JPH08264791A - Semiconductor device and its manufacture - Google Patents
Semiconductor device and its manufactureInfo
- Publication number
- JPH08264791A JPH08264791A JP7069267A JP6926795A JPH08264791A JP H08264791 A JPH08264791 A JP H08264791A JP 7069267 A JP7069267 A JP 7069267A JP 6926795 A JP6926795 A JP 6926795A JP H08264791 A JPH08264791 A JP H08264791A
- Authority
- JP
- Japan
- Prior art keywords
- region
- insulating film
- film
- gate electrode
- upper gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 64
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 45
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 32
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 31
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 238000004140 cleaning Methods 0.000 claims description 2
- 239000007790 solid phase Substances 0.000 abstract description 34
- 239000010410 layer Substances 0.000 abstract description 30
- 230000007547 defect Effects 0.000 abstract description 10
- 239000011229 interlayer Substances 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010408 film Substances 0.000 description 166
- 239000010409 thin film Substances 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 230000005669 field effect Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000000460 chlorine Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、絶縁膜上に形成したダ
ブルゲート型の電界効果型薄膜トランジスタに関し、充
分な単結晶領域の活性層領域を形成し、設計余裕度のあ
る信頼性に優れた特性を有する半導体装置およびその製
造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-gate type field effect thin film transistor formed on an insulating film, which has an active layer region of a sufficient single crystal region and has a design margin and excellent reliability. The present invention relates to a semiconductor device having characteristics and a manufacturing method thereof.
【0002】[0002]
【従来の技術】一般に、絶縁膜上に形成された電界効果
型薄膜トランジスタは、液晶のアクティブマトリックス
やセンサや、三次元回路素子などへ利用されている。2. Description of the Related Art Generally, a field effect thin film transistor formed on an insulating film is used for an active matrix of liquid crystal, a sensor, a three-dimensional circuit element and the like.
【0003】従来例として、ダブルゲート型の電界効果
型薄膜トランジスタの構造を、図7の断面図を用いて説
明する。As a conventional example, the structure of a double gate type field effect thin film transistor will be described with reference to the sectional view of FIG.
【0004】図7に示すように、単結晶シリコン基板1
上に形成されたシード領域6を設けるシリコン酸化膜で
ある絶縁膜2上に、多結晶シリコン膜からなる低抵抗の
下部ゲート電極4が位置している。As shown in FIG. 7, a single crystal silicon substrate 1
A low resistance lower gate electrode 4 made of a polycrystalline silicon film is located on an insulating film 2 which is a silicon oxide film on which a seed region 6 is formed.
【0005】さらに下部ゲート電極4の上部には、下部
ゲート絶縁膜10として薄いシリコン酸化膜が設け、そ
の上部には活性層領域7が設け、それらの上部は上部ゲ
ート絶縁膜11として薄いシリコン酸化膜を設けてい
る。Further, a thin silicon oxide film is provided as a lower gate insulating film 10 on the lower gate electrode 4, an active layer region 7 is provided on the lower gate insulating film 10, and an upper layer of the thin silicon oxide film is provided as an upper gate insulating film 11. A membrane is provided.
【0006】さらにその上部には、低抵抗の多結晶シリ
コン膜で形成する上部ゲート電極5が位置しており、ソ
ース領域8及びドレイン領域9とマスク酸化膜12と層
間絶縁膜13と金属電極14は、通常の半導体素子製造
方法で形成したものである。An upper gate electrode 5 formed of a polycrystalline silicon film having a low resistance is located on the upper portion thereof, and has a source region 8 and a drain region 9, a mask oxide film 12, an interlayer insulating film 13, and a metal electrode 14. Is formed by an ordinary semiconductor element manufacturing method.
【0007】従来、活性層領域7となる単結晶シリコン
膜は、単結晶シリコン基板1表面の露出しているシード
領域6を含むように非晶質シリコン膜の状態で全面に形
成して、その後の窒素雰囲気中での熱処理によって非晶
質シリコン膜を結晶化して得ている。Conventionally, a single crystal silicon film to be the active layer region 7 is formed on the entire surface in the state of an amorphous silicon film so as to include the exposed seed region 6 on the surface of the single crystal silicon substrate 1, and thereafter, The amorphous silicon film is crystallized by heat treatment in a nitrogen atmosphere.
【0008】このとき非晶質シリコン膜は、温度570
℃以下で形成し、その後の窒素雰囲気中での熱処理は、
600℃以下の温度で10時間以上行って、シード領域
6上の非晶質シリコン膜を単結晶シリコン膜へ変換し、
さらに絶縁膜2上の非晶質シリコン膜も単結晶シリコン
膜へ変換し、活性層領域7を形成する。At this time, the amorphous silicon film has a temperature of 570.
Formed below ℃, the subsequent heat treatment in a nitrogen atmosphere,
The amorphous silicon film on the seed region 6 is converted into a single crystal silicon film by performing the operation at a temperature of 600 ° C. or lower for 10 hours or more,
Further, the amorphous silicon film on the insulating film 2 is also converted into a single crystal silicon film to form the active layer region 7.
【0009】ここでの問題は、絶縁膜2上に非晶質シリ
コン膜が形成されることによってシード領域6から横方
向、つまり単結晶シリコン基板1と平行方向に結晶成長
しにくということが挙げられる。The problem here is that the amorphous silicon film formed on the insulating film 2 makes it difficult to grow crystals laterally from the seed region 6, that is, in the direction parallel to the single crystal silicon substrate 1. Can be mentioned.
【0010】単結晶シリコン基板1表面の情報である結
晶性と配向性とを非晶質シリコン膜に伝達し、結晶化を
行う固相成長膜について、図8の平面図を使って、もう
少し詳細に説明する。The solid phase growth film for transmitting the crystallinity and orientation, which are the information on the surface of the single crystal silicon substrate 1, to the amorphous silicon film for crystallization will be described in more detail with reference to the plan view of FIG. Explained.
【0011】図8に示すように、面方位(100)の単
結晶シリコン基板1に、シリコン酸化膜を形成し、その
シリコン酸化膜を〈100〉方向にパターニングし、シ
ード領域6を形成する。As shown in FIG. 8, a silicon oxide film is formed on a single crystal silicon substrate 1 having a plane orientation (100), and the silicon oxide film is patterned in the <100> direction to form a seed region 6.
【0012】その上部全面に、非晶質シリコン膜を形成
し、窒素雰囲気中で熱処理を行うことによって非晶質シ
リコン膜の結晶化を行う。An amorphous silicon film is formed on the entire upper surface thereof, and heat treatment is performed in a nitrogen atmosphere to crystallize the amorphous silicon film.
【0013】この場合、シード領域6から結晶化が始ま
り、縦方向から横方向に結晶化が移行すると、{11
0}面の成長からその成長過程で成長速度の遅い{11
1}面が現れ、横方向の成長速度を律則するIn this case, when crystallization starts from the seed region 6 and shifts from the vertical direction to the horizontal direction, {11
From the growth of the 0} plane to the slow growth rate during the growth process {11
1} surface appears and regulates the lateral growth rate.
【0014】さらに、シリコン酸化膜からなる絶縁膜2
上で固相成長が進むと酸素原子と結合しているシリコン
結合は、成長方向に対して歪を受ける。Further, the insulating film 2 made of a silicon oxide film.
As the solid-phase growth proceeds, the silicon bond bonded to the oxygen atom is strained in the growth direction.
【0015】さらにまた、非晶質であるシリコン酸化膜
中では、格子の規則性がないので固相成長した活性層領
域7は局所的に応力を受け、不規則に配列した転移を含
むことになる。Furthermore, in the amorphous silicon oxide film, since the lattice has no regularity, the solid-phase grown active layer region 7 is locally stressed and includes dislocations arranged irregularly. Become.
【0016】つまり、固相成長膜である活性層領域7と
絶縁膜2であるシリコン酸化膜との界面が、シリコン酸
化膜上に固相成長する距離や、活性層領域7の膜質の安
定化を阻害する要因となる。That is, the distance between the interface between the active layer region 7 which is a solid phase growth film and the silicon oxide film which is the insulating film 2 is solid phase grown on the silicon oxide film, and the film quality of the active layer region 7 is stabilized. It becomes a factor to inhibit.
【0017】とくに、上述したような歪みは下部ゲート
電極4のような段差付近に集中するなど形状的な要因も
ある。In particular, the above-mentioned strain has a shape factor such as being concentrated in the vicinity of a step like the lower gate electrode 4.
【0018】[0018]
【発明が解決しようとする課題】絶縁膜2上に形成する
固相成長膜は、絶縁膜2と固相成長膜との界面や、固相
成長させようとする領域の形状などが固相成長膜内の歪
みや欠陥などを左右し、単結晶シリコン基板1と平行方
向である絶縁膜2上に成長する固相成長距離を決定す
る。In the solid phase growth film formed on the insulating film 2, the solid phase growth is performed at the interface between the insulating film 2 and the solid phase growth film, the shape of the region to be subjected to solid phase growth, and the like. The solid-phase growth distance for growing on the insulating film 2 which is parallel to the single crystal silicon substrate 1 is determined by controlling the strain and defects in the film.
【0019】シード領域6端から固相成長する距離が短
いと、上部ゲート電極5と下部ゲート電極4とで挟まれ
たチャネル領域を、単結晶シリコン膜である固相成長膜
がカバーできずに特性を劣化させる原因になる。When the solid phase growth distance from the end of the seed region 6 is short, the channel region sandwiched between the upper gate electrode 5 and the lower gate electrode 4 cannot be covered by the solid phase growth film which is a single crystal silicon film. It may cause deterioration of characteristics.
【0020】さらに、固相成長距離が短いとチャネル領
域を固相成長膜でカバーできるようにゲート寸法や、シ
ード領域端からゲート電極端までの距離などを決定しな
ければならず、設計寸法を決定する上で余裕度が小さ
い。Furthermore, when the solid phase growth distance is short, the gate size and the distance from the seed region end to the gate electrode end must be determined so that the channel region can be covered with the solid phase growth film. There is little margin in making decisions.
【0021】本発明の目的は、上記課題を解決して、絶
縁膜上に充分な単結晶の活性層領域を形成し、設計余裕
度のある信頼性に優れた半導体装置およびその製造方法
を提供することにある。An object of the present invention is to solve the above problems and provide a semiconductor device which has a sufficient margin of single crystal active layer region on an insulating film, has a design margin, and is excellent in reliability, and a manufacturing method thereof. To do.
【0022】[0022]
【課題を解決するための手段】上記目的を達成するた
め、本発明の半導体装置の構造とその製造方法とは、下
記記載の手段を採用する。In order to achieve the above object, the structure of the semiconductor device of the present invention and the manufacturing method thereof adopt the following means.
【0023】本発明の半導体装置は、単結晶シリコン基
板上に設ける絶縁膜と、その絶縁膜上に設ける多結晶シ
リコン膜からなる下部ゲート電極と、下部ゲート電極上
に設ける下部ゲート絶縁膜と、シード領域以外の領域に
設けるシリコン窒化膜と、シリコン窒化膜上に設ける活
性層領域と、活性層領域表面に設ける上部ゲート絶縁膜
と、上部ゲート絶縁膜上に設ける上部ゲート電極と、上
部ゲート電極に整合する領域の活性層領域に設けるソー
ス領域とドレイン領域とを備えることを特徴とする半導
体装置である。The semiconductor device of the present invention includes an insulating film provided on a single crystal silicon substrate, a lower gate electrode made of a polycrystalline silicon film provided on the insulating film, and a lower gate insulating film provided on the lower gate electrode. A silicon nitride film provided in a region other than the seed region, an active layer region provided on the silicon nitride film, an upper gate insulating film provided on the surface of the active layer region, an upper gate electrode provided on the upper gate insulating film, and an upper gate electrode The semiconductor device is provided with a source region and a drain region provided in the active layer region of the region matching with.
【0024】本発明の半導体装置の製造方法は、単結晶
シリコン基板上に絶縁膜を形成し、絶縁膜上に多結晶シ
リコン膜からなる下部ゲート電極を形成する工程と、下
部ゲート電極上を含む全面に下部ゲート絶縁膜を形成す
る工程と、シリコン窒化膜を形成する工程と、シード領
域のシリコン窒化膜とシード領域の絶縁膜を除去する工
程と、多単結晶シリコン基板表面が露出したシード領域
を清浄化し、全面に非晶質シリコン膜を形成する工程
と、窒素雰囲気中で熱処理し非晶質シリコン膜を単結晶
シリコン膜に変換する工程と、単結晶シリコン膜をシー
ド領域を除く領域を島状に分離し、上部ゲート絶縁膜を
形成する工程と、上部ゲート電極を形成する工程と、ソ
ース領域およびドレイン領域を形成する工程とを含むも
のである。The method of manufacturing a semiconductor device of the present invention includes the steps of forming an insulating film on a single crystal silicon substrate and forming a lower gate electrode made of a polycrystalline silicon film on the insulating film, and on the lower gate electrode. A step of forming a lower gate insulating film on the entire surface, a step of forming a silicon nitride film, a step of removing the silicon nitride film in the seed region and an insulating film in the seed region, and a seed region in which the surface of the polycrystalline single crystal silicon substrate is exposed. To form an amorphous silicon film on the entire surface, heat treatment in a nitrogen atmosphere to convert the amorphous silicon film into a single crystal silicon film, and the single crystal silicon film except for the seed region. It includes a step of forming an upper gate insulating film by separating into islands, a step of forming an upper gate electrode, and a step of forming a source region and a drain region.
【0025】本発明の半導体装置は、単結晶シリコン基
板上に設ける絶縁膜と、単結晶シリコン基板表面が露出
したシード領域と、絶縁膜上に設ける多結晶シリコン膜
からなる下部ゲート電極と、下部ゲート電極上に設ける
下部ゲート絶縁膜と、シード領域以外の領域に設けるシ
リコン窒化膜と、シリコン窒化膜上に設ける活性層領域
と、活性層領域表面に設ける上部ゲート絶縁膜と、上部
ゲート絶縁膜上に設ける上部ゲート電極と、上部ゲート
電極に整合する領域の活性層領域に設けるソース領域と
ドレイン領域とを備えることを特徴とする半導体装置で
ある。The semiconductor device of the present invention includes an insulating film provided on a single crystal silicon substrate, a seed region where the surface of the single crystal silicon substrate is exposed, a lower gate electrode made of a polycrystalline silicon film provided on the insulating film, and a lower portion. A lower gate insulating film provided on the gate electrode, a silicon nitride film provided in a region other than the seed region, an active layer region provided on the silicon nitride film, an upper gate insulating film provided on the surface of the active layer region, and an upper gate insulating film A semiconductor device comprising: an upper gate electrode provided on the upper gate electrode; and a source region and a drain region provided in an active layer region in a region matching the upper gate electrode.
【0026】本発明の半導体装置の製造方法は、単結晶
シリコン基板上に絶縁膜を形成し、多結晶シリコン膜か
らなる下部ゲート電極を形成する工程と、下部ゲート電
極上に下部ゲート絶縁膜を形成する工程と、シリコン窒
化膜を形成する工程と、シード領域のシリコン窒化膜と
シード領域の絶縁膜を除去する工程と、単結晶シリコン
基板表面が露出したシード領域を清浄化し、全面に非晶
質シリコン膜を形成する工程と、窒素雰囲気中で熱処理
し非晶質シリコン膜を単結晶シリコン膜に変換する工程
と、単結晶シリコン膜をシード領域を含むように島状に
分離し、上部ゲート絶縁膜を形成する工程と、上部ゲー
ト電極を形成する工程と、ソース領域とドレイン領域を
形成する工程とを含むものである。The method of manufacturing a semiconductor device according to the present invention comprises the steps of forming an insulating film on a single crystal silicon substrate and forming a lower gate electrode made of a polycrystalline silicon film, and forming a lower gate insulating film on the lower gate electrode. Forming step, forming a silicon nitride film, removing the silicon nitride film in the seed region and the insulating film in the seed region, cleaning the seed region where the single crystal silicon substrate surface is exposed, Forming a high-quality silicon film, performing a heat treatment in a nitrogen atmosphere to convert the amorphous silicon film into a single-crystal silicon film, and separating the single-crystal silicon film into islands so as to include a seed region, It includes a step of forming an insulating film, a step of forming an upper gate electrode, and a step of forming a source region and a drain region.
【0027】[0027]
【作用】本発明の半導体装置構造と製造方法とによれ
ば、絶縁膜上の多結晶シリコン膜からなる下部ゲート電
極上に下部ゲート絶縁膜を設け、下部ゲート電極を含
み、しかもシード領域以外の領域にシリコン窒化膜を設
ける。According to the semiconductor device structure and the manufacturing method of the present invention, the lower gate insulating film is provided on the lower gate electrode made of the polycrystalline silicon film on the insulating film, the lower gate electrode is included, and the area other than the seed region is included. A silicon nitride film is provided in the area.
【0028】このことによって、シリコン酸化膜に比べ
てシリコン過剰なシリコン窒化膜が固相成長膜との界面
になり、固相成長時に発生する歪みや膜の欠陥の発生を
低減することができる。As a result, the silicon nitride film, which is more silicon than the silicon oxide film, becomes an interface with the solid phase growth film, and it is possible to reduce strain and film defects that occur during solid phase growth.
【0029】その結果、下部ゲート電極の段差などに欠
陥が集中するなどの形状的な問題も緩和され、固相成長
距離の拡大が実現できる。さらに、固相成長距離が拡大
したことによってゲート寸法や、シード領域端からゲー
ト電極端までの距離などの設計の余裕度も拡大する。As a result, geometrical problems such as defects concentrated on the steps of the lower gate electrode are alleviated, and the solid-phase growth distance can be increased. Further, the expanded solid-phase growth distance also expands the design margin such as the gate size and the distance from the end of the seed region to the end of the gate electrode.
【0030】[0030]
【実施例】以下、図面を用いて本発明の実施例における
半導体装置の構造とその製造方法とを説明する。本発明
の実施例における半導体装置およびその製造方法につい
て図1から図6を用いて具体的に説明する。まずはじめ
に、図5を用いて本発明の実施例における半導体装置の
構造を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a semiconductor device and its manufacturing method in an embodiment of the present invention will be described below with reference to the drawings. A semiconductor device and a method of manufacturing the same according to an embodiment of the present invention will be specifically described with reference to FIGS. First, the structure of the semiconductor device according to the embodiment of the present invention will be described with reference to FIG.
【0031】図5に示すように、単結晶シリコン基板1
上に設けるシリコン酸化膜からなる絶縁膜2と、そのシ
リコン酸化膜からなる絶縁膜2上に多結晶シリコン膜か
らなる下部ゲート電極4と下部ゲート絶縁膜10を設
け、シード領域6を除く領域にシリコン窒化膜3を設け
る。As shown in FIG. 5, single crystal silicon substrate 1
An insulating film 2 made of a silicon oxide film provided above, a lower gate electrode 4 made of a polycrystalline silicon film and a lower gate insulating film 10 are provided on the insulating film 2 made of the silicon oxide film, and the region except the seed region 6 is provided. A silicon nitride film 3 is provided.
【0032】さらに、シリコン窒化膜3上に活性層領域
7を設け、活性層領域7表面に設ける上部ゲート絶縁膜
11と、上部ゲート絶縁膜11の上部に設ける上部ゲー
ト電極5と、上部ゲート電極5に整合する領域の活性層
領域7に設けるソース領域8とドレイン領域9と、シリ
コン酸化膜からなるマスク酸化膜12と、層間絶縁膜1
3と、コンタクトホールを介してアルミ電極である金属
電極14を備える。Further, the active layer region 7 is provided on the silicon nitride film 3, the upper gate insulating film 11 provided on the surface of the active layer region 7, the upper gate electrode 5 provided on the upper gate insulating film 11, and the upper gate electrode. 5, the source region 8 and the drain region 9, which are provided in the active layer region 7 in the region corresponding to 5, the mask oxide film 12 made of a silicon oxide film, and the interlayer insulating film
3 and a metal electrode 14 which is an aluminum electrode through a contact hole.
【0033】図7に示す従来例の半導体装置では、絶縁
膜2上に下部ゲート電極4と下部ゲート絶縁膜10を設
け、その上部に活性層領域7を形成しているのに対し
て、本発明では、絶縁膜2であるシリコン酸化膜上に下
部ゲート電極4と下部ゲート絶縁膜10を設け、シード
領域6以外の領域の上部にシリコン窒化膜3を設けて、
活性層領域7を設ける構造になっている。In the conventional semiconductor device shown in FIG. 7, the lower gate electrode 4 and the lower gate insulating film 10 are provided on the insulating film 2, and the active layer region 7 is formed on the lower gate electrode 4 and the lower gate insulating film 10. In the invention, the lower gate electrode 4 and the lower gate insulating film 10 are provided on the silicon oxide film which is the insulating film 2, and the silicon nitride film 3 is provided on the region other than the seed region 6,
The active layer region 7 is provided.
【0034】従来例では、化学的に安定なシリコン酸化
膜が固相成長膜との界面になっているので固相成長時に
歪みや欠陥が発生しやすい。In the conventional example, since the chemically stable silicon oxide film is the interface with the solid phase growth film, distortion and defects are likely to occur during solid phase growth.
【0035】さらに、下部ゲート電極4の段差などにこ
のような欠陥が多く集中して固相成長膜の信頼性を低下
させ、固相成長距離を短くしてしまう。Further, many such defects are concentrated on the steps of the lower gate electrode 4 and the reliability of the solid phase growth film is lowered, and the solid phase growth distance is shortened.
【0036】一方、本発明のように絶縁膜2上に形成し
た下部ゲート電極4と下部ゲート絶縁膜10とを含んだ
シード領域6以外の領域と活性層領域7となる非晶質シ
リコン膜との間にシリコン窒化膜3を介在させる。On the other hand, an amorphous silicon film to be the active layer region 7 and a region other than the seed region 6 including the lower gate electrode 4 and the lower gate insulating film 10 formed on the insulating film 2 as in the present invention. The silicon nitride film 3 is interposed between the two.
【0037】すると、化学量論的にシリコン酸化膜に比
べシリコン過剰であるために、活性層領域7であるシリ
コン膜との界面は、シリコン窒化膜3から組成が連続的
に変化し安定な界面を形成し、さらに単結晶シリコン基
板1との間に発生する応力も緩和することができる。Then, since the silicon is stoichiometrically more silicon than the silicon oxide film, the composition of the interface with the silicon film which is the active layer region 7 is continuously changed from the silicon nitride film 3 and is a stable interface. And the stress generated between the single crystal silicon substrate 1 and the single crystal silicon substrate 1 can be relaxed.
【0038】つまり、下部ゲート電極4の段差部に集中
するような欠陥を緩和し、固相成長膜自身の信頼性を高
くし、固相成長距離を拡大することができる。That is, it is possible to alleviate defects such as concentration in the step portion of the lower gate electrode 4, increase the reliability of the solid phase growth film itself, and increase the solid phase growth distance.
【0039】つぎに、図5に示す半導体装置の構造を形
成するための製造方法について、図1から図5の断面図
を用いて説明する。Next, a manufacturing method for forming the structure of the semiconductor device shown in FIG. 5 will be described with reference to the sectional views of FIGS.
【0040】まずはじめに、図1に示すように、〈11
0〉ファセットに対して45°傾けた〈100〉方向の
ファセットを有する単結晶シリコン基板1を用意し、温
度が1000℃、酸素と窒素の混合気体雰囲気中で、絶
縁膜2として膜厚300nmのシリコン酸化膜を形成す
る。First, as shown in FIG. 1, <11
A single crystal silicon substrate 1 having facets in the <100> direction inclined by 45 ° with respect to the 0> facet was prepared, and the insulating film 2 having a film thickness of 300 nm was formed at a temperature of 1000 ° C. in a mixed gas atmosphere of oxygen and nitrogen. A silicon oxide film is formed.
【0041】つづいて、減圧下の条件で化学的気相成長
法を用いて、温度が610℃、圧力0.3Torrでシ
ラン系気体を用いて、下部ゲート電極4となる多結晶シ
リコン膜15を膜厚300nmの厚さで形成する。Then, the polycrystal silicon film 15 to be the lower gate electrode 4 is formed by the chemical vapor deposition method under a reduced pressure, using a silane-based gas at a temperature of 610 ° C. and a pressure of 0.3 Torr. It is formed with a thickness of 300 nm.
【0042】つぎに、下部ゲート電極4となる多結晶シ
リコン膜に、75As+ イオンを打ち込みエネルギー40
KeV、打ち込み量1×1015atoms/cm2 でイ
オン注入を行う。Next, 75 As + ions are implanted into the polycrystalline silicon film which will be the lower gate electrode 4, and the energy 40 is applied.
Ion implantation is performed with KeV and a dose of 1 × 10 15 atoms / cm 2 .
【0043】つぎに図2に示すように、写真製版技術を
用いて下部ゲート電極4となる領域をホトレジストで覆
い、その他の領域を塩素系のガスを用いて、プラズマに
よりエッチング加工する。Next, as shown in FIG. 2, a region to be the lower gate electrode 4 is covered with a photoresist by using a photolithography technique, and the other region is etched by plasma using a chlorine-based gas.
【0044】つぎに、900℃の酸素雰囲気中で約10
nmの膜厚の下部ゲート絶縁膜10を形成する。Next, in an oxygen atmosphere at 900 ° C., about 10
A lower gate insulating film 10 having a thickness of nm is formed.
【0045】つぎに、下部ゲート電極4を含む全面に、
温度が700℃、反応ガスとしてジクロルシラン(Si
2 H2 Cl2 )とアンモニア(NH3 )との混合気体雰
囲気中で、膜厚10nmのシリコン窒化膜3を化学的気
相成長法を用いて形成する。Next, on the entire surface including the lower gate electrode 4,
The temperature is 700 ° C., and the reaction gas is dichlorosilane (Si
A silicon nitride film 3 having a film thickness of 10 nm is formed by a chemical vapor deposition method in a mixed gas atmosphere of 2 H 2 Cl 2 ) and ammonia (NH 3 ).
【0046】つぎに図3に示すように、写真製版技術を
用いてシード領域6以外をホトレジストで覆われるよう
にパターニングし、ハロゲンガスであるCF4 とCBr
F3とヘリュウム(He)と酸素(O2 )との混合気体
雰囲気中で、電力50W、圧力100mTorrでシー
ド領域6のシリコン窒化膜3を除去する。Next, as shown in FIG. 3, patterning is performed by photolithography so that the areas other than the seed regions 6 are covered with photoresist, and CF 4 and CBr, which are halogen gases, are used.
The silicon nitride film 3 in the seed region 6 is removed at a power of 50 W and a pressure of 100 mTorr in a mixed gas atmosphere of F 3 , helium (He), and oxygen (O 2 ).
【0047】その後、シード領域6の絶縁膜2であるシ
リコン酸化膜を、フッ酸系水溶液で除去して、シード領
域6に単結晶シリコン基板1表面を露出させる。After that, the silicon oxide film which is the insulating film 2 in the seed region 6 is removed with a hydrofluoric acid-based aqueous solution to expose the surface of the single crystal silicon substrate 1 in the seed region 6.
【0048】続いて、減圧の化学的気相成長装置にて、
圧力1×10-5Torr程度、真空引きした後に、塩素
(Cl2 )と水素(H2 )の混合気体を管内に導入し、
圧力0.3mTorr、温度570℃の条件下で、今ま
で処理した単結晶シリコン基板1を管内で10分間保持
する。Then, in a reduced pressure chemical vapor deposition apparatus,
After vacuuming at a pressure of about 1 × 10 −5 Torr, a mixed gas of chlorine (Cl 2 ) and hydrogen (H 2 ) is introduced into the tube,
Under the conditions of a pressure of 0.3 mTorr and a temperature of 570 ° C., the single crystal silicon substrate 1 processed so far is held in the tube for 10 minutes.
【0049】これにより、シード領域6を含む単結晶シ
リコン基板1の表面がエッチングされ清浄な単結晶シリ
コン基板1の表面が露出する。As a result, the surface of the single crystal silicon substrate 1 including the seed region 6 is etched to expose the clean surface of the single crystal silicon substrate 1.
【0050】シード領域6表面である単結晶シリコン基
板1の表面処理は、その他950℃以上の温度で水素
(H2 )処理を30分以上行っても良い。As the surface treatment of the single crystal silicon substrate 1 which is the surface of the seed region 6, hydrogen (H 2 ) treatment may be performed for 30 minutes or longer at a temperature of 950 ° C. or higher.
【0051】つづいて図4に示すように、連続で同一の
化学的気相成長装置を用いて、温度570℃、圧力0.
3Torrでモノシランガス(SiH4 )を用いて、活
性層領域7となる非晶質シリコン膜を膜厚300nmの
厚さで形成する。Subsequently, as shown in FIG. 4, the same chemical vapor deposition apparatus was continuously used, and the temperature was 570 ° C. and the pressure was 0.
An amorphous silicon film to be the active layer region 7 is formed with a thickness of 300 nm by using monosilane gas (SiH 4 ) at 3 Torr.
【0052】その後、毎分2000ccの流量の窒素雰
囲気中で、温度570℃の条件下で10時間の熱処理を
行い、引き続き連続して1000℃の熱処理を2時間行
う。After that, heat treatment is performed for 10 hours at a temperature of 570 ° C. in a nitrogen atmosphere at a flow rate of 2000 cc / min, and subsequently, heat treatment at 1000 ° C. is continuously performed for 2 hours.
【0053】この二段階の熱処理を行うことにより、シ
リコンの原子と原子との間の結合距離や結合角が揺らい
だ状態である非晶質シリコン膜が、結晶としての原子間
配置を有する単結晶シリコン基板1を種結晶として、両
者の界面において粒子の移動や再配置により結晶連続膜
へと成長し、シード領域6上部及びその横方向を含む周
辺の非晶質シリコン膜が単結晶シリコン膜に変換する。By performing this two-step heat treatment, the amorphous silicon film in which the bond distance and bond angle between the silicon atoms are fluctuated is a single crystal having an interatomic arrangement as a crystal. Using the silicon substrate 1 as a seed crystal, particles are moved or rearranged at the interface between them to grow into a continuous crystal film, and the amorphous silicon film in the upper part of the seed region 6 and in the periphery thereof including the lateral direction becomes a single crystal silicon film. Convert.
【0054】本発明の半導体装置構造では、従来例に示
した構造と比べて、シード領域6の端部から単結晶シリ
コン基板1に水平な方向に成長する距離は、約2倍の5
μmであった。In the semiconductor device structure of the present invention, as compared with the structure shown in the conventional example, the distance from the end of the seed region 6 to the single crystal silicon substrate 1 in the horizontal direction is approximately doubled, that is, 5 times.
μm.
【0055】つぎに、図5に示すように写真製版技術を
用いて単結晶シリコン膜に変換したシード領域6を除く
活性層領域7を塩素系プラズマを用いて島状に加工す
る。Next, as shown in FIG. 5, the active layer region 7 except the seed region 6 converted into the single crystal silicon film by the photolithography technique is processed into an island shape by using chlorine-based plasma.
【0056】従来例の半導体装置構造では、固相成長距
離が短く、下部ゲート電極4と上部ゲート電極5とは、
シード領域6に近接させる必要があり、シード領域6を
完全に分離するほどのトランジスタ作製領域がとれなか
った。In the conventional semiconductor device structure, the solid phase growth distance is short, and the lower gate electrode 4 and the upper gate electrode 5 are
It was necessary to make it close to the seed region 6, and a transistor fabrication region sufficient to completely separate the seed region 6 could not be taken.
【0057】以上説明した本発明の実施例では、シード
領域を完全に分離している例を示したが、活性層領域7
がシード領域7を含んでいるように島状に加工してもよ
い。In the embodiment of the present invention described above, the seed region is completely separated, but the active layer region 7
May be processed into an island shape so as to include the seed region 7.
【0058】つぎに、酸素雰囲気中で上部ゲート絶縁膜
11となるシリコン酸化膜を膜厚が約10nm全面に形
成する。Next, a silicon oxide film to be the upper gate insulating film 11 is formed over the entire surface to a thickness of about 10 nm in an oxygen atmosphere.
【0059】つぎに、上部ゲート電極5の材料である多
結晶シリコン膜を、温度610℃、モノシラン雰囲気中
で膜厚350nmの厚さで形成する。Next, a polycrystalline silicon film, which is a material for the upper gate electrode 5, is formed in a monosilane atmosphere at a temperature of 610 ° C. to a thickness of 350 nm.
【0060】つぎに、写真製版技術を用いて上部ゲート
電極5となる領域をホトレジストで覆い、多結晶シリコ
ン膜を塩素系のプラズマでエッチング加工し、上部ゲー
ト電極5を形成する。Next, the region to be the upper gate electrode 5 is covered with a photoresist by photolithography, and the polycrystalline silicon film is etched with chlorine-based plasma to form the upper gate electrode 5.
【0061】つぎに、シリコン酸化膜であるマスク酸化
膜12を酸素雰囲気中で10nm形成し、75As+ イオ
ンを打ち込みエネルギー40KeV、打ち込み量1×1
015atoms/cm2 でイオン注入を行い、ソース領
域8とドレイン領域9を形成する。Next, a mask oxide film 12 which is a silicon oxide film is formed to a thickness of 10 nm in an oxygen atmosphere, and 75 As + ions are implanted with an energy of 40 KeV and an implantation amount of 1 × 1.
Ion implantation is performed at 0 15 atoms / cm 2 to form the source region 8 and the drain region 9.
【0062】ここで、マスク酸化膜12は、ソース領域
8およびドレイン領域9にイオン注入する際のバッファ
層で、しかも層間絶縁膜13中に含まれる不純物が上部
ゲート電極5下に拡散して閾値電圧を変動させないため
のストッパとなる。Here, the mask oxide film 12 is a buffer layer at the time of ion implantation into the source region 8 and the drain region 9, and the impurities contained in the interlayer insulating film 13 are diffused below the upper gate electrode 5 to form a threshold value. It serves as a stopper to prevent the voltage from fluctuating.
【0063】その後は、通常の半導体素子製造方法と同
じく層間絶縁膜13を形成し、コンタクトホール形成
後、金属電極14を形成する。After that, the interlayer insulating film 13 is formed in the same manner as in the usual semiconductor element manufacturing method, and after the contact hole is formed, the metal electrode 14 is formed.
【0064】その後、水素雰囲気中で温度380℃、時
間25分の熱処理に続いて、同じ温度で窒素雰囲気中で
温度15分の熱処理を行い、図5に示すような構造のダ
ブルゲート型の電界効果型薄膜トランジスタを得る。After that, a heat treatment in a hydrogen atmosphere at a temperature of 380 ° C. for a time of 25 minutes is performed, followed by a heat treatment in a nitrogen atmosphere at the same temperature for a temperature of 15 minutes, and a double gate type electric field having a structure as shown in FIG. An effect type thin film transistor is obtained.
【0065】以上説明した半導体装置の構造とその製造
方法で得られた、導電型がN型のダブルゲート型の電界
効果型薄膜トランジスタにおける特性例を図6のグラフ
に示す。図6のグラフは、上部ゲート電圧に対するドレ
イン電流の特性を従来例と本発明の構造とで比較したも
ので、シード領域6端からゲート電極端までの距離を変
化させた時のサブスレッショルド係数を求めた結果であ
る。ここでサブスレッショルド係数とは、ドレイン電流
が1桁増加するのに必要なゲート電圧を示す。A graph of FIG. 6 shows an example of characteristics of a double-gate type field effect thin film transistor of N type conductivity obtained by the structure of the semiconductor device and the manufacturing method thereof described above. The graph of FIG. 6 compares the characteristics of the drain current with respect to the upper gate voltage between the conventional example and the structure of the present invention, and shows the subthreshold coefficient when the distance from the end of the seed region 6 to the end of the gate electrode is changed. It is the result obtained. Here, the subthreshold coefficient indicates the gate voltage required for the drain current to increase by one digit.
【0066】このときの、ゲート長は0.6μmで下部
ゲート電極4と上部ゲート電極5とを同じ距離だけ移動
したものである。製造条件と製造プロセスとは、同一
で、測定時のドレイン電圧は2Vである。At this time, the gate length is 0.6 μm, and the lower gate electrode 4 and the upper gate electrode 5 are moved by the same distance. The manufacturing conditions and manufacturing process are the same, and the drain voltage during measurement is 2V.
【0067】従来例における半導体装置では、シード領
域6端からゲート電極端までの距離が2.5μm以上に
なると、サブスレッショルド係数が増加していく。これ
に対して本発明の半導体装置においては、シード領域6
端からゲート電極端までの距離が4.5μm程度まで
は、サブスレッショルド係数の変化はほとんど認められ
ない。In the conventional semiconductor device, the subthreshold coefficient increases when the distance from the end of the seed region 6 to the end of the gate electrode becomes 2.5 μm or more. On the other hand, in the semiconductor device of the present invention, the seed region 6
When the distance from the edge to the edge of the gate electrode is about 4.5 μm, the change of the subthreshold coefficient is hardly recognized.
【0068】これは、ゲート電極下のチャネル領域に単
結晶シリコン膜に変換した固相成長膜以外に、単結晶化
しなかった多結晶シリコン膜が含まれていることを示し
ている。This indicates that the channel region under the gate electrode contains a polycrystalline silicon film which has not been single-crystallized, in addition to the solid phase growth film converted into the single crystal silicon film.
【0069】つまり、多結晶シリコン膜がチャネル領域
内に含まれたことにより、結晶粒界や膜の欠陥によって
キャリアが散乱されてトランジスタの応答性を下げてお
り、そのことがサブスレッショルド係数の増加に現れて
いる。That is, since the polycrystalline silicon film is included in the channel region, carriers are scattered by the crystal grain boundaries and film defects, and the responsiveness of the transistor is lowered, which causes an increase in the subthreshold coefficient. Has appeared in.
【0070】図6のグラフのなかで、サブスレッショル
ド係数が徐々に増加していき、ある値で飽和するのは、
増加しはじめでは固相成長膜の単結晶シリコン膜の割合
が多結晶シリコン膜に比べて少なく、シード領域6から
離れるに従って多結晶シリコン膜がチャネル領域内に含
まれる割合が増加することを示している。In the graph of FIG. 6, the subthreshold coefficient gradually increases and saturates at a certain value.
At the beginning of the increase, the proportion of the single crystal silicon film of the solid phase growth film is smaller than that of the polycrystalline silicon film, and it is shown that the proportion of the polycrystalline silicon film contained in the channel region increases as the distance from the seed region 6 increases. There is.
【0071】つまり、図6は従来の半導体装置に比べて
本発明の半導体装置のほうが、より単結晶シリコン基板
1との水平方向に単結晶シリコン膜として固相成長して
いることを示すものである。That is, FIG. 6 shows that the semiconductor device of the present invention is solid-phase grown as a single crystal silicon film in the horizontal direction with the single crystal silicon substrate 1 as compared with the conventional semiconductor device. is there.
【0072】したがって、本発明の構造を用いることに
より、固相成長距離が拡大し、ゲート寸法や、シード領
域端からゲート電極端までの距離などの設計の余裕度も
拡大する。Therefore, by using the structure of the present invention, the solid phase growth distance is expanded, and the design margin such as the gate size and the distance from the seed region end to the gate electrode end is also expanded.
【0073】以上説明した実施例では、N型のダブルゲ
ート型の電界効果型薄膜トランジスタについて説明した
が、P型のダブルゲート型の電界効果型薄膜トランジス
タに本発明の構造と製造方法とを提要しても、以上の説
明と同様な効果を得ることができる。Although the N-type double gate type field effect thin film transistor has been described in the above-mentioned embodiments, the structure and manufacturing method of the present invention are applied to the P type double gate type field effect thin film transistor. Also, the same effects as those described above can be obtained.
【0074】[0074]
【発明の効果】以上説明したように本発明の半導体装置
の構造とその製造方法とにおいては、下部ゲート電極を
含みしかもシード領域以外の領域にシリコン窒化膜を設
けている。このことによって、固相成長時に発生する歪
みや膜の欠陥の発生を低減することができる。As described above, in the structure of the semiconductor device of the present invention and the manufacturing method thereof, the silicon nitride film is provided in the region including the lower gate electrode and other than the seed region. As a result, it is possible to reduce strain and film defects that occur during solid phase growth.
【0075】その結果、下部ゲート電極の段差などに欠
陥が集中するなどの形状的な問題も緩和され、固相成長
距離の拡大が実現できる。さらに、固相成長距離が拡大
したことによってゲート寸法や、シード領域端からゲー
ト電極端までの距離などの設計の余裕度も拡大する。As a result, geometrical problems such as defects concentrated on the steps of the lower gate electrode are alleviated, and the solid-phase growth distance can be increased. Further, the expanded solid-phase growth distance also expands the design margin such as the gate size and the distance from the end of the seed region to the end of the gate electrode.
【図1】本発明の実施例における半導体装置の構造とそ
の製造方法の製造工程を示す断面図である。FIG. 1 is a cross-sectional view showing a structure of a semiconductor device and a manufacturing process of a manufacturing method thereof according to an embodiment of the present invention.
【図2】本発明の実施例における半導体装置の構造とそ
の製造方法の製造工程を示す断面図である。FIG. 2 is a cross-sectional view showing a structure of a semiconductor device and a manufacturing process of a manufacturing method thereof according to an embodiment of the present invention.
【図3】本発明の実施例における半導体装置の構造とそ
の製造方法の製造工程を示す断面図である。FIG. 3 is a cross-sectional view showing a structure of a semiconductor device and a manufacturing process of a manufacturing method thereof according to an embodiment of the present invention.
【図4】本発明の実施例における半導体装置の構造とそ
の製造方法の製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of the semiconductor device and the manufacturing process of the manufacturing method thereof in the embodiment of the present invention.
【図5】本発明の実施例における半導体装置の構造とそ
の製造方法の製造工程を示す断面図である。FIG. 5 is a cross-sectional view showing the structure of the semiconductor device and the manufacturing process of the manufacturing method thereof in the embodiment of the present invention.
【図6】本発明の実施例の半導体装置におけるN型の電
界効果型薄膜トランジスタと、従来の技術におけるN型
の電界効果型薄膜トランジスタとのシード領域端からゲ
ート電極端までの距離とサブスレッショルド係数との関
係を示すグラフである。FIG. 6 shows a distance from a seed region end to a gate electrode end and a subthreshold coefficient of an N-type field effect thin film transistor in a semiconductor device of an embodiment of the present invention and an N type field effect thin film transistor in a conventional technique. It is a graph which shows the relationship of.
【図7】従来例における半導体装置を示す断面図であ
る。FIG. 7 is a cross-sectional view showing a semiconductor device in a conventional example.
【図8】固相成長法を説明するための平面図である。FIG. 8 is a plan view for explaining the solid phase growth method.
1 単結晶シリコン基板 2 絶縁膜 3 シリコン窒化膜 4 下部ゲート電極 5 上部ゲート電極 6 シード領域 7 活性層領域 8 ソース領域 9 ドレイン領域 1 Single Crystal Silicon Substrate 2 Insulating Film 3 Silicon Nitride Film 4 Lower Gate Electrode 5 Upper Gate Electrode 6 Seed Region 7 Active Layer Region 8 Source Region 9 Drain Region
Claims (11)
と、その絶縁膜上に設ける多結晶シリコン膜からなる下
部ゲート電極と、下部ゲート電極上に設ける下部ゲート
絶縁膜と、シード領域以外の領域に設けるシリコン窒化
膜と、シリコン窒化膜上に設ける活性層領域と、活性層
領域表面に設ける上部ゲート絶縁膜と、上部ゲート絶縁
膜上に設ける上部ゲート電極と、上部ゲート電極に整合
する領域の活性層領域に設けるソース領域とドレイン領
域とを備えることを特徴とする半導体装置。1. An insulating film provided on a single crystal silicon substrate, a lower gate electrode made of a polycrystalline silicon film provided on the insulating film, a lower gate insulating film provided on the lower gate electrode, and a region other than a seed region. A silicon nitride film provided on the silicon nitride film, an active layer region provided on the silicon nitride film, an upper gate insulating film provided on the surface of the active layer region, an upper gate electrode provided on the upper gate insulating film, and a region matching the upper gate electrode. A semiconductor device comprising a source region and a drain region provided in an active layer region.
酸化膜からなる絶縁膜と、その絶縁膜上に設ける多結晶
シリコン膜からなる下部ゲート電極と、下部ゲート電極
上に設ける下部ゲート絶縁膜と、シード領域以外の領域
に設けるシリコン窒化膜と、シリコン窒化膜上に設ける
活性層領域と、活性層領域表面に設ける上部ゲート絶縁
膜と、上部ゲート絶縁膜の上部に設ける上部ゲート電極
と、上部ゲート電極に整合する領域の活性層領域に設け
るソース領域とドレイン領域とを備えることを特徴とす
る半導体装置。2. An insulating film made of a silicon oxide film provided on a single crystal silicon substrate, a lower gate electrode made of a polycrystalline silicon film provided on the insulating film, and a lower gate insulating film provided on the lower gate electrode. A silicon nitride film provided in a region other than the seed region, an active layer region provided on the silicon nitride film, an upper gate insulating film provided on the surface of the active layer region, an upper gate electrode provided on the upper gate insulating film, and an upper gate A semiconductor device comprising a source region and a drain region provided in an active layer region of a region matching with an electrode.
酸化膜からなる絶縁膜と、そのシリコン酸化膜からなる
絶縁膜上に設ける多結晶シリコン膜からなる下部ゲート
電極と、下部ゲート電極上に設ける下部ゲート絶縁膜
と、シード領域以外の領域に設けるシリコン窒化膜と、
シリコン窒化膜上に設ける単結晶シリコン膜あるいは多
結晶シリコン膜で構成する活性層領域と、活性層領域表
面に設ける上部ゲート絶縁膜と、上部ゲート絶縁膜の上
部に設ける上部ゲート電極と、上部ゲート電極に整合す
る領域の活性層領域に設けるソース領域とドレイン領域
とを備えることを特徴とする半導体装置。3. An insulating film made of a silicon oxide film provided on a single crystal silicon substrate, a lower gate electrode made of a polycrystalline silicon film provided on the insulating film made of the silicon oxide film, and a lower portion provided on the lower gate electrode. A gate insulating film, a silicon nitride film provided in a region other than the seed region,
An active layer region formed of a single crystal silicon film or a polycrystalline silicon film provided on a silicon nitride film, an upper gate insulating film provided on the surface of the active layer region, an upper gate electrode provided on the upper gate insulating film, and an upper gate A semiconductor device comprising a source region and a drain region provided in an active layer region of a region matching with an electrode.
し、絶縁膜上に多結晶シリコン膜からなる下部ゲート電
極を形成する工程と、下部ゲート電極上を含む全面に下
部ゲート絶縁膜を形成する工程と、シリコン窒化膜を形
成する工程と、シード領域のシリコン窒化膜とシード領
域の絶縁膜を除去する工程と、多単結晶シリコン基板表
面が露出したシード領域を清浄化し、全面に非晶質シリ
コン膜を形成する工程と、窒素雰囲気中で熱処理し非晶
質シリコン膜を単結晶シリコン膜に変換する工程と、単
結晶シリコン膜をシード領域を除く領域を島状に分離
し、上部ゲート絶縁膜を形成する工程と、上部ゲート電
極を形成する工程と、ソース領域およびドレイン領域を
形成する工程とを含むことを特徴とする半導体装置の製
造方法。4. A step of forming an insulating film on a single crystal silicon substrate and forming a lower gate electrode made of a polycrystalline silicon film on the insulating film, and forming a lower gate insulating film on the entire surface including the lower gate electrode. And the step of forming a silicon nitride film, the step of removing the silicon nitride film in the seed region and the insulating film in the seed region, the seed region where the surface of the polycrystalline silicon substrate is exposed is cleaned, and the entire surface is amorphous. A step of forming a high-quality silicon film, a step of heat-treating in a nitrogen atmosphere to convert the amorphous silicon film into a single-crystal silicon film, and separating the single-crystal silicon film from the region except the seed region into islands to form an upper gate. A method of manufacturing a semiconductor device, comprising: a step of forming an insulating film; a step of forming an upper gate electrode; and a step of forming a source region and a drain region.
と、単結晶シリコン基板表面が露出したシード領域と、
絶縁膜上に設ける多結晶シリコン膜からなる下部ゲート
電極と、下部ゲート電極上に設ける下部ゲート絶縁膜
と、シード領域以外の領域に設けるシリコン窒化膜と、
シリコン窒化膜上に設ける活性層領域と、活性層領域表
面に設ける上部ゲート絶縁膜と、上部ゲート絶縁膜上に
設ける上部ゲート電極と、上部ゲート電極に整合する領
域の活性層領域に設けるソース領域とドレイン領域とを
備えることを特徴とする半導体装置。5. An insulating film provided on a single crystal silicon substrate, and a seed region in which a surface of the single crystal silicon substrate is exposed,
A lower gate electrode made of a polycrystalline silicon film provided on the insulating film, a lower gate insulating film provided on the lower gate electrode, and a silicon nitride film provided in a region other than the seed region,
An active layer region provided on the silicon nitride film, an upper gate insulating film provided on the surface of the active layer region, an upper gate electrode provided on the upper gate insulating film, and a source region provided on the active layer region in a region matching the upper gate electrode. And a drain region.
酸化膜からなる絶縁膜と、単結晶シリコン基板が露出し
たシード領域と、絶縁膜上に設ける多結晶シリコン膜か
らなる下部ゲート電極と、この下部ゲート電極上に設け
る下部ゲート絶縁膜と、シード領域以外の領域に設ける
シリコン窒化膜と、シリコン窒化膜上に設ける活性層領
域と、活性層領域表面に設ける上部ゲート絶縁膜と、上
部ゲート絶縁膜の上部に設ける上部ゲート電極と、上部
ゲート電極に整合する領域の活性層領域に設けるソース
領域とドレイン領域とを備えることを特徴とする半導体
装置。6. An insulating film made of a silicon oxide film provided on a single crystal silicon substrate, a seed region where the single crystal silicon substrate is exposed, a lower gate electrode made of a polycrystalline silicon film provided on the insulating film, and a lower portion thereof. A lower gate insulating film provided on the gate electrode, a silicon nitride film provided in a region other than the seed region, an active layer region provided on the silicon nitride film, an upper gate insulating film provided on the surface of the active layer region, and an upper gate insulating film A semiconductor device comprising: an upper gate electrode provided on an upper part of the semiconductor device; and a source region and a drain region provided in an active layer region of a region matching the upper gate electrode.
酸化膜からなる絶縁膜と、単結晶シリコン基板が露出し
たシード領域と、絶縁膜上に設ける多結晶シリコン膜か
らなる下部ゲート電極と、下部ゲート電極上に設ける下
部ゲート絶縁膜と、シード領域以外の領域に設けるシリ
コン窒化膜と、シリコン窒化膜上に設ける単結晶シリコ
ン膜あるいは多結晶シリコン膜で構成する活性層領域
と、活性層領域表面に設ける上部ゲート絶縁膜と、上部
ゲート絶縁膜の上部に設ける上部ゲート電極と、上部ゲ
ート電極に整合する領域の活性層領域に設けるソース領
域とドレイン領域とを備えることを特徴とする半導体装
置。7. An insulating film made of a silicon oxide film provided on a single crystal silicon substrate, a seed region where the single crystal silicon substrate is exposed, a lower gate electrode made of a polycrystalline silicon film provided on the insulating film, and a lower gate. A lower gate insulating film provided on the electrode, a silicon nitride film provided in a region other than the seed region, an active layer region formed of a single crystal silicon film or a polycrystalline silicon film provided on the silicon nitride film, and an active layer region surface. A semiconductor device comprising: an upper gate insulating film provided; an upper gate electrode provided on the upper gate insulating film; and a source region and a drain region provided in an active layer region of a region matching the upper gate electrode.
し、多結晶シリコン膜からなる下部ゲート電極を形成す
る工程と、下部ゲート電極上に下部ゲート絶縁膜を形成
する工程と、シリコン窒化膜を形成する工程と、シード
領域のシリコン窒化膜とシード領域の絶縁膜を除去する
工程と、単結晶シリコン基板表面が露出したシード領域
を清浄化し、全面に非晶質シリコン膜を形成する工程
と、窒素雰囲気中で熱処理し非晶質シリコン膜を単結晶
シリコン膜に変換する工程と、単結晶シリコン膜をシー
ド領域を含むように島状に分離し、上部ゲート絶縁膜を
形成する工程と、上部ゲート電極を形成する工程と、ソ
ース領域およびドレイン領域を形成する工程とを含むこ
とを特徴とする半導体装置の製造方法。8. A step of forming an insulating film on a single crystal silicon substrate to form a lower gate electrode made of a polycrystalline silicon film, a step of forming a lower gate insulating film on the lower gate electrode, and a silicon nitride film. And a step of removing the silicon nitride film in the seed region and the insulating film in the seed region, a step of cleaning the seed region where the surface of the single crystal silicon substrate is exposed, and forming an amorphous silicon film over the entire surface. , A step of converting the amorphous silicon film into a single crystal silicon film by heat treatment in a nitrogen atmosphere, a step of separating the single crystal silicon film into islands so as to include a seed region, and forming an upper gate insulating film, A method of manufacturing a semiconductor device, comprising: a step of forming an upper gate electrode; and a step of forming a source region and a drain region.
と、単結晶シリコン基板表面が露出したシード領域と、
絶縁膜上に設ける多結晶シリコン膜からなる下部ゲート
電極と、下部ゲート電極上に設ける下部ゲート絶縁膜
と、シード領域以外の領域に設けるシリコン窒化膜と、
シリコン窒化膜上に設ける活性層領域と、活性層領域表
面に設ける上部ゲート絶縁膜と、上部ゲート絶縁膜上に
設ける上部ゲート電極と、上部ゲート電極に整合する領
域のシード領域側の活性層領域に設けるソース領域と、
上部ゲート電極に整合する領域の上部ゲート電極を挟ん
でシード領域と反対側の活性層領域に設けるドレイン領
域とを備えることを特徴とする半導体装置。9. An insulating film provided on a single crystal silicon substrate, a seed region in which a surface of the single crystal silicon substrate is exposed,
A lower gate electrode made of a polycrystalline silicon film provided on the insulating film, a lower gate insulating film provided on the lower gate electrode, and a silicon nitride film provided in a region other than the seed region,
The active layer region provided on the silicon nitride film, the upper gate insulating film provided on the surface of the active layer region, the upper gate electrode provided on the upper gate insulating film, and the active layer region on the seed region side of the region matching the upper gate electrode. Source area to
A semiconductor device comprising: a drain region provided in an active layer region opposite to a seed region with an upper gate electrode sandwiching a region aligned with the upper gate electrode.
ン酸化膜からなる絶縁膜と、単結晶シリコン基板が露出
したシード領域と、シリコン酸化膜からなる絶縁膜上に
設ける多結晶シリコン膜からなる下部ゲート電極と、下
部ゲート電極上に設ける下部ゲート絶縁膜と、シード領
域以外の領域に設けるシリコン窒化膜と、シリコン窒化
膜上に設ける活性層領域と、活性層領域表面に設ける上
部ゲート絶縁膜と、上部ゲート絶縁膜の上部に設ける上
部ゲート電極と、上部ゲート電極に整合する領域のシー
ド領域側の活性層領域に設けるソース領域と、上部ゲー
ト電極に整合する領域の上部ゲート電極を挟んでシード
領域と反対側の活性層領域に設けるドレイン領域とを備
えることを特徴とする半導体装置。10. An insulating film made of a silicon oxide film provided on a single crystal silicon substrate, a seed region where the single crystal silicon substrate is exposed, and a lower gate made of a polycrystalline silicon film provided on the insulating film made of a silicon oxide film. An electrode, a lower gate insulating film provided on the lower gate electrode, a silicon nitride film provided in a region other than the seed region, an active layer region provided on the silicon nitride film, and an upper gate insulating film provided on the surface of the active layer region, The upper gate electrode provided on the upper gate insulating film, the source region provided on the active layer region on the seed region side of the region matching the upper gate electrode, and the seed region sandwiching the upper gate electrode in the region matching the upper gate electrode. And a drain region provided in an active layer region opposite to the semiconductor device.
ン酸化膜からなる絶縁膜と、単結晶シリコン基板が露出
したシード領域と、シリコン酸化膜からなる絶縁膜上に
設ける多結晶シリコン膜からなる下部ゲート電極と、下
部ゲート電極上に設ける下部ゲート絶縁膜と、シード領
域以外の領域に設けるシリコン窒化膜と、シリコン窒化
膜上に設ける単結晶シリコン膜あるいは多結晶シリコン
膜で構成する活性層領域と、活性層領域表面に設ける上
部ゲート絶縁膜と、上部ゲート絶縁膜の上部に設ける上
部ゲート電極と、上部ゲート電極に整合する領域のシー
ド領域側の活性層領域に設けるソース領域と、上部ゲー
ト電極に整合する領域の上部ゲート電極を挟んでシード
領域と反対側の活性層領域に設けるドレイン領域とを備
えることを特徴とする半導体装置。11. An insulating film made of a silicon oxide film provided on a single crystal silicon substrate, a seed region where the single crystal silicon substrate is exposed, and a lower gate made of a polycrystalline silicon film provided on the insulating film made of a silicon oxide film. An electrode, a lower gate insulating film provided on the lower gate electrode, a silicon nitride film provided in a region other than the seed region, and an active layer region made of a single crystal silicon film or a polycrystalline silicon film provided on the silicon nitride film, The upper gate insulating film provided on the surface of the active layer region, the upper gate electrode provided on the upper gate insulating film, the source region provided on the active layer region on the seed region side of the region matching the upper gate electrode, and the upper gate electrode A drain region provided in the active layer region opposite to the seed region with the upper gate electrode in the matching region interposed therebetween. Semiconductor device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7069267A JPH08264791A (en) | 1995-03-28 | 1995-03-28 | Semiconductor device and its manufacture |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7069267A JPH08264791A (en) | 1995-03-28 | 1995-03-28 | Semiconductor device and its manufacture |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH08264791A true JPH08264791A (en) | 1996-10-11 |
Family
ID=13397749
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7069267A Pending JPH08264791A (en) | 1995-03-28 | 1995-03-28 | Semiconductor device and its manufacture |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH08264791A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007201005A (en) * | 2006-01-24 | 2007-08-09 | Seiko Epson Corp | Semiconductor device and manufacturing method of semiconductor device |
| JP2011258964A (en) * | 1999-04-01 | 2011-12-22 | Semiconductor Energy Lab Co Ltd | Semiconductor device and method for manufacturing the same |
-
1995
- 1995-03-28 JP JP7069267A patent/JPH08264791A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011258964A (en) * | 1999-04-01 | 2011-12-22 | Semiconductor Energy Lab Co Ltd | Semiconductor device and method for manufacturing the same |
| JP2007201005A (en) * | 2006-01-24 | 2007-08-09 | Seiko Epson Corp | Semiconductor device and manufacturing method of semiconductor device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6326667B1 (en) | Semiconductor devices and methods for producing semiconductor devices | |
| US6399429B1 (en) | Method of forming monocrystalline silicon layer, method for manufacturing semiconductor device, and semiconductor device | |
| JPS63265463A (en) | Method for manufacturing complementary MOS integrated circuit device | |
| KR20030047806A (en) | Semiconductor device and production process thereof | |
| JP2654055B2 (en) | Manufacturing method of semiconductor substrate | |
| US5433168A (en) | Method of producing semiconductor substrate | |
| JP3320180B2 (en) | Method for manufacturing thin film transistor | |
| JPH04286336A (en) | Manufacturing method of semiconductor device | |
| JPH08264791A (en) | Semiconductor device and its manufacture | |
| JPH08250421A (en) | Method for manufacturing semiconductor substrate and semiconductor substrate | |
| JPH08293607A (en) | Semiconductor integrated circuit device and manufacturing method thereof | |
| JPH08321617A (en) | Method of manufacturing semiconductor device | |
| JPH07226516A (en) | Semiconductor device and manufacture thereof | |
| JPS63119576A (en) | Method of forming active region of thin film transistor | |
| JPH04206932A (en) | Semiconductor device and its manufacturing method | |
| JP2756320B2 (en) | Crystal formation method | |
| JPS60193324A (en) | Manufacture of semiconductor substrate | |
| JPH11251241A (en) | Method for manufacturing crystalline silicon layer, method for manufacturing solar cell, and method for manufacturing thin film transistor | |
| JPH0864826A (en) | Semiconductor device and method of fabrication thereof | |
| JPH0513327A (en) | Method for forming single crystal silicon film | |
| JP2527016B2 (en) | Method for manufacturing semiconductor film | |
| JP4585464B2 (en) | Manufacturing method of semiconductor device | |
| JPS59134819A (en) | Manufacture of semiconductor substrate | |
| JP4345249B2 (en) | Semiconductor substrate, field effect transistor, and manufacturing method thereof | |
| JPH088437A (en) | Semiconductor integrated circuit device and its manufacture |