在するため、大型のDNBB単結晶を得るため
には、装置始動時において、有機溶媒溶液量を大量に必
要とすること等、困難な問題が多く存在する。そのた
め、せっかくDNBB単結晶を得ることができても、あ
る範囲までしか大型化することができないという難点が
存在した。The use of the temperature change method in DNBB is described in JP-A-5-186093. However, in the method described here, since the DNBB solute is deposited by changing the solution temperature, it is difficult to precisely control the deposition amount of the solute, and the apparatus has a temperature range that can be changed. Since there is a limit due to the above restrictions and the like, in order to obtain a large-sized DNBB single crystal, there are many difficult problems such as a large amount of organic solvent solution being required at the time of starting the apparatus. Therefore, even if a DNBB single crystal can be obtained with great care, there is a drawback that the size can be increased only up to a certain range.
【0010】上記の点を改善する方法として、溶質を溶
解した溶液を成長槽と呼ばれる槽と溶解槽と呼ばれる槽
の二つに分け、それぞれの槽の溶液温度を異なる温度に
保持し、溶質の溶解度に差をもたせた後、その溶液を槽
間で循環させるという、所謂、Walker法といわれる結晶
製造法が知られている。これに関する、詳細な文献とし
て、例えば、J. Novotny A Crystallizer for the Inve
stigation of Conditions of Growth of Single Crysta
ls from Solutions, Kristall und Technik6,3,(1971)p
343-352を挙げることができる。As a method for improving the above points, a solution in which a solute is dissolved is divided into two, a tank called a growth tank and a tank called a dissolution tank, and the solution temperature of each tank is maintained at different temperatures, so that the solute There is known a so-called Walker method for producing crystals, in which the solution is circulated between tanks after having a difference in solubility. For detailed literature on this, see, for example, J. Novotny A Crystallizer for the Inve.
stigation of Conditions of Growth of Single Crysta
ls from Solutions, Kristall und Technik6,3, (1971) p
343-352 can be mentioned.
【0011】温度変化法を用いるDNBB単結晶製造で
は、特に溶媒溶液の温度制御が重要である。なぜなら、
溶液温度の変化は、即ち溶液中のDNBB溶質の溶解度
が変化することとなり、そのため、結晶成長に重要であ
る溶液の過飽和度に影響するためである。結晶成長にお
ける、過飽和度の変化は、結晶の析出速度あるいは溶解
速度に影響する。従来の温度変化法では、温度制御の方
法や溶液量の増大によって変動する熱量の影響を最小限
に抑えることで、所望の温度制御を行うことを行ってい
る。しかし、この方法を用いたとしても厳密な溶液の温
度制御を行うのは非常に困難であり、そのため結晶製造
途上で雑晶が発生したり、結晶内部に多くの欠陥が発生
したりすることが多い。In the production of DNBB single crystal using the temperature change method, the temperature control of the solvent solution is particularly important. Because
This is because the change in the solution temperature results in a change in the solubility of the DNBB solute in the solution and thus affects the supersaturation degree of the solution, which is important for crystal growth. Changes in the degree of supersaturation during crystal growth affect the precipitation rate or dissolution rate of crystals. In the conventional temperature change method, desired temperature control is performed by minimizing the influence of the amount of heat that fluctuates due to the method of temperature control and the increase in the amount of solution. However, even if this method is used, it is very difficult to strictly control the temperature of the solution, and therefore, miscellaneous crystals may occur during crystal production, or many defects may occur inside the crystal. Many.
【0012】また、十分な精度で溶液温度を管理するこ
とができた場合でも、外部との熱の接触を断ち、製造装
置に精密な温度制御回路を取り付ける等、装置構造も複
雑になってしまう。Even when the solution temperature can be managed with sufficient accuracy, the structure of the apparatus becomes complicated, for example, the heat contact with the outside is cut off and a precise temperature control circuit is attached to the manufacturing apparatus. .
【0013】即ち、これまで温度変化法によって、DN
BBの単結晶製造が行われてきているが、簡便かつ確実
に大型単結晶を得ることはできていなかった。That is, the DN has been used so far by the temperature change method.
Although BB single crystals have been produced, it has not been possible to easily and reliably obtain large single crystals.
【0014】[0014]
【発明が解決しようとする課題】DNBB単結晶の製造
方法として使用される温度変化法については、特願平5
−186093号に記載されている方法等があるが、精
密な溶液温度制御を必要とする方法であった。温度変化
法そのものの原理から、溶液温度の制御により溶液中の
DNBB溶質の析出量や速度を制御するためである。し
かし、ある範囲内で温度制御が可能であったとしても、
不可避的に発生する環境の変動などによって、製造され
る結晶に欠陥を発生したりする可能性をなくすことは難
しい。加えて、この温度制御を行うには結晶製造装置自
身が複雑化したり高価になるといった問題も存在する。Regarding the temperature change method used as a method for producing a DNBB single crystal, Japanese Patent Application No. Hei.
Although there is a method described in No. 186093, it is a method that requires precise solution temperature control. This is because, based on the principle of the temperature change method itself, the precipitation amount and rate of the DNBB solute in the solution are controlled by controlling the solution temperature. However, even if the temperature can be controlled within a certain range,
It is difficult to eliminate the possibility that defects will occur in the manufactured crystal due to environmental fluctuations that inevitably occur. In addition, there is a problem that the crystal manufacturing apparatus itself becomes complicated and expensive in order to perform this temperature control.
【0015】即ち本発明が解決しようとする課題は、温
度変化法が本来もつ、装置内部での溶液の温度変動が製
造する結晶に影響するという問題を回避し、効果的な装
置を用いて、確実に良質のDNBB単結晶を製造する方
法を提供することにある。That is, the problem to be solved by the present invention is to avoid the problem inherent in the temperature change method that the temperature fluctuation of the solution inside the apparatus affects the crystals to be produced, and use an effective apparatus to It is to provide a method for surely producing a good-quality DNBB single crystal.
【0016】[0016]
【課題を解決するための手段】本願発明者らは、鋭意研
究の結果、DNBBの結晶成長を行う際にDNBB溶液
の温度を一定の温度幅で周期的に変動させながらDNB
Bの析出を行うことにより上記課題を解決できることを
見出し本発明を完成した。As a result of earnest research, the inventors of the present invention have conducted a DNBB crystal growth while periodically changing the temperature of a DNBB solution with a constant temperature range.
The present invention has been completed by finding that the above problems can be solved by depositing B.
【0017】すなわち、本発明は、有機溶媒溶液から、
下記式[1]で示されるDNBBの単結晶を製造する方
法であって、That is, the present invention comprises a solution of an organic solvent,
A method for producing a single crystal of DNBB represented by the following formula [1], comprising:
【化1】 前記有機溶媒溶液を、溶液劣化成分を除去した環境下に
おき、かつ、DNBBを析出させ単結晶を成長させる成
長槽内で前記有機溶媒溶液の温度を一定温度幅で周期的
に変動させながらDNBBの析出を行うDNBB単結晶
の製造方法を提供する。Embedded image The organic solvent solution is placed in an environment in which solution deterioration components are removed, and DNBB is periodically changed within a constant temperature range in the growth tank in which DNBB is deposited to grow a single crystal. The present invention provides a method for producing a DNBB single crystal, which carries out the precipitation of.
【0018】以下、本発明を詳細に説明する。The present invention will be described in detail below.
【0019】本発明の方法により製造されるDNBB単
結晶とは、上記式[1]で示される構造を有する化合物
の単結晶体のことを言う。DNBB単結晶は、製造する
温度や、使用する有機溶媒などにより異なる結晶構造を
持つものがあることが知られている。この中で、下記の
空間群と格子定数、空間群 Cc(#9)格子定数 a=1.02nm b=2.35nm c=0.69nm β=123° を持つ単結晶(以下、α型単結晶と呼ぶ)は2次非線形
光学材料として用いる場合の2次非線形光学性能が高い
ことが分っている。従って、2次非線形光学材料として
用いるためには、α型DNBB単結晶であることが好ま
しい。また、有機結晶の格子定数は育成条件や結晶の品
質、また測定温度の違いにより若干変動する。従って、
ここに言うα型DNBB単結晶とは、記載した格子定数
と比較し若干(±3%以下)異なる格子定数を持つもの
も含める。The DNBB single crystal produced by the method of the present invention refers to a single crystal of a compound having the structure represented by the above formula [1]. It is known that some DNBB single crystals have different crystal structures depending on the manufacturing temperature, the organic solvent used, and the like. Among these, a single crystal having the following space group and lattice constant, space group Cc (# 9) lattice constant a = 1.02 nm b = 2.35 nm c = 0.69 nm β = 123 ° (hereinafter referred to as α-type single crystal) It is known that the second-order nonlinear optical performance when used as a second-order nonlinear optical material is high. Therefore, for use as a second-order nonlinear optical material, α-type DNBB single crystal is preferable. Further, the lattice constant of the organic crystal changes slightly depending on the growth conditions, the quality of the crystal, and the difference in the measurement temperature. Therefore,
The α-type DNBB single crystal referred to here also includes those having a lattice constant slightly different (± 3% or less) from the lattice constant described.
【0020】本発明の方法に用いる有機溶媒溶液の有機
溶媒とは、DNBBを溶解することのできるもので、さ
らに、溶質としてDNBBを含む溶液の温度を変化させ
ることによって、DNBBの溶解度が変化するものであ
ればよい。室温で固体であっても、使用温度で液体であ
るなら、本発明でいう有機溶媒に含まれる。また、これ
らの条件を満たしていれば、単独の有機溶媒であって
も、複数の有機溶媒からなる混合溶媒であってもよい。The organic solvent used in the method of the present invention is an organic solvent capable of dissolving DNBB, and the solubility of DNBB is changed by changing the temperature of the solution containing DNBB as a solute. Anything will do. Even if it is a solid at room temperature, it is included in the organic solvent in the present invention as long as it is a liquid at the use temperature. Further, as long as these conditions are satisfied, a single organic solvent or a mixed solvent composed of a plurality of organic solvents may be used.
【0021】こうした条件を満たす有機溶媒としていく
つかのものがあげられるが、好ましくは、DNBB単結
晶を析出できる温度領域が広く、高沸点の溶媒であれば
なおよい。本発明者らは鋭意努力の結果、例えば、ケト
ン系溶媒が好ましい性質を示すことを見出した。具体的
な例としては、アセトン、アセトニルアセトン、ベンジ
ルアセトン、2−ドデカノン、2−ヘキサノン、、2−
ペンタノン等があげられる。特に、ケトン系溶媒の中で
も比較的、DNBBを高濃度に溶解することのできる、
2,4−ペンタンジオン(アセチルアセトン)は好適に
用いる事が出来る。There are several organic solvents which satisfy these conditions, but it is preferable that the solvent has a wide temperature range in which a DNBB single crystal can be precipitated and has a high boiling point. As a result of diligent efforts, the present inventors have found that, for example, a ketone solvent exhibits favorable properties. Specific examples are acetone, acetonylacetone, benzylacetone, 2-dodecanone, 2-hexanone, 2-
Examples include pentanone. In particular, it is possible to dissolve DNBB in a high concentration relatively in a ketone solvent.
2,4-Pentanedione (acetylacetone) can be preferably used.
【0022】単結晶成長には長期に渡る時間を要する
が、この際の溶液劣化が成長単結晶の品質に影響を及ぼ
すことが考えられる。本発明者らは、DNBB溶液を外
気から遮断することで、このような溶液劣化を阻止でき
ることを見出した。It takes a long time to grow a single crystal, but it is considered that the deterioration of the solution at this time affects the quality of the grown single crystal. The present inventors have found that blocking the DNBB solution from the outside air can prevent such solution deterioration.
【0023】外気からの遮断法はいくつか考えられる
が、例えば、不活性ガスを導入して、DNBB溶液を外
気から遮断する方法が考えられる。不活性ガスとは、D
NBBを含む有機溶媒溶液が、変化しないものであれば
何でもよいが、例えば、アルゴンのような希ガスや乾燥
窒素が上げられる。好ましくは、空気よりも比重の重い
アルゴンが、使用上、簡便かつ有効に外気を遮断でき、
有効である。この際、不活性ガス置換後に成長容器を密
閉する方法でも、一部開放部を設けて連続的にガスを流
出させる方法のどちらでもよい。密閉が可能な成長容器
であれば、密閉法による方が、ガス消費量を少なくする
ことができるため好ましい。不活性ガスは、市販のガス
精製カラム等を利用して精製したものを用いることが好
ましい。ガス純度を一定に管理することが可能であり、
結晶成長期間が長期に及んだ場合でも、溶液劣化を防止
することが出来るからである。ガス精製カラムが使用で
きない場合は、純度99.999%以上の市販高純度ガ
スを利用することも可能である。There are several methods for shutting off from the outside air. For example, a method of introducing an inert gas to shut off the DNBB solution from the outside air can be considered. What is an inert gas? D
Any organic solvent solution containing NBB may be used as long as it does not change. For example, a rare gas such as argon or dry nitrogen can be used. Preferably, argon, which has a heavier specific gravity than air, can conveniently and effectively shut off the outside air,
It is valid. At this time, either a method of sealing the growth container after replacement with an inert gas or a method of providing a partial open portion to continuously flow out gas may be used. If the growth container can be hermetically closed, it is preferable to use the sealing method because the gas consumption can be reduced. As the inert gas, it is preferable to use one that has been purified using a commercially available gas purification column or the like. It is possible to maintain a constant gas purity,
This is because even if the crystal growth period is long, the solution deterioration can be prevented. When a gas purification column cannot be used, it is also possible to use a commercially available high-purity gas having a purity of 99.999% or more.
【0024】また、その他の外気からの遮断法として
は、DNBB溶液の入った容器中を、真空ポンプ等を用
いて減圧してしまうことが考えられる。この方法では、
溶液自身も減圧下におかれるため、DNBBの溶解度の
変化や、溶媒の蒸発等を考慮する必要がある。減圧下に
おくことで、劣化原因物質とDNBB溶液の接触を低減
することができるが、その低減の程度は真空度と密接な
関係があり、望ましくは、減圧した後に、前述した不活
性ガスにより容器中の気体成分を置換した方が、効果が
高く望ましい。As another method for shutting off from the outside air, it is conceivable to reduce the pressure in the container containing the DNBB solution by using a vacuum pump or the like. in this way,
Since the solution itself is also placed under reduced pressure, it is necessary to consider changes in the solubility of DNBB, evaporation of the solvent, and the like. Although the contact between the deterioration-causing substance and the DNBB solution can be reduced by placing it under reduced pressure, the degree of the reduction is closely related to the degree of vacuum. Desirably, after the pressure is reduced, the above-mentioned inert gas is used. Replacing the gas component in the container is more effective and desirable.
【0025】溶液を外気から遮断すると、溶液劣化を阻
止できる理由は特定できていないが、大気が、DNBB
を含む有機溶媒溶液が劣化により色変化を起こすなどの
現象の原因となる物質あるいはガスを含有していると推
測される。このような劣化原因物質としては、CO2 、
NOx あるいはO2 が考えられる。Although the reason why the solution deterioration can be prevented by blocking the solution from the outside air has not been specified, the atmosphere is
It is presumed that the organic solvent solution containing is containing a substance or gas that causes a phenomenon such as a color change due to deterioration. Such deterioration-causing substances include CO 2 ,
NO x or O 2 can be considered.
【0026】さらに、ここでいう溶質の析出とは、溶液
温度の変化により溶質の溶解度が変化し、過剰となった
分量の溶質が、再結晶化することを指す。また、析出す
る溶質としては、少なくとも成分の一つとしてDNBB
を含めば、どのようなものでもよい。Further, the solute precipitation referred to here means that the solubility of the solute is changed by the change of the solution temperature and the excess amount of the solute is recrystallized. As the solute to be precipitated, DNBB is used as at least one of the components.
Anything is acceptable, including.
【0027】本発明の方法では、成長槽内でDNBBの
結晶成長を行う際にDNBB溶液の温度を一定の温度幅
で周期的に変動させながらDNBBの析出を行う。ここ
で、成長槽における溶液の温度幅は、与えられたDNB
B溶液が飽和と非飽和の状態を経るものであれば、どの
ような範囲でもよいが、必要とする結晶の大きさや、品
質から、、以下の式、 0.01重量%<|S(T1 )−S(T2 )|<5.0
重量% S(T):溶液温度TでのDNBBの溶解度(単位:重
量%) T1 :成長槽内での溶液の最低温度 T2 :成長槽内で
の溶液の最高温度 T2 −T1 :成長槽内の溶液温度幅 で表されるような範囲とすることで、効率的にDNBB
単結晶を得る事ができる。上記の条件下においては、析
出するDNBB溶質が十分にDNBB種子結晶表面に供
給され、大型単結晶を得る事が容易であるからである。
さらに好ましくは、以下の式、 0.10重量%<|S(T1 )−S(T2 )|<0.7
5重量% S(T):溶液温度TでのDNBBの溶解度(単位:重
量%) T1 :成長槽内での溶液の最低温度 T2 :成長槽内で
の溶液の最高温度 T2 −T1 :成長槽内の溶液温度幅 で表される範囲とすれば、異常な雑晶の発生や、種子結
晶の溶解消滅などを防ぐことが可能となり、所望の結晶
を得やすくなる。なお、ここで言う「溶解度」とは、下
記実施例1記載の方法により測定される析出側の溶解度
曲線B(図1参照)で示される溶解度を意味する。In the method of the present invention, during the crystal growth of DNBB in the growth tank, DNBB is deposited while periodically changing the temperature of the DNBB solution within a constant temperature range. Here, the temperature range of the solution in the growth tank is the given DNB.
The solution B may be in any range as long as it goes through a saturated state and an unsaturated state, but from the required crystal size and quality, the following formula: 0.01% by weight <| S (T 1 ) -S (T 2 ) | <5.0
Wt% S (T): The solubility of DNBB at solution temperature T (unit: wt%) T 1: Growth tank minimum temperature of the solution at T 2: the maximum temperature of the solution of the growth tank T 2 -T 1 : By setting the range as represented by the solution temperature range in the growth tank, the DNBB can be efficiently used.
A single crystal can be obtained. Under the above conditions, the DNBB solute to be precipitated is sufficiently supplied to the surface of the DNBB seed crystal, and it is easy to obtain a large single crystal.
More preferably, the following formula, 0.10 wt% <| S (T 1) -S (T 2) | <0.7
5% by weight S (T): solubility of DNBB at solution temperature T (unit:% by weight) T 1 : minimum temperature of solution in growth tank T 2 : maximum temperature of solution in growth tank T 2 -T 1 : If the range is represented by the temperature range of the solution in the growth tank, it is possible to prevent abnormal miscellaneous crystals and disappearance of dissolution of seed crystals, and it becomes easy to obtain desired crystals. The term "solubility" as used herein means the solubility shown by the solubility curve B on the precipitation side (see Fig. 1) measured by the method described in Example 1 below.
【0028】また、成長槽における溶液温度の変動周期
は、必ずしも一定でなくともよく、また種子結晶を完全
に溶解してしまわない程度であればどうでもよいが、1
分よりも長く72時間未満の変動周期内で結晶成長を行
わせることで、結晶成長の効率化を図りながら良質の単
結晶を得やすくなる。さらに好ましくは、1時間よりも
長く4時間未満であれば、短時間に結晶表面を溶解しか
つ再生することができ、さらに効率的になる。Further, the fluctuation cycle of the solution temperature in the growth tank is not necessarily constant, and it does not matter as long as it does not completely dissolve the seed crystal.
By allowing crystal growth to occur within a fluctuation period of longer than 72 minutes and less than 72 hours, it becomes easy to obtain a good-quality single crystal while improving the efficiency of crystal growth. More preferably, if it is longer than 1 hour and shorter than 4 hours, the crystal surface can be dissolved and regenerated in a short time, which is more efficient.
【0029】温度を変化させる方法としては、例えば、
恒温油槽内に有機溶媒溶液容器を入れ、油温を制御する
ことで溶液温度を制御しつつ、徐々に変化させる方法が
あげられる。この場合、恒温槽の温度の制御精度につい
ては、従来の温度変化法では高精度のものが要求される
が、本発明においては、有機溶媒溶液の温度を設定温度
±0.5℃以内の精度で制御することができるものであ
れば、温度変化を有効に利用し、良好なDNBB単結晶
を得ることができる。As a method of changing the temperature, for example,
An example is a method in which an organic solvent solution container is placed in a constant temperature oil tank and the oil temperature is controlled to gradually change the solution temperature. In this case, as for the accuracy of controlling the temperature of the constant temperature bath, a high accuracy is required in the conventional temperature change method. However, in the present invention, the accuracy of the temperature of the organic solvent solution is within ± 0.5 ° C. If it can be controlled by, the temperature change can be effectively utilized and a good DNBB single crystal can be obtained.
【0030】また、結晶製造方法は、温度変化法を用い
るものであればどの様な方法でもよいが、好ましくは、
該有機溶媒溶液を、成長槽と、DNBBを溶解させるた
めの溶解槽とに分け、さらに溶解槽と成長槽間を有機溶
媒溶液を循環させることにより、連続的に溶質であるD
NBBの析出を行うという、所謂、Walker法と呼ばれる
手法が好ましい。なぜなら、この方法は、元来、連続的
に結晶成長を行う事ができるという利点をもちながら、
温度制御性について極めて厳しい条件があったため、装
置の作製等において困難が付きまとういう問題があった
ためである。本発明をWalker法に適用することでより有
効に結晶を製造することができる。Any method can be used as the crystal production method as long as it uses a temperature change method, but preferably,
The organic solvent solution is divided into a growth tank and a dissolution tank for dissolving DNBB, and the organic solvent solution is circulated between the dissolution tank and the growth tank, so that the solute D is continuously formed.
A so-called Walker method for depositing NBB is preferable. Because this method originally has the advantage that continuous crystal growth can be performed,
This is because the temperature controllability had extremely severe conditions, and there was a problem in that it was difficult to manufacture the device. By applying the present invention to the Walker method, crystals can be produced more effectively.
【0031】Walker法を用いる場合、設定する溶液の温
度等については、それぞれの温度が、 a<T3 <bかつ c<T4 <dかつ T3 、T4 <e (T3 :溶解槽における有機溶媒溶液の温度 T4 :成長槽における有機溶媒溶液の温度 a:溶解槽でDNBBを所定量溶解するのに必要な溶液
の最低温度 b:溶解槽でDNBBが安定して溶解できる限界である
溶液の最高温度 c:成長槽でDNBBを析出させるにあたり析出速度が
単結晶として析出させるのに最大限度となる溶液の最低
温度 d:成長槽でDNBBが析出することのできる溶液の最
高温度) e:有機溶媒の沸点) であることが好ましい。この範囲内であれば、溶媒が沸
騰することもなく安定的に溶液調製ができる。When the Walker method is used, regarding the temperature of the solution to be set, etc., the respective temperatures are a <T 3 <b and c <T 4 <d and T 3 , T 4 <e (T 3 : dissolution tank Temperature of the organic solvent solution in: T 4 : temperature of the organic solvent solution in the growth tank a: minimum temperature of the solution required to dissolve a predetermined amount of DNBB in the dissolution tank b: within the limit of stable dissolution of DNBB in the dissolution tank Maximum temperature of a certain solution c: The minimum temperature of the solution at which the deposition rate is the maximum for the deposition of DNBB in the growth tank as a single crystal d: The maximum temperature of the solution at which DNBB can be deposited in the growth tank) e: boiling point of organic solvent) is preferable. Within this range, the solution can be stably prepared without boiling the solvent.
【0032】また、成長槽内の溶液の温度が、DNBB
の溶解度が0.1重量%以上であれば、好ましく結晶成
長を行うことができる。さらに好ましくは、0.5重量
%以上であればよい。溶液の成長槽内での溶解度が高け
れば、溶解槽との温度差を変化させることで、取り出せ
る溶質析出量を大きくでき、結晶製造を速くおこなうこ
とができるためである。なお、ここで言う「溶解度」
は、下記実施例1記載の方法により測定される溶解側の
溶解度曲線A(図1参照)で示される溶解度を意味す
る。The temperature of the solution in the growth tank is DNBB.
If the solubility of is 0.1% by weight or more, crystal growth can be preferably performed. More preferably, it may be 0.5% by weight or more. This is because if the solubility of the solution in the growth tank is high, the amount of solute that can be taken out can be increased by changing the temperature difference between the solution and the growth tank, and the crystal production can be carried out quickly. The "solubility" here
Means the solubility shown by the solubility curve A on the dissolution side (see FIG. 1) measured by the method described in Example 1 below.
【0033】一方、溶解槽内での、有機溶媒溶液の温度
T3 と、成長槽における有機溶媒溶液の温度T4 との関
係が、 S(T3 )−S(T4 )<5.0重量% (S(T):溶液温度がTの時のDNBBの溶解度(重
量%))であれば、DNBB単結晶を安定に析出させる
ことができ好ましい。あまり大きな溶解度差が存在する
と、成長槽内での溶液の安定性が変化し、雑晶等の発生
を誘発することがあるからである。さらに好ましくは、 S(T3 )−S(T4 )<1.0重量% (S(T):溶液温度がTの時の、DNBBの溶解度
(重量%))であれば、さらに安定した結晶成長を行わ
せることができる。なお、ここで言う「溶解度」は、下
記実施例1記載の方法により測定される溶解側の溶解度
曲線A(図1参照)で示される溶解度を意味する。On the other hand, the relationship between the temperature T 3 of the organic solvent solution in the dissolution tank and the temperature T 4 of the organic solvent solution in the growth tank is S (T 3 ) −S (T 4 ) <5.0 Weight% (S (T): solubility of DNBB when the solution temperature is T (weight%)) is preferable because a DNBB single crystal can be stably precipitated. This is because if there is an extremely large difference in solubility, the stability of the solution in the growth tank may change, and the formation of miscellaneous crystals may be induced. More preferably, S (T 3 ) -S (T 4 ) <1.0 wt% (S (T): DNBB solubility (wt%) when the solution temperature is T) is more stable. Crystal growth can be performed. The “solubility” referred to herein means the solubility shown by the solubility curve A on the dissolution side (see FIG. 1) measured by the method described in Example 1 below.
【0034】また、成長槽と溶解槽間の有機溶媒溶液の
循環速度を50ml/分未満とすることで、結晶育成を
安定させることができる。成長槽へのDNBB溶質の供
給量は正確には、成長槽と溶解槽とのDNBB溶解度差
と溶液の循環量で決定されるものであり、上記範囲内の
循環速度であれば、安定した溶質供給が可能であるから
である。さらに好ましくは、上記循環速度が10ml/
分未満であれば、結晶の欠陥低減等に著しい効果があ
り、結晶品質まで十分考慮した結晶成長を行わせること
ができる。Further, by setting the circulation speed of the organic solvent solution between the growth tank and the dissolution tank at less than 50 ml / min, crystal growth can be stabilized. To be precise, the amount of DNBB solute supplied to the growth tank is determined by the difference in DNBB solubility between the growth tank and the dissolution tank and the circulation amount of the solution. This is because the supply is possible. More preferably, the circulation rate is 10 ml /
When the amount is less than the minute, there is a remarkable effect on the reduction of crystal defects and the like, and the crystal growth can be performed with due consideration of the crystal quality.
【0035】本発明者は、DNBB単結晶製造に際し、
温度変化法を用いた結晶成長では、その原理から、極め
て精度の高い溶液温度管理が必要となる事、さらにたと
え、その温度精度が高い精度であっても、結晶欠陥等を
発生する可能性がどうしても存在することを考慮しなけ
ればならなかった。特に、強い成長異方性をもつDNB
B単結晶では、その可能性を皆無とすることが大変重要
な問題であった。そこで、結晶成長時の表面状態に着目
し、結晶表面でDNBB溶質の析出と溶解を適切な時
間、温度中で行えば、雑晶を低減できることを見出し
た。この方法では、さらに、成長槽の温度管理から溶解
槽の温度管理にいたるまで、それほど高い温度精度を必
要とせず、その温度精度はあくまで、成長槽の温度変化
幅に対する相対的な値とすればよいということも実験的
に見出した。The present inventor, in the production of a DNBB single crystal,
From the principle of crystal growth using the temperature change method, extremely accurate solution temperature control is required, and even if the temperature accuracy is high, crystal defects may occur. I had to consider that it existed. Especially, DNB with strong growth anisotropy
In the B single crystal, it was a very important problem to eliminate the possibility. Therefore, focusing on the surface state during crystal growth, it was found that miscellaneous crystals can be reduced by depositing and dissolving DNBB solute on the crystal surface for an appropriate period of time and temperature. This method does not require much high temperature accuracy from the temperature control of the growth tank to the temperature control of the melting tank. It was also experimentally found that it was good.
【0036】これらの特徴を利用して、結晶製造装置、
特にWalker法を適用した装置については、比較的簡便な
構成から、満足できる結晶品質をもつDNBB単結晶の
製造ができるに至った。Utilizing these characteristics, a crystal manufacturing apparatus,
Particularly, with respect to the apparatus to which the Walker method is applied, it has become possible to manufacture a DNBB single crystal having a satisfactory crystal quality with a relatively simple structure.
【0037】[0037]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明の範囲はこれらに限定されるものではな
い。EXAMPLES The present invention will now be specifically described with reference to examples, but the scope of the present invention is not limited to these.
【0038】実施例1 (1) 温度変化に対する溶解度変化(溶解度曲線)の測定 結晶化溶媒として、2,4−ペンタンジオンを使用する
こととし、まずDNBBの2,4−ペンタンジオンに対
する溶解度を測定した。溶解度の測定にあたっては、
(新実験化学講座1 基本操作II 日本化学会編 丸善
p223〜p250)を参考とした。測定は、以下の順序で行
った。 一定量の2,4−ペンタンジオン(500ml 20
℃)を三角フラスコに入れ、ホットプレート上で加熱
し、測定したい溶液温度にする。 次に、精密秤((株)YMC製 JP−160)にて
秤量したDNBB粉末を、徐々にで準備した三角フラ
スコに投入する。 溶液を所定温度に加熱し、温度を保ってマグネチック
スターラーで攪拌し、溶解する。 一定時間(約2時間)たったところで、目視によりD
NBBが溶解したかどうかを判定する。ここで、溶解し
ておれば、再度に戻る。 こうした操作を経て、溶解側の溶解度曲線Aを導いた。 Example 1 (1) Measurement of Solubility Change (Solubility Curve) with Temperature Change 2,4-Pentanedione was used as a crystallization solvent, and the solubility of DNBB in 2,4-pentanedione was first measured. did. When measuring solubility,
(New Experimental Chemistry Course 1 Basic Operation II, The Chemical Society of Japan, Maruzen
p223 to p250) was used as a reference. The measurement was performed in the following order. A certain amount of 2,4-pentanedione (500 ml 20
(° C) is placed in an Erlenmeyer flask and heated on a hot plate to the solution temperature to be measured. Next, the DNBB powder weighed with a precision balance (JP-160 manufactured by YMC Co., Ltd.) is gradually charged into an Erlenmeyer flask prepared. The solution is heated to a predetermined temperature, and the temperature is maintained while stirring with a magnetic stirrer to dissolve. After a certain time (about 2 hours), visually check D
Determine if NBB has dissolved. Here, if it is dissolved, it returns to again. Through these operations, the solubility curve A on the dissolution side was derived.
【0039】一方、溶解度曲線Aに従って、DNBB/
2,4−ペンタンジオンの飽和溶液を調製し、恒温油槽
に入れて徐々に降温していく。目視により、溶液を観察
し、DNBB溶質が析出し始めた温度を測定し、析出側
の溶解度曲線Bを得た。On the other hand, according to the solubility curve A, DNBB /
A saturated solution of 2,4-pentanedione is prepared, placed in a constant temperature oil bath and gradually cooled. The solution was visually observed, and the temperature at which the DNBB solute began to precipitate was measured to obtain a solubility curve B on the precipitation side.
【0040】溶解度曲線AおよびBは、それぞれ溶液か
らの溶質の析出についての安定度を定める境界にあた
る。例えば、Advanced Crystal Growth,P.M.Dryburgh e
t al.edit. 1987 Prentice Hall International(UK)Lt
d.中 208頁〜211頁には、これらの溶解度曲線の
もつ意味についての詳細な説明がなされている。すなわ
ち、溶解度曲線Aは、溶液中に溶質が安定に溶解し、溶
質が析出することのない状態(以下、安定領域と呼ぶ)
と、溶液としてはまだ安定であるが、何等かの外界から
の働きかけ(例えば、溶液中に溶質成分からなる種子結
晶を投入する。)によって溶質の析出が始まる領域(以
下、準安定領域と呼ぶ)との境界を示す。一方、溶解度
曲線Bは、準安定領域と、外界からの働きかけがなくて
も溶質の析出が始まってしまう状態(以下、不安定領域
と呼ぶ)との境界を示す。良好な単結晶を得るために
は、準安定領域中、さらに理想的には溶解度曲線A上に
沿って、溶質を析出させれば、種子結晶からDNBB単
結晶が成長することがわかる。Solubility curves A and B are the boundaries that define the stability of solute precipitation from solution, respectively. For example, Advanced Crystal Growth, PMDryburgh e
t al.edit. 1987 Prentice Hall International (UK) Lt
On pages 208 to 211 of the d., a detailed explanation of the meaning of these solubility curves is given. That is, the solubility curve A is a state in which the solute is stably dissolved in the solution and the solute does not precipitate (hereinafter referred to as a stable region).
And, although it is still stable as a solution, it is a region where precipitation of solute starts (hereinafter referred to as metastable region) by some action from the outside (eg, seed crystals consisting of solute components are added to the solution). ) And the boundary. On the other hand, the solubility curve B shows a boundary between the metastable region and a state in which solute precipitation starts (hereinafter, referred to as an unstable region) without any action from the outside. In order to obtain a good single crystal, it can be seen that the DNBB single crystal grows from the seed crystal when the solute is precipitated in the metastable region and ideally along the solubility curve A.
【0041】測定の結果、図1に示すように溶解度曲線
AおよびBのいずれも、温度変化に対する溶解度変化が
あり、さらに測定温度領域では、温度が高くなれば溶解
度も増加するという、正の溶解度係数をもつことが分っ
た。この溶解度変化を利用すれば、DNBB単結晶の製
造が可能なことを確認した。As a result of the measurement, as shown in FIG. 1, both of the solubility curves A and B have a change in solubility with respect to a temperature change, and in the measurement temperature region, the solubility increases as the temperature rises. It turns out to have a coefficient. It was confirmed that a DNBB single crystal can be produced by utilizing this change in solubility.
【0042】(2) DNBB種子単結晶の作製 実施例1で示す方法で得られたDNBB溶解度曲線に基
づき、Walker法によるDNBB単結晶の製造を試みた。
まず、以下の方法で種子結晶を作製した。まず、DNB
B粉末を約0.1重量%の濃度で、アセトン中に溶解し
た。その後、溶液を三角フラスコ中に入れて、約24℃
に温度調整した環境下で、徐々にアセトンを蒸発させ
て、DNBBを再結晶化した。再結晶化したDNBBの
うち、平板状(大きさ:約2mm×1mm×0.1mmt)の
形の単結晶を種子結晶として使用することとした。この
種子結晶の製造は、特開平1−45388号に記載され
た、α型DNBB単結晶の製造法によるものである。(2) Preparation of DNBB Seed Single Crystal Based on the DNBB solubility curve obtained by the method shown in Example 1, an attempt was made to produce a DNBB single crystal by the Walker method.
First, seed crystals were prepared by the following method. First, DNB
B powder was dissolved in acetone at a concentration of about 0.1% by weight. Then, put the solution in an Erlenmeyer flask, about 24 ℃
In a temperature-controlled environment, acetone was gradually evaporated to recrystallize DNBB. Of the recrystallized DNBB, a flat single crystal (size: approximately 2 mm × 1 mm × 0.1 mmt) was used as a seed crystal. The production of this seed crystal is based on the production method of an α-type DNBB single crystal described in JP-A-1-45388.
【0043】(3) DNBB単結晶の作製 次に、図2に示す結晶製造装置を用いて、溶液の調製を
行った。まず、成長槽容器5内及び、溶解槽容器12内
に2,4−ペンタンジオンをそれぞれ、500gずつ入
れ、さらに各槽内の雰囲気をアルゴンに換えた。次に、
溶液温度を制御する恒温槽1、11を用いて、溶媒温度
が70℃になるまで保持した。なお、用いた恒温槽は槽
内の温度を設定温度±0.5℃以内に温度制御できるも
のである。恒温槽1及び11内にはシリコンオイル2及
び13がそれぞれ充填され、また、成長槽5を収容する
精密恒温槽1内には溶液温度安定器8が取り付けられて
いる。成長槽5の内部はマグネティックスターラー3及
びスターラーチップ4により攪拌可能になっている。(3) Preparation of DNBB Single Crystal Next, a solution was prepared using the crystal manufacturing apparatus shown in FIG. First, 500 g of 2,4-pentanedione was placed in each of the growth tank container 5 and the dissolution tank container 12, and the atmosphere in each tank was changed to argon. next,
The constant temperature baths 1 and 11 for controlling the solution temperature were used and kept until the solvent temperature reached 70 ° C. The constant temperature bath used can control the temperature inside the bath to within a set temperature ± 0.5 ° C. Silicon oils 2 and 13 are filled in the constant temperature baths 1 and 11, respectively, and a solution temperature stabilizer 8 is mounted in the precision constant temperature bath 1 that houses the growth bath 5. The inside of the growth tank 5 can be agitated by a magnetic stirrer 3 and a stirrer tip 4.
【0044】次に、溶解槽12に、DNBB粉末14を
25g投入した。その後、2台の循環ポンプ9、10を
用いて、成長槽5と溶解槽12間で溶液の循環を開始し
た。循環速度は、5ml/分とした。なお、DNBB/
2,4−ペンタンジオン溶液6の流れは図2中に矢印で
示されている。成長槽5内で、ゆっくりとマグネティッ
クスターラーにより溶液を攪拌しながら、約12時間保
持した。こうして、製造装置内の溶液を70℃の飽和溶
液とした。次に、この飽和溶液となった成長槽5内に、
予め作製しておいたDNBB種子結晶7を静かに取り付
けた。その後、種子結晶7をゆっくりと回転させながら
(回転数:5回転/分)溶解槽12の溶液温度を、0.
2℃/時間で72℃まで昇温した。この時点で、成長槽
5に送りこまれるDNBB溶液は、ふたつの槽内の溶液
温度差から、過飽和溶液となり、それが種子結晶周辺で
溶質を析出して、結晶成長が起こる。Next, 25 g of DNBB powder 14 was put into the dissolution tank 12. After that, the circulation of the solution between the growth tank 5 and the dissolution tank 12 was started using the two circulation pumps 9 and 10. The circulation rate was 5 ml / min. In addition, DNBB /
The flow of the 2,4-pentanedione solution 6 is indicated by an arrow in FIG. The solution was held in the growth tank 5 for about 12 hours while being slowly stirred by a magnetic stirrer. Thus, the solution in the manufacturing apparatus was a saturated solution at 70 ° C. Next, in the growth tank 5 that became the saturated solution,
The DNBB seed crystal 7 prepared in advance was gently attached. Then, while slowly rotating the seed crystal 7 (rotation speed: 5 rotations / minute), the solution temperature in the dissolution tank 12 was set to 0.
The temperature was raised to 72 ° C at 2 ° C / hour. At this point, the DNBB solution fed into the growth tank 5 becomes a supersaturated solution due to the difference in solution temperature between the two tanks, which precipitates a solute around the seed crystals and crystal growth occurs.
【0045】成長槽の溶液温度が70℃、溶解槽の溶液
温度が72℃となり安定したところで、成長槽の溶液温
度を図3に示すような温度周期で、恒温槽により変化さ
せた。成長槽の基準温度70℃から±1℃、変動周期4
時間である。When the solution temperature in the growth tank was stable at 70 ° C. and the solution temperature in the dissolution tank was 72 ° C., the solution temperature in the growth tank was changed by the constant temperature tank at the temperature cycle shown in FIG. Growth tank reference temperature of 70 ℃ ± 1 ℃, fluctuation cycle 4
Time.
【0046】このまま保持して、30日間運転し、結晶
を取り出したところ、透明かつシングルドメインの単結
晶が種子結晶から発生していることを確認した。この種
子結晶からの成長領域以外には、雑晶等の発生は全く見
られず、良好な結晶成長が行われていることが分った。
この結晶を、偏光顕微鏡にてクロスニコル状態で観察し
たところ、結晶全体が一様に消光することから単結晶で
あることを確認した。When the crystals were taken out after being kept as they were for 30 days, it was confirmed that transparent and single-domain single crystals were generated from the seed crystals. It was found that, except for the growth region from the seed crystal, no miscellaneous crystals were generated at all, and good crystal growth was performed.
When this crystal was observed with a polarizing microscope in a crossed Nicol state, it was confirmed that the crystal was a single crystal because the entire crystal was uniformly quenched.
【0047】さらに、この結晶の一部を粉砕して、X線
回折法を用いて解析を行ったところ、図4の様な結果を
得た。この結果は、特開平1−45388に記載された
α型DNBBのチャートと一致した。これにより、DN
BBα型単結晶が安定に成長することを確認することが
できた。Further, when a part of this crystal was crushed and analyzed by an X-ray diffraction method, the result as shown in FIG. 4 was obtained. This result was in agreement with the chart of α-type DNBB described in JP-A-1-45388. This allows DN
It was confirmed that the BBα type single crystal grew stably.
【0048】実施例2 結晶製造に使用する溶媒を、アセトンとした場合につい
て試みた。実施例1と全く同じ方法でまず、DNBBの
溶解度曲線を導き出したところ、2,4−ペンタンジオ
ンの場合に較べて、アセトンに対するDNBB溶解度は
それほど大きくないが、溶液温度を高くすると溶解度が
上昇するという正の溶解度係数をもつことは確認でき
た。 Example 2 An experiment was carried out in the case where the solvent used for crystal production was acetone. First, the solubility curve of DNBB was derived by the same method as in Example 1. The solubility of DNBB in acetone was not so large as compared with the case of 2,4-pentanedione, but the solubility increased when the solution temperature was increased. It was confirmed that it has a positive solubility coefficient.
【0049】次に、実施例1と同じ方法で、種子結晶を
製造した。Next, seed crystals were produced in the same manner as in Example 1.
【0050】次に、実施例1(3) とおなじく図2に示す
結晶製造装置を用い、結晶成長開始前の成長槽及び溶解
槽中の飽和溶液の温度を22℃とし、溶解槽の溶液温度
を0.2℃/時間で24℃まで昇温すること及び次いで
2時間の変動周期で22℃±1℃に保持することを除
き、実施例1(3) と全く同様にしてDNBB単結晶を作
製した。その結果、透明かつシングルドメインの単結晶
が種子結晶から発生していることを確認した。ただし、
実施例1に比較して、溶解度差が少ないため、大きさは
小さめであった。この種子結晶からの成長領域以外に
は、雑晶等の発生は全く見られず、良好な結晶成長が行
われていることが分った。この結晶を、偏光顕微鏡にて
クロスニコル状態で観察したところ、結晶全体が一様に
消光することから単結晶であることを確認した。Next, using the crystal production apparatus shown in FIG. 2 similar to Example 1 (3), the temperature of the saturated solution in the growth tank and the dissolution tank before the start of crystal growth was set to 22 ° C., and the solution temperature in the dissolution tank was changed. Was heated to 24 ° C. at 0.2 ° C./hour and then held at 22 ° C. ± 1 ° C. with a fluctuation period of 2 hours, and a DNBB single crystal was prepared in exactly the same manner as in Example 1 (3). It was made. As a result, it was confirmed that a transparent and single-domain single crystal was generated from the seed crystal. However,
Compared with Example 1, the size was rather small because the difference in solubility was small. It was found that, except for the growth region from the seed crystal, no miscellaneous crystals were generated at all, and good crystal growth was performed. When this crystal was observed with a polarizing microscope in a crossed Nicol state, it was confirmed that the crystal was a single crystal because the entire crystal was uniformly quenched.
【0051】さらに、この結晶の一部を粉砕して、X線
回折法を用いて解析を行ったところ、α型DNBBのチ
ャートと一致した。これにより、ことなる溶媒を用いて
もDNBBα型単結晶が安定に成長することを確認する
ことができた。Further, when a part of this crystal was crushed and analyzed by an X-ray diffraction method, it was in agreement with the chart of α-type DNBB. From this, it was confirmed that the DNBBα-type single crystal was stably grown even if different solvents were used.
【0052】比較例1 実施例1と同じ操作において、成長槽の温度を変化させ
ず30日間実験を続けた。実験終了後、結晶を観察した
ところ、偏光顕微鏡のクロスニコル下での観察からは、
消光性を確認できたが、表面を詳細に見ると、部分的に
段丘状になった部分を見ることができた。結晶をX線ト
ポグラフにより測定したところ、この段丘状になった部
分はそれぞれが薄いDNBB単結晶のずれて重なった部
分であり、単一領域からなる単結晶ではなく、薄膜単結
晶の積層体となっていることが分った。 Comparative Example 1 In the same operation as in Example 1, the experiment was continued for 30 days without changing the temperature of the growth tank. After the experiment was completed, the crystals were observed, and from the observation under a crossed Nicols of a polarization microscope,
The extinction was confirmed, but when the surface was examined in detail, a terraced part could be seen. When the crystal was measured by X-ray topography, the terraced parts were the overlapping parts of the thin DNBB single crystal, and were not a single region single crystal, but a laminated body of thin film single crystals. I found out that
【0053】成長槽温度を変化させずに保持したが、そ
のために環境により変動するわずかな温度変化が結晶成
長に影響し、結晶成長過程において欠陥を誘発した結
果、上記の様な結果となった。これにより、成長槽の温
度変化を意図的に利用することによるDNBB単結晶製
造法は有効な手法であることを確認できた。Although the temperature of the growth tank was kept unchanged, a slight temperature change which fluctuates depending on the environment affects the crystal growth and induces defects in the crystal growth process, resulting in the above results. . From this, it was confirmed that the DNBB single crystal manufacturing method by intentionally utilizing the temperature change of the growth tank is an effective method.
【0054】[0054]
【発明の効果】本発明によれば、DNBBの単結晶の製
造を簡便かつ再現性良く行うことができ、大型のDNB
B単結晶を得ることが容易となる。According to the present invention, a single crystal of DNBB can be easily and reproducibly manufactured, and a large DNB can be manufactured.
It becomes easy to obtain a B single crystal.
【図1】実施例1で得られた、DNBBの2,4−ペン
タンジオンに対する溶解度曲線を示す。1 shows a solubility curve of DNBB in 2,4-pentanedione obtained in Example 1. FIG.
【図2】実施例1で使用した、Walker法による結晶製造
装置の概観を示す。FIG. 2 shows an overview of a Walker method crystal production apparatus used in Example 1.
【図3】実施例1で使用した、成長槽の温度変化図であ
る。FIG. 3 is a temperature change diagram of the growth tank used in Example 1.
【図4】実施例1で得られた、DNBB単結晶の粉末X
線回折パターンを示す。4 is a powder X of DNBB single crystal obtained in Example 1. FIG.
A line diffraction pattern is shown.
1 精密恒温槽 2 シリコンオイル 3 マグネティックスターラー 4 スターラーチップ 5 成長槽容器 6 DNBB/2,4−ペンタンジオン溶液 7 DNBB種子結晶 8 溶液温度安定器 9 循環ポンプ 10 循環ポンプ 11 恒温槽 12 溶解槽容器 13 シリコンオイル 14 DNBB粉末 1 Precision Temperature Chamber 2 Silicon Oil 3 Magnetic Stirrer 4 Stirrer Chip 5 Growth Tank Container 6 DNBB / 2,4-Pentanedione Solution 7 DNBB Seed Crystal 8 Solution Temperature Stabilizer 9 Circulation Pump 10 Circulation Pump 11 Constant Temperature Tank 12 Dissolution Tank Container 13 Silicone oil 14 DNBB powder
Claims (18)
れるDNBBの単結晶を製造する方法であって、 【化1】 前記有機溶媒溶液を、溶液劣化成分を除去した環境下に
おき、かつ、DNBBを析出させ単結晶を成長させる成
長槽内で前記有機溶媒溶液の温度を一定温度幅で周期的
に変動させながらDNBBの析出を行うDNBB単結晶
の製造方法。1. A method for producing a single crystal of DNBB represented by the following formula [1] from an organic solvent solution, which comprises: The organic solvent solution is placed in an environment in which solution deterioration components are removed, and DNBB is periodically changed within a constant temperature range in the growth tank in which DNBB is deposited to grow a single crystal. A method for producing a DNBB single crystal, which comprises depositing
気から遮断することにより前記溶液劣化成分を除去した
環境を作り出す請求項1記載の方法。2. The method according to claim 1, wherein the environment in which the solution deterioration component is removed is created by blocking the organic solvent solution from the outside air with an inert gas.
子定数、 空間群 : Cc (#9) 格子定数: a=1.02nm b=2.35nm c=0.69nm β=123° を有する単結晶を製造することを特徴とする請求項1又
は2記載の方法。3. A DNBB single crystal having the following space group and lattice constant, space group: C c (# 9) lattice constant: a = 1.02 nm b = 2.35 nm c = 0.69 nm β = 123 ° The method according to claim 1, wherein the single crystal having the same is produced.
媒であることを特徴とする請求項1ないし3のいずれか
1項記載の方法。4. The method according to claim 1, wherein the solvent of the organic solvent solution is a ketone solvent.
オンである請求項4記載の方法。5. The method according to claim 4, wherein the ketone solvent is 2,4-pentanedione.
式、 0.01重量%<|S(T1 )−S(T2 )|<5.0
重量% S(T):溶液温度TでのDNBBの溶解度(単位:重
量%) T1 :成長槽内での溶液の最低温度 T2 :成長槽内で
の溶液の最高温度 T2 −T1 :成長槽内の溶液温度幅 で表される請求項1ないし5のいずれか1項に記載の方
法。6. The temperature range of the solution in the growth tank has the following formula: 0.01% by weight <| S (T 1 ) −S (T 2 ) | <5.0.
Wt% S (T): The solubility of DNBB at solution temperature T (unit: wt%) T 1: Growth tank minimum temperature of the solution at T 2: the maximum temperature of the solution of the growth tank T 2 -T 1 The method according to any one of claims 1 to 5, which is represented by a temperature range of the solution in the growth tank.
式、 0.1重量%<|S(T1 )−S(T2 )|<5.0重
量% S(T):溶液温度TでのDNBBの溶解度(単位:重
量%) T1 :成長槽内での溶液の最低温度 T2 :成長槽内で
の溶液の最高温度 T2 −T1 :成長槽内の溶液温度幅 で表される請求項1ないし5のいずれか1項に記載の方
法。7. The temperature range of the solution in the growth tank has the following formula: 0.1% by weight <| S (T 1 ) −S (T 2 ) | <5.0% by weight S (T): solution temperature Solubility of DNBB at T (unit: wt%) T 1 : minimum temperature of solution in growth tank T 2 : maximum temperature of solution in growth tank T 2 −T 1 : solution temperature range in growth tank A method according to any one of claims 1 to 5 as represented.
1分間よりも長く72時間未満である請求項1ないし7
のいずれか1項に記載の方法。8. The fluctuation cycle of the solution temperature in the growth tank is
8. The method according to claim 1, wherein the time is longer than one minute and less than 72 hours.
The method according to any one of claims 1 to 4.
1時間よりも長く4時間未満である請求項8記載の方
法。9. The fluctuation cycle of the solution temperature in the growth tank is
9. The method of claim 8, which is more than 1 hour and less than 4 hours.
0.5℃以内の精度で制御することができる恒温槽内に
前記溶解槽を収容して行う請求項1ないし9のいずれか
1項に記載の方法。10. The temperature of the organic solvent solution is set to a set temperature ±
The method according to any one of claims 1 to 9, wherein the dissolution bath is housed in a thermostatic bath that can be controlled with an accuracy within 0.5 ° C.
させる溶解槽と、DNBBを析出させ単結晶を成長させ
る成長槽に分け、さらに溶解槽と成長槽間を該有機溶媒
溶液を循環させることにより、連続的に溶質であるDN
BBの析出を行う請求項1ないし10のいずれか1項記
載の方法。11. The organic solvent solution is divided into a dissolution tank in which DNBB is dissolved and a growth tank in which DNBB is precipitated to grow a single crystal, and the organic solvent solution is circulated between the dissolution tank and the growth tank. , DN that is a continuous solute
The method according to any one of claims 1 to 10, wherein the precipitation of BB is performed.
り、前記溶解槽内での前記有機溶媒溶液の温度T1 と、
前記成長槽内での前記有機溶媒溶液の温度T2 が、 a<T1 <bかつ c<T2 <dかつ T1 、T2 <e (T1 :溶解槽における有機溶媒溶液の温度 T2 :成長槽における有機溶媒溶液の温度 a:溶解槽でDNBBを所定量溶解するのに必要な溶液
の最低温度 b:溶解槽でDNBBが安定して溶解できる限界である
溶液の最高温度 c:成長槽でDNBBを析出させるにあたり析出速度が
単結晶として析出させるのに最大限度となる溶液の最低
温度 d:成長槽でDNBBが析出することのできる溶液の最
高温度) e:有機溶媒の沸点) を満足する請求項1ないし11のいずれか1項記載の方
法。12. When circulating the organic solvent solution, a temperature T 1 of the organic solvent solution in the dissolution tank,
The temperature T 2 of the organic solvent solution in the growth tank is a <T 1 <b and c <T 2 <d and T 1 , T 2 <e (T 1 : the temperature T of the organic solvent solution in the dissolution tank T 2 : Temperature of the organic solvent solution in the growth tank a: Minimum temperature of the solution required to dissolve a predetermined amount of DNBB in the dissolution tank b: Maximum temperature of the solution that is the limit of stable dissolution of DNBB in the dissolution tank c: The minimum temperature of the solution at which the deposition rate is the maximum limit for the precipitation of single crystals in the growth tank d: The maximum temperature of the solution at which DNBB can be precipitated in the growth tank) e: The boiling point of the organic solvent) The method according to any one of claims 1 to 11, which satisfies the following.
けるDNBBの溶解度が0.1重量%以上になるように
前記成長槽内の該有機溶媒溶液の温度を設定する請求項
1ないし12のいずれか1項に記載の方法。13. The temperature of the organic solvent solution in the growth tank is set such that the solubility of DNBB in the organic solvent solution in the growth tank is 0.1% by weight or more. The method according to item 1.
けるDNBBの溶解度が0.5重量%以上になるように
前記成長槽内の該有機溶媒溶液の温度を設定する請求項
13記載の方法。14. The method according to claim 13, wherein the temperature of the organic solvent solution in the growth tank is set so that the solubility of DNBB in the organic solvent solution in the growth tank is 0.5% by weight or more.
温度T3 と、前記成長槽内での前記有機溶媒溶液の温度
T4 との関係が、 S(T3 )−S(T4 )<5.0重量% (S(T):溶液温度がTの時の、DNBBの溶解度
(重量%))を満足する請求項1ないし14のいずれか
1項記載の方法。15. The relationship between the temperature T 3 of the organic solvent solution in the dissolution tank and the temperature T 4 of the organic solvent solution in the growth tank is S (T 3 ) −S (T 4 ) <5.0% by weight (S (T): solubility (% by weight) of DNBB when the solution temperature is T)) The method according to any one of claims 1 to 14.
温度T3 と、前記成長槽内での前記有機溶媒溶液の温度
T4 との関係が、 S(T3 )−S(T4 )<1.0重量% (S(T):溶液温度がTの時の、DNBBの溶解度
(重量%))を満足する請求項15記載の方法。16. The relationship between the temperature T 3 of the organic solvent solution in the dissolution tank and the temperature T 4 of the organic solvent solution in the growth tank is S (T 3 ) −S (T 4 ) <1.0 wt% (S (T): the solubility (wt%) of DNBB when the solution temperature is T)).
溶媒溶液の循環速度が50ml/分未満である請求項1
ないし16のいずれか1項記載の方法。17. The circulation speed of the organic solvent solution between the growth tank and the dissolution tank is less than 50 ml / min.
17. The method according to any one of items 1 to 16.
溶媒溶液の循環速度が10ml/分未満である請求項1
7記載の方法。18. The circulation speed of the organic solvent solution between the growth tank and the dissolution tank is less than 10 ml / min.
7. The method according to 7.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8341795A JPH08253399A (en) | 1995-03-15 | 1995-03-15 | Production of dnbb single crystal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8341795A JPH08253399A (en) | 1995-03-15 | 1995-03-15 | Production of dnbb single crystal |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH08253399A true JPH08253399A (en) | 1996-10-01 |
Family
ID=13801869
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP8341795A Pending JPH08253399A (en) | 1995-03-15 | 1995-03-15 | Production of dnbb single crystal |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH08253399A (en) |
-
1995
- 1995-03-15 JP JP8341795A patent/JPH08253399A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Zaitseva et al. | Stability of KH2PO4 and K (H, D) 2PO4 solutions at fast crystal growth rates | |
| US8771379B2 (en) | Crystal growth in solution under static conditions | |
| KR20030036674A (en) | Method of manufacturing bulk single crystal of gallium nitride | |
| Greenberg | Vapor pressure scanning implications of CdTe crystal growth | |
| Wang et al. | Solvent effects and polymorphic transformation of organic nonlinear optical crystal L-pyroglutamic acid in solution growth processes: I. Solvent effects and growth morphology | |
| JP4934958B2 (en) | Method for producing silicon carbide single crystal | |
| Sethuraman et al. | Unidirectional growth of< 1 1 0> ammonium dihydrogen orthophosphate single crystal by Sankaranarayanan–Ramasamy method | |
| US5343827A (en) | Method for crystal growth of beta barium boratean | |
| US3341302A (en) | Flux-melt method for growing single crystals having the structure of beryl | |
| JPH08253399A (en) | Production of dnbb single crystal | |
| JPH08253398A (en) | Method for producing dnbb single crystal | |
| Bonner | A novel non-Pb flux system for the preparation of yttrium and rare earth iron gallium and aluminum garnets | |
| US5989337A (en) | Method of growing single crystal | |
| Rao et al. | Mixed methyl‐(2, 4‐dinitrophenyl)‐aminopropanoate: 2‐methyl‐4‐nitroaniline crystal− a new nonlinear optical material | |
| US4906325A (en) | Method of making single-crystal mercury cadmium telluride layers | |
| EP0642603B1 (en) | Single cesium titanyl arsenate-type crystals and their preparation | |
| Aggarwal et al. | Czochralski and modified Bridgman-Stockbarger growth of pure, Cd2+ and Nd3+ doped benzil single crystals | |
| JPH0741483A (en) | Production of dnbb single crystal | |
| EP0295659B1 (en) | Process for making single-crystal mercury cadmium telluride layers | |
| Sun et al. | Nucleation kinetics, micro-crystallization and surface morphology studies of the nonlinear optical single-crystal L-lysinium trifluoroacetate | |
| Sun et al. | Nucleation kinetics, micro-crystallization and etching studies of l-histidine trifluoroacetate crystal | |
| Lin et al. | Solution growth of new organic nonlinear optical crystal material | |
| JPS58156598A (en) | Method for crystal growth | |
| JPH026399A (en) | Production of organic compound crystal | |
| SU1740505A1 (en) | Process for growing single crystals of hematite @@@ |