JPH0826906B2 - Magnetic particle type electromagnetic coupling device - Google Patents
Magnetic particle type electromagnetic coupling deviceInfo
- Publication number
- JPH0826906B2 JPH0826906B2 JP2180427A JP18042790A JPH0826906B2 JP H0826906 B2 JPH0826906 B2 JP H0826906B2 JP 2180427 A JP2180427 A JP 2180427A JP 18042790 A JP18042790 A JP 18042790A JP H0826906 B2 JPH0826906 B2 JP H0826906B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic layer
- driven
- coupling device
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Braking Arrangements (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は、磁性粒子を磁化してドライブメンバとド
リブンメンバとの間を鎖状連結する磁性粒子式電磁連結
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic particle type electromagnetic coupling device that magnetizes magnetic particles to link a drive member and a driven member in a chain shape.
[従来の技術] 第2図は従来の磁性粒子式電磁連結装置の一例を示す
断面図であり、図において、(1)はステータ、(2)
はこのステータ(1)に内蔵された励磁コイル、(3)
はステータ(1)に支承する第1のブラケットで、第1
および第2のベアリング(4),(5)を介して駆動回
転軸(6)を回転自在に支承している。(7)は駆動回
転軸(6)に固着され、ステータ(1)の内側に所定の
空隙を介して設けられた第1の連結主体を構成するドラ
イブメンバ、(8)はドライブメンバ(7)の端部に固
定されたプレート、(9)はドライブメンバ(7)の内
側に所定の径方向環状空隙を介して設けられた第2の連
結主体を構成するドリブンメンバ、(10)は環状空隙内
に充填された磁性粒子、(11)はドリブンメンバ(9)
に固着された被駆動回転軸、(12)はステータ(1)に
固定された被駆動回転軸(11)を第3および第4のベア
リング(13),(14)を介して回転自在に支承する第2
のブラケットである。[Prior Art] FIG. 2 is a sectional view showing an example of a conventional magnetic particle type electromagnetic coupling device, in which (1) is a stator and (2).
Is an exciting coil built in this stator (1), (3)
Is a first bracket supported on the stator (1),
Also, the drive rotary shaft (6) is rotatably supported via the second bearings (4) and (5). (7) is a drive member which is fixed to the drive rotating shaft (6) and constitutes a first connecting main body provided inside the stator (1) with a predetermined gap, and (8) is a drive member (7). A plate fixed to the end of the drive member, (9) a driven member that constitutes a second connecting main body provided inside the drive member (7) via a predetermined radial annular gap, and (10) an annular gap Magnetic particles filled inside (11) are driven members (9)
And a driven rotary shaft fixed to the stator (1), the driven rotary shaft (11) fixed to the stator (1) is rotatably supported via third and fourth bearings (13) and (14). Second
It is a bracket.
(20)は、駆動回転軸(6)の中心軸線、(21),
(22)はこの駆動回転軸(6)の外周面上に固着された
高透磁率軟磁性材からなる第1および第2の磁性層で、
中心軸線(20)に対して第1の磁性層(21)は反時計方
向45゜の方向に、第2の磁性層(22)は時計方向45゜の
方向にそれぞれ形成される。(23)は第1のブラケット
(3)の内側に配設されたコイルボビン、(24),(2
5)はこのコイルボビン(23)に巻回された第1および
第2の検出コイル、(27),(28)は第1および第2の
検出コイル(24),(25)の周囲に設けられた第1およ
び第2の磁気収束層で高透磁率磁性材からなる。(29)
は第1および第2の検出コイル(24),(25)に接続さ
れた検出回路で、この検出回路(29)は周知のインダク
タンス差動増幅回路である。(20) is the central axis of the drive rotary shaft (6), (21),
(22) is the first and second magnetic layers made of a high magnetic permeability soft magnetic material fixed on the outer peripheral surface of the drive rotating shaft (6),
The first magnetic layer (21) is formed in a counterclockwise direction of 45 ° and the second magnetic layer (22) is formed in a clockwise direction of 45 ° with respect to the central axis (20). (23) is a coil bobbin disposed inside the first bracket (3), and (24), (2
5) is the first and second detection coils wound around this coil bobbin (23), and (27) and (28) are provided around the first and second detection coils (24) and (25). The first and second magnetic flux concentrating layers are made of a high magnetic permeability magnetic material. (29)
Is a detection circuit connected to the first and second detection coils (24) and (25), and the detection circuit (29) is a well-known inductance differential amplifier circuit.
次に、動作について説明する。図示しない駆動源に結
合された駆動回転軸(6)が回転され、ドライブメンバ
(7)がこの駆動回転軸(6)と一体に回転していると
き、ステータ(1)に内蔵された励磁コイル(2)に電
流を流すと図中に点線で示すように磁束(Φ)が発生す
る。その磁路の一部である磁性粒子(10)は回転してい
るドライブメンバ(7)と静止しているドリブンメンバ
(9)との間で鎖状に連結し、ドリブンメンバ(9)は
回転され、このドリブンメンバ(9)と一体に図示しな
い負荷側に結合された被駆動軸(11)を回転させる。そ
して、励磁コイル(2)の電流を遮断すると磁束(Φ)
は消失し、磁性粒子(10)の鎖状の連結はとかれ、ドリ
ブンメンバ(9)はフリーとなる。なお、伝達されるト
ルク値は励磁コイル(2)に流す電流値にほぼ直線的に
比例している。Next, the operation will be described. When the drive rotary shaft (6) coupled to a drive source (not shown) is rotated and the drive member (7) rotates integrally with the drive rotary shaft (6), an exciting coil built in the stator (1). When a current is applied to (2), a magnetic flux (Φ) is generated as shown by the dotted line in the figure. The magnetic particles (10) that are a part of the magnetic path are connected in a chain between the rotating drive member (7) and the stationary driven member (9), and the driven member (9) rotates. Then, the driven shaft (11) coupled to the load side (not shown) is rotated integrally with the driven member (9). Then, when the current of the exciting coil (2) is cut off, the magnetic flux (Φ)
Disappears, the chain-like connection of the magnetic particles (10) is broken, and the driven member (9) becomes free. The transmitted torque value is almost linearly proportional to the value of the current flowing through the exciting coil (2).
ここで、動力が伝達される状態では、駆動回転軸
(6)には動力伝達分のトルクの印加されることにな
り、第1および第2の磁性層(21),(22)の一方に引
張力が発生し、他方に圧縮力が発生し歪みが生じる。こ
の歪みが生じると透磁率が変化し、引張力の場合と圧縮
力の場合では透磁率が逆方向に変化する。第1および第
2の検出コイル(24),(25)はこの透磁率変化を磁気
的インピーダンスの変化として検出し、検出回路(29)
は、第1および第2の検出コイル(24),(25)の出力
を差動増幅し、駆動回転軸(6)の歪み量すなわちトル
クに応じた検出電圧を出力する。Here, in the state in which power is transmitted, torque for power transmission is applied to the drive rotating shaft (6), and one of the first and second magnetic layers (21) and (22) is applied. A tensile force is generated and a compressive force is generated on the other side, which causes strain. When this distortion occurs, the magnetic permeability changes, and the magnetic permeability changes in the opposite direction between the tensile force and the compressive force. The first and second detection coils (24) and (25) detect this change in permeability as a change in magnetic impedance, and a detection circuit (29).
Outputs differentially amplified outputs of the first and second detection coils (24) and (25) and outputs a detection voltage according to the amount of distortion of the drive rotation shaft (6), that is, the torque.
[発明が解決しょうとする課題] 上記のように構成された磁性粒子式電磁連結装置で
は、駆動回転軸(6)は炭素鋼で構成されており、励磁
コイル(2)により発生する磁束(Φ′)が図に示すよ
うに駆動回転軸(6)内を通ることになり、従ってその
磁束(Φ′)が第1の磁性層(21)および第2の磁性層
(22)を通り、第1の磁性層(21)および第2の磁性層
(22)の磁気的動作点が移動してトルク検出出力に大き
な誤差を生ずるという問題点があった。[Problems to be Solved by the Invention] In the magnetic particle type electromagnetic coupling device configured as described above, the drive rotating shaft (6) is made of carbon steel, and the magnetic flux (Φ) generated by the exciting coil (2) is generated. ′) Passes through the drive rotation shaft (6) as shown in the figure, so that its magnetic flux (Φ ′) passes through the first magnetic layer (21) and the second magnetic layer (22), There is a problem that the magnetic operating points of the first magnetic layer (21) and the second magnetic layer (22) move to cause a large error in the torque detection output.
この発明の第1の発明および第2の発明は、かかる問
題点を解決するためになされたもので、精度の高い安定
したトルク検出を行ない得る磁性粒子式電磁連結装置を
得ることを目的とする。The first invention and the second invention of the present invention have been made to solve the above problems, and an object thereof is to obtain a magnetic particle type electromagnetic coupling device capable of performing highly accurate and stable torque detection. .
[課題を解決するための手段] この発明に係る第1の発明は、磁性層の設けられた回
転軸を非磁性材で構成したものである。[Means for Solving the Problems] A first invention according to the present invention comprises a rotating shaft provided with a magnetic layer made of a non-magnetic material.
この発明に係る第2の発明は、磁性層の設けられた回
転軸を磁性層と熱膨張係数がほぼ等しい材料で構成した
ものである。According to a second aspect of the present invention, the rotating shaft provided with the magnetic layer is made of a material having a thermal expansion coefficient substantially equal to that of the magnetic layer.
[作 用] この発明の第1の発明においては、回転軸を非磁性材
で構成したので、励磁コイルで発生した磁束が磁性層に
影響を及ぼさない。[Operation] In the first aspect of the present invention, since the rotating shaft is made of a non-magnetic material, the magnetic flux generated by the exciting coil does not affect the magnetic layer.
また、この発明の第2の発明においては、回転軸を磁
性層とほぼ等しい熱膨張係数の材料で構成したので、温
度変化により両者間で応力が生ずるようなことはない。Further, in the second aspect of the present invention, since the rotating shaft is made of a material having a coefficient of thermal expansion substantially equal to that of the magnetic layer, stress does not occur between the two due to temperature change.
[実施例] 以下、この発明の実施例を図について説明する。第1
図はこの発明の第1の発明および第2の発明の一実施例
を示すもので、第2図と同一または相当部分は同一符号
を付し、その説明は省略する。Embodiment An embodiment of the present invention will be described below with reference to the drawings. First
The drawings show an embodiment of the first invention and the second invention of the present invention, and the same or corresponding parts as in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted.
図において、(30)は例えばNi基超合金のハステロイ
からなる、非磁性材の駆動回転軸で、この駆動回転軸
(30)の熱膨張係数はアモルファスからなる第1および
第2の磁性層(21),(22)の熱膨張係数とほぼ等しい
10−12×10-6程度である。In the figure, (30) is a drive rotating shaft made of a non-magnetic material, for example, made of Hastelloy of Ni-base superalloy, and the thermal expansion coefficient of the drive rotating shaft (30) is made of amorphous first and second magnetic layers ( 21) and (22) are almost equal to the coefficient of thermal expansion
It is about 10-12 × 10 -6 .
以上のように構成された磁性粒子式電磁連結装置で
は、駆動回転軸(30)は非磁性材で構成されているの
で、励磁コイル(2)で生じた磁束が駆動回転軸(30)
を介して第1および第2の磁性層(21),(22)に悪影
響を与えるようなことはない。In the magnetic particle type electromagnetic coupling device configured as described above, since the drive rotating shaft (30) is made of a non-magnetic material, the magnetic flux generated in the exciting coil (2) causes the drive rotating shaft (30) to rotate.
There is no adverse effect on the first and second magnetic layers (21) and (22) through the.
また、ハステロイ製の駆動回転軸(30)とアモルファ
ス製の第1および第2の磁性層(21),(22)との間で
は熱膨張にほとんど差はなく、温度変化により両者(3
0),(21),(22)間で応力が生ずるようなことはな
い。Further, there is almost no difference in thermal expansion between the drive rotation shaft (30) made of Hastelloy and the first and second magnetic layers (21) and (22) made of amorphous, and both (3
There is no stress between 0), (21) and (22).
なお、上記実施例では駆動回転軸(30)に第1の磁性
層(21)、第2の磁性層が固着された磁性粒子式電磁連
続装置について説明したが、被駆動回転軸に第1の磁性
層(21)、第2の磁性層(22)が固着されたものであっ
てもよい。In the above embodiment, the magnetic particle type electromagnetic continuous device in which the first magnetic layer (21) and the second magnetic layer are fixed to the drive rotating shaft (30) has been described. The magnetic layer (21) and the second magnetic layer (22) may be fixed.
この場合には、被駆動回転軸がハステロイで構成され
る。In this case, the driven rotary shaft is made of Hastelloy.
また、この発明は第1の磁性層を駆動回転軸に固着
し、第2の磁性層を被駆動回転軸に固着したものにも適
用できる。Further, the present invention can also be applied to one in which the first magnetic layer is fixed to the drive rotation shaft and the second magnetic layer is fixed to the driven rotation shaft.
さらに、上記実施例ではクラッチ機能を有する磁性粒
子式電磁連結装置について適用される発明について説明
したが、この発明は駆動回転軸の回転がドリブンメンバ
で阻止され被駆動回転軸の有しないブレーキ機能を備え
た磁性粒子式電磁連結装置にも適用できる。Further, although the invention applied to the magnetic particle type electromagnetic coupling device having the clutch function has been described in the above embodiment, the present invention provides a braking function which the driven rotary shaft does not have because the rotation of the drive rotary shaft is blocked by the driven member. It can also be applied to the magnetic particle type electromagnetic coupling device provided.
さらにまた、駆動回転軸(6)として例えばインコネ
ル製のものを用いてもよい。Furthermore, the drive rotary shaft (6) may be made of Inconel, for example.
[発明の効果] 以上説明したように、この発明の第1の発明の磁性粒
子式電磁連結装置によれば、磁性層の設けられた回転軸
を非磁性材で構成したことにより、励磁コイルにより発
生する磁束の影響を磁性層は受けるようなことはなく、
その影響により磁性層の磁気的動作点が移動することは
なく、精度の高い安定したトルク検出を行ない得るとい
う効果がある。[Effects of the Invention] As described above, according to the magnetic particle type electromagnetic coupling device of the first invention of the present invention, since the rotating shaft provided with the magnetic layer is made of a non-magnetic material, The magnetic layer is not affected by the generated magnetic flux,
Due to the influence, the magnetic operating point of the magnetic layer does not move, and it is possible to perform highly accurate and stable torque detection.
また、この発明の第2の発明の磁性粒子式電磁連結装
置によれば、回転軸を磁性層とほぼ熱膨張係数が等しい
材料で構成したことにより、温度変化により両者間で応
力が生じることはなく、精度の高い安定したトルク検出
を行ない得るという効果がある。Further, according to the magnetic particle type electromagnetic coupling device of the second invention of the present invention, since the rotating shaft is made of a material having substantially the same thermal expansion coefficient as that of the magnetic layer, stress is not generated between them due to temperature change. Therefore, there is an effect that stable and highly accurate torque detection can be performed.
第1図はこの発明の一実施例を示す断面図、第2図は従
来の磁性粒子式電磁連結装置の一例を示す断面図であ
る。 図において、(2)は励磁コイル、(7)はドライブメ
ンバ、(9)はドリブンメンバ、(10)は磁性粒子、
(11)は被駆動回転軸、(21)は第1の磁性層、(22)
は第2の磁性層、(24)は第1の検出コイル、(25)は
第2の検出コイル、(30)は駆動回転軸である。 なお、各図中、同一符号は同一又は相当部分を示す。FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing an example of a conventional magnetic particle type electromagnetic coupling device. In the figure, (2) is an exciting coil, (7) is a drive member, (9) is a driven member, (10) is magnetic particles,
(11) is the driven rotary shaft, (21) is the first magnetic layer, (22)
Is a second magnetic layer, (24) is a first detection coil, (25) is a second detection coil, and (30) is a drive rotating shaft. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (2)
と、被駆動回転軸に固着されたドリブンメンバと、この
ドリブンメンバと前記ドライブメンバとの間に充填され
た磁性粒子と、この磁性粒子を磁化して前記ドライブメ
ンバと前記ドリブンメンバとの間を鎖状連結する励磁コ
イルと、前記駆動回転軸および前記被駆動回転軸の少な
くとも一方の外周面上に設けられた磁性層と、この磁性
層の周囲に設けられた検出コイルとを備えた磁性粒子式
電磁連結装置において、前記磁性層の設けられた回転軸
を非磁性材で構成したことを特徴とする磁性粒子式電磁
連結装置。1. A drive member fixed to a driving rotary shaft, a driven member fixed to a driven rotary shaft, magnetic particles filled between the driven member and the drive member, and the magnetic particles. An exciting coil that is magnetized to connect the drive member and the driven member in a chain shape, a magnetic layer provided on an outer peripheral surface of at least one of the drive rotation shaft and the driven rotation shaft, and the magnetic layer. A magnetic particle type electromagnetic coupling device including a detection coil provided around the magnetic particle type electromagnetic coupling device, wherein a rotating shaft provided with the magnetic layer is made of a non-magnetic material.
と、被駆動回転軸に固着されたドリブンメンバと、この
ドリブンメンバと前記ドライブメンバとの間に充填され
た磁性粒子と、この磁性粒子を磁化して前記ドライブメ
ンバと前記ドリブンメンバとの間を鎖状連結する励磁コ
イルと、前記駆動回転軸および前記被駆動回転軸の少な
くとも一方の外周面上に設けられた磁性層と、この磁性
層の周囲に設けられた検出コイルとを備えた磁性粒子式
電磁連結装置において、前記磁性層の設けられた回転軸
を磁性層と熱膨張係数がほぼ等しい材料で構成したこと
を特徴とする磁性粒子式電磁連結装置。2. A drive member fixed to a driving rotary shaft, a driven member fixed to a driven rotary shaft, magnetic particles filled between the driven member and the drive member, and the magnetic particles. An exciting coil that is magnetized to connect the drive member and the driven member in a chain shape, a magnetic layer provided on an outer peripheral surface of at least one of the drive rotation shaft and the driven rotation shaft, and the magnetic layer. In a magnetic particle type electromagnetic coupling device including a detection coil provided around the magnetic particle, the rotating shaft provided with the magnetic layer is made of a material having a thermal expansion coefficient substantially equal to that of the magnetic layer. Type electromagnetic coupling device.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2180427A JPH0826906B2 (en) | 1990-07-10 | 1990-07-10 | Magnetic particle type electromagnetic coupling device |
| DE4120243A DE4120243C2 (en) | 1990-06-20 | 1991-06-19 | Magnetic powder clutch |
| US07/717,570 US5137128A (en) | 1990-06-20 | 1991-06-19 | Magnetic particle type electromagnetic clutch with torque detector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2180427A JPH0826906B2 (en) | 1990-07-10 | 1990-07-10 | Magnetic particle type electromagnetic coupling device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0469417A JPH0469417A (en) | 1992-03-04 |
| JPH0826906B2 true JPH0826906B2 (en) | 1996-03-21 |
Family
ID=16083068
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2180427A Expired - Fee Related JPH0826906B2 (en) | 1990-06-20 | 1990-07-10 | Magnetic particle type electromagnetic coupling device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0826906B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6854573B2 (en) * | 2001-10-25 | 2005-02-15 | Lord Corporation | Brake with field responsive material |
| KR100567554B1 (en) * | 2005-03-04 | 2006-04-05 | 보라전기공업 주식회사 | Torque Transducer Integrated Powder Brake |
-
1990
- 1990-07-10 JP JP2180427A patent/JPH0826906B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0469417A (en) | 1992-03-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1940515B (en) | Magnetostrictive torque transducer | |
| US5137128A (en) | Magnetic particle type electromagnetic clutch with torque detector | |
| US6411003B1 (en) | Motor | |
| JPS6275328A (en) | torque sensor | |
| US5705756A (en) | Differential torque measuring device | |
| JP2003028195A (en) | Electromagnetic clutch | |
| JP4204294B2 (en) | Rotation angle detector | |
| JPH0826906B2 (en) | Magnetic particle type electromagnetic coupling device | |
| JPS599528A (en) | Torque sensor | |
| JPS5932835A (en) | Torque sensor | |
| JP2887338B2 (en) | Magnetic coupling | |
| JP2556177B2 (en) | Magnetic particle type electromagnetic coupling device | |
| JPH0236980Y2 (en) | ||
| JPH088351Y2 (en) | Magnetic particle type electromagnetic coupling device | |
| JPH0454322A (en) | Magnetic particle type electromagnetic coupling device | |
| JPH02281116A (en) | Strain detecting apparatus | |
| JPH01318933A (en) | Torque sensor | |
| JPH088350Y2 (en) | Magnetic particle type electromagnetic coupling device | |
| JPS63182535A (en) | torque sensor | |
| JP2514205B2 (en) | Magnetostrictive torque sensor | |
| JPH03118435A (en) | Motor-driven power steering apparatus | |
| JP3680363B2 (en) | Magnetic bearing control device | |
| JP3001028B2 (en) | Magnetostrictive torque sensor | |
| JPH0454321A (en) | Electromagnetic particle coupling device | |
| JPH02102427A (en) | torque measuring device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080321 Year of fee payment: 12 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090321 Year of fee payment: 13 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100321 Year of fee payment: 14 |
|
| LAPS | Cancellation because of no payment of annual fees |