JPH0827571A - Method for producing strontium titanate target - Google Patents
Method for producing strontium titanate targetInfo
- Publication number
- JPH0827571A JPH0827571A JP6166654A JP16665494A JPH0827571A JP H0827571 A JPH0827571 A JP H0827571A JP 6166654 A JP6166654 A JP 6166654A JP 16665494 A JP16665494 A JP 16665494A JP H0827571 A JPH0827571 A JP H0827571A
- Authority
- JP
- Japan
- Prior art keywords
- target
- strontium titanate
- powder
- sto
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Physical Vapour Deposition (AREA)
Abstract
(57)【要約】
【構成】 平均粒径が0.1〜5.0μmのチタン
酸ストロンチウム粉末をプレス成形法や鋳込成形法等に
より成形した後、焼結することによって焼結密度が4.
61g/cm3以上のチタン酸ストロンチウムターゲッ
トを製造する。
【効果】 焼結後に組成の部分的な不均一による色
むらがなく、製造工程中のクラックの発生が認められ
ず、またスパッタリング中にクラックの発生のない信頼
性の高いターゲットが得られる。(57) [Summary] [Structure] Strontium titanate powder having an average particle size of 0.1 to 5.0 μm is molded by a press molding method, a casting molding method, or the like, and then sintered to obtain a sintered density of 4 .
A strontium titanate target of 61 g / cm 3 or more is manufactured. [Effect] After sintering, there is no color unevenness due to partial nonuniformity of the composition, no cracks are observed during the manufacturing process, and a highly reliable target without cracks during sputtering can be obtained.
Description
【0001】[0001]
【産業上の利用分野】本発明は、スパッタリング法によ
ってチタン酸ストロンチウム薄膜を形成する場合に使用
する焼結ターゲットの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a sintering target used for forming a strontium titanate thin film by a sputtering method.
【0002】[0002]
【従来の技術】近年の情報化社会において半導体メモリ
ー用のキャパシタ材料としてSiO2、あるいはSiN
等の材料が用いられてきた。しかしながら今日の情報量
の増大、半導体の高集積化に伴い、半導体メモリーの小
面積、大容量化が望まれている。この要求を満足するた
めのキャパシタ材料としては、SiO2やSiN等に比
べて高い誘電特性を示すチタン酸ストロンチウム(以下
STOと略称する)が注目されている。2. Description of the Related Art In recent information society, SiO 2 or SiN is used as a capacitor material for semiconductor memory.
Have been used. However, with today's increasing amount of information and higher integration of semiconductors, there is a demand for smaller area and larger capacity of semiconductor memories. As a capacitor material for satisfying this requirement, strontium titanate (hereinafter abbreviated as STO), which has a higher dielectric property than SiO 2 or SiN, is drawing attention.
【0003】このようなSTO薄膜は、STOターゲッ
トをスパッタリングすることで得られ、このターゲット
は、STO粉末を、プレス法或いは鋳込み法を用いて成
形した後に、焼結させて得られる。Such an STO thin film is obtained by sputtering an STO target, and this target is obtained by molding STO powder by using a pressing method or a casting method and then sintering it.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の製造方法によって得られたSTO焼結ターゲ
ットは、焼結後にターゲット組成が部分的に不均一にな
り、斑点状の色むらがバルク内まで発生するという問
題、あるいは製造工程中にクラックが発生し、歩留まり
が低下するという問題があった。また製造工程中に問題
が認められなかったターゲット製品でも、スパッタリン
グ途中にクラックが発生してしまうという信頼性の面で
の問題があった。However, in the STO sintered target obtained by such a conventional manufacturing method, the target composition is partially nonuniform after sintering, and spot-like color unevenness is observed in the bulk. However, there is a problem in that the cracks occur during the manufacturing process and the yield decreases. Further, even in a target product in which no problem was found during the manufacturing process, there was a problem in reliability that cracks were generated during sputtering.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討を行った結果、STO粉末と
して平均粒径が0.1〜5.0μmの粉末を使用すると
共に、焼結後の密度を4.61g/cm3以上にするこ
とで、組成の不均一性による色むらがなく、製造工程
中、或いはスパッタリング中にクラックの発生がないS
TOターゲットが製造できることを見出だし、本発明を
完成するに至った。Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have used STO powder having an average particle size of 0.1 to 5.0 μm, and By setting the density after sintering to 4.61 g / cm 3 or more, there is no color unevenness due to non-uniformity of the composition, and no cracks occur during the manufacturing process or during sputtering.
The inventors have found that a TO target can be manufactured, and completed the present invention.
【0006】以下、本発明によるSTOターゲットの製
造方法に関する詳細について述べる。Details of the method of manufacturing the STO target according to the present invention will be described below.
【0007】本発明では原料にSTO粉末を用い、プレ
ス法あるいは鋳込み法により成形を行い、続いて焼結を
行う。このようにして得られた焼結体をバッキングプレ
ートとボンディングを行ってSTOスパッタリングター
ゲットを製造することができる。In the present invention, STO powder is used as a raw material, molding is performed by a pressing method or a casting method, and then sintering is performed. The STO sputtering target can be manufactured by bonding the thus obtained sintered body to a backing plate.
【0008】ここで用いられるSTO粉末は、炭酸スト
ロンチウム粉末及び酸化チタン粉末を所定のモル比で混
合した後、仮焼を行い、得られた仮焼粉を粉砕して得る
ことができる。なお、ここでいう粉砕とは、凝集してい
る粒子(2次粒子以上)を1次粒子に戻すことを主目的
にしている。炭酸ストロンチウム粉末及び酸化チタン粉
末の混合モル比は、特に限定されておらず、目的に合わ
せて調整することができる。STO粉末粒径は、炭酸ス
トロンチウム粉末と酸化チタン粉末との平均粒径の選
定、及び仮焼温度の設定によって調整することができ、
これによってSTO粉末の1次粒子の平均粒径を0.1
〜5.0μmに調整するが、0.1〜2.0μmの場合
が成形性の面でより好ましい。The STO powder used here can be obtained by mixing strontium carbonate powder and titanium oxide powder in a predetermined molar ratio, performing calcination, and crushing the obtained calcined powder. In addition, the pulverization referred to here is mainly intended to restore aggregated particles (secondary particles or more) to primary particles. The mixing molar ratio of the strontium carbonate powder and the titanium oxide powder is not particularly limited and can be adjusted according to the purpose. The STO powder particle size can be adjusted by selecting the average particle size of the strontium carbonate powder and the titanium oxide powder and setting the calcination temperature,
As a result, the average particle diameter of the primary particles of STO powder was 0.1
It is adjusted to ˜5.0 μm, but the range of 0.1 to 2.0 μm is more preferable in terms of moldability.
【0009】成形方法は特に限定されず、例えばプレス
成形法や鋳込み成形法等によって成形すればよく、更に
冷間水圧プレス法によって再加圧処理を行ってもよい。
このときの加圧条件は特に限定されないが、成形性の点
で約3ton/cm2の圧力で約30秒間という条件が
好ましい。またこのときに、より成形性を高めるために
有機材料系のバインダー剤を混合してもよい。The molding method is not particularly limited, and the molding may be carried out by, for example, a press molding method, a casting molding method, or the like, and re-pressing treatment may be performed by a cold hydraulic pressing method.
The pressurizing condition at this time is not particularly limited, but a condition of a pressure of about 3 ton / cm 2 for about 30 seconds is preferable in terms of moldability. At this time, an organic material-based binder agent may be mixed in order to further enhance the moldability.
【0010】このようにして得られた成形体を、所定の
温度で一定時間以上焼結させることで焼結ターゲットが
得られる。焼結温度は1200℃以上であればよいが、
1500℃をこえると過焼成による異常粒成長が発生す
る場合があるため、1200〜1500℃の範囲で焼結
させることが好ましい。焼結時間は3時間以上行えばよ
いが、10時間を越える焼結では異常粒成長が発生する
場合があるので、3〜10時間が好ましい。焼結雰囲気
は特に限定されず、酸素中、大気中、あるいは還元雰囲
気中で行えばよい。この後、得られた焼結体を所定の大
きさに切り出し、バッキングプレートとボンディングを
行ってターゲット製品とする。A sintered target is obtained by sintering the compact thus obtained at a predetermined temperature for a certain period of time or longer. The sintering temperature may be 1200 ° C. or higher,
If it exceeds 1500 ° C, abnormal grain growth may occur due to over-firing, so it is preferable to sinter in the range of 1200 to 1500 ° C. The sintering time may be 3 hours or more, but abnormal grain growth may occur in the sintering for more than 10 hours, so 3 to 10 hours is preferable. The sintering atmosphere is not particularly limited, and it may be performed in oxygen, air, or reducing atmosphere. Then, the obtained sintered body is cut into a predetermined size and bonded to a backing plate to obtain a target product.
【0011】[0011]
【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はなんらこれらに限定されるものでは
ない。なお、本発明における粒径測定は、光透過式粒度
分布測定器(セイシン企業製)を用いて行い、その時の
累積粒度分布の50%の値を平均粒径とした。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. The particle size measurement in the present invention was carried out using a light transmission type particle size distribution analyzer (manufactured by Seishin Enterprise Co., Ltd.), and the value of 50% of the cumulative particle size distribution at that time was taken as the average particle size.
【0012】実施例1 原料粉末として炭酸ストロンチウム粉末と酸化チタンを
準備し、モル比で1:1になるように調整した後、十分
に混合を行なった。続いて仮焼、粉砕を行なって表1に
示すように0.5μm、2.0μm、3.5μm、4.
5μmの平均粒径の4種類のSTO粉末を調製した。こ
の後、このSTO粉末を金型(150mmφ)に充填
し、プレス成型を行ない、更に冷間水圧プレス法で再加
圧処理を行った。この成形体を焼成炉を用いて大気雰囲
気中で1400℃、4時間の条件で焼結を行った。この
ようにして得られた焼結体を、洗浄した後にバッキング
プレートにボンディングを行ってターゲット製品とし
た。このときのターゲットの組成はSr:Tiの比で5
0:50(atm%)であった。Example 1 Strontium carbonate powder and titanium oxide were prepared as raw material powders, adjusted to have a molar ratio of 1: 1 and then thoroughly mixed. Subsequently, calcination and pulverization were performed to give 0.5 μm, 2.0 μm, 3.5 μm, 4.
Four types of STO powder having an average particle size of 5 μm were prepared. After that, this STO powder was filled in a mold (150 mmφ), press-molded, and repressurized by a cold hydraulic pressing method. This molded body was sintered in an air atmosphere at 1400 ° C. for 4 hours using a firing furnace. The sintered body thus obtained was washed and then bonded to a backing plate to obtain a target product. The composition of the target at this time is 5 in terms of the ratio of Sr: Ti.
It was 0:50 (atm%).
【0013】比較例1 炭酸ストロンチウム粉末と酸化チタンの各平均粒径、及
び仮焼温度を実施例とは異なる条件とし、他の条件は同
様にして表1に示すように0.02μm、7.5μmの
平均粒径の2種類のSTO粉末を調製した。これらの粉
末を用いて、実施例と同様な方法で成型、焼成、ボンデ
ィングを行ってターゲット製品を製造した。このときの
ターゲットの組成はSr:Tiの比で50:50(at
m%)であった。Comparative Example 1 The average particle diameters of the strontium carbonate powder and titanium oxide and the calcination temperature were set different from those in the examples, and other conditions were 0.02 μm and 7. Two types of STO powder with an average particle size of 5 μm were prepared. Using these powders, molding, firing and bonding were carried out in the same manner as in the example to manufacture a target product. The composition of the target at this time is 50:50 (at
m%).
【0014】比較例2 実施例と同様な方法によって表1に示すように2.0μ
m、4.5μmの平均粒径の2種類のSTO粉末を用意
し、プレス成型、更に冷間水圧プレス法で再加圧処理を
行って成形体を得た。この成形体を実施例とは異なる条
件で焼結を行ない得られた焼結体を、洗浄した後にバッ
キングプレートにボンディングを行ってターゲット製品
とした。このときのターゲットの組成はSr:Tiの比
で50:50(atm%)であった。Comparative Example 2 2.0 μm as shown in Table 1 by the same method as in Example.
Two types of STO powder having an average particle diameter of m and 4.5 μm were prepared, press-molded, and subjected to re-pressurizing treatment by a cold hydraulic press method to obtain a molded body. The molded body was sintered under conditions different from those of the examples, and the obtained sintered body was washed and then bonded to a backing plate to obtain a target product. The composition of the target at this time was 50:50 (atm%) in terms of the ratio of Sr: Ti.
【0015】前述した実施例、及び比較例により各粉末
粒径のSTO粉末を用いて、それぞれ10枚のターゲッ
トを製造し、その焼結体の密度、焼結体の色むら、製造
工程中及びスパッタリング中のクラックの発生について
調べた。密度はアルキメデス法を用いて測定を行い、い
っぽうクラックの発生については目視観察によって行っ
た。これらの結果を表1に示す。Using the STO powder of each powder particle size according to the above-described Examples and Comparative Examples, 10 targets were manufactured, and the density of the sintered body, the color unevenness of the sintered body, the manufacturing process, and The generation of cracks during sputtering was investigated. The density was measured by the Archimedes method, while the occurrence of cracks was visually observed. Table 1 shows the results.
【0016】[0016]
【表1】 [Table 1]
【0017】この結果から明らかなように、実施例の場
合には色むらがなく、製造工程中及びスパッタリング中
においてもクラックの発生は認められず、良好な結果が
得られている。これに対し比較例1、2の結果では、焼
結体の色むらの発生、あるいは製造工程中及びスパッタ
リング中にクラックの発生が認められており、歩留まり
の低下、ターゲット製品としての信頼性に大きく問題が
あることが示される。As is clear from this result, in the case of the example, there was no color unevenness, no cracks were observed during the manufacturing process and during the sputtering, and good results were obtained. On the other hand, in the results of Comparative Examples 1 and 2, the occurrence of color unevenness of the sintered body or the occurrence of cracks during the manufacturing process and during the sputtering was observed, and the yield was lowered and the reliability as a target product was significantly increased. Shows that there is a problem.
【0018】[0018]
【発明の効果】以上述べた通り、本発明によれば、平均
粒径が0.1〜5.0μmのSTO粉末を使用し、焼結
後の密度を4.61g/cm3以上にすることで、焼結
後に組成の部分的な不均一による色むらがなく、製造工
程中のクラックの発生が認められず、またスパッタリン
グ中のクラックの発生の無い信頼性の高い良好なSTO
ターゲットを製造することができる。As described above, according to the present invention, STO powder having an average particle size of 0.1 to 5.0 μm is used and the density after sintering is 4.61 g / cm 3 or more. In addition, there is no color unevenness due to partial non-uniformity of composition after sintering, no cracks are observed during the manufacturing process, and cracks are not generated during sputtering.
The target can be manufactured.
Claims (1)
酸ストロンチウム粉末を成形、焼結してなる焼結密度が
4.61g/cm3以上のチタン酸ストロンチウムター
ゲットの製造方法。1. A method for producing a strontium titanate target having a sintered density of 4.61 g / cm 3 or more obtained by molding and sintering strontium titanate powder having an average particle diameter of 0.1 to 5.0 μm.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6166654A JPH0827571A (en) | 1994-07-19 | 1994-07-19 | Method for producing strontium titanate target |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6166654A JPH0827571A (en) | 1994-07-19 | 1994-07-19 | Method for producing strontium titanate target |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH0827571A true JPH0827571A (en) | 1996-01-30 |
Family
ID=15835279
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6166654A Pending JPH0827571A (en) | 1994-07-19 | 1994-07-19 | Method for producing strontium titanate target |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0827571A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8195058B2 (en) | 2009-03-13 | 2012-06-05 | Ricoh Company, Ltd. | Toner fixing device with light control mirrors and image forming apparatus incorporating same |
| US8326167B2 (en) | 2008-07-14 | 2012-12-04 | Ricoh Company, Limited | Fixing device and image forming apparatus capable of improving fixing efficiency and suppressing overheating |
| US8428498B2 (en) | 2007-02-19 | 2013-04-23 | Ricoh Company, Ltd. | Fixing device and image forming apparatus including same |
-
1994
- 1994-07-19 JP JP6166654A patent/JPH0827571A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8428498B2 (en) | 2007-02-19 | 2013-04-23 | Ricoh Company, Ltd. | Fixing device and image forming apparatus including same |
| US8326167B2 (en) | 2008-07-14 | 2012-12-04 | Ricoh Company, Limited | Fixing device and image forming apparatus capable of improving fixing efficiency and suppressing overheating |
| US8195058B2 (en) | 2009-03-13 | 2012-06-05 | Ricoh Company, Ltd. | Toner fixing device with light control mirrors and image forming apparatus incorporating same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6162752A (en) | Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element | |
| JPH0827571A (en) | Method for producing strontium titanate target | |
| JPH08333161A (en) | Production of piezoelectric material | |
| JP4017220B2 (en) | BaxSr1-xTiO3-y target material for sputtering | |
| JP2004076021A (en) | Sputtering target material of strontium ruthenate and manufacturing method therefor | |
| JP2689439B2 (en) | Grain boundary insulation type semiconductor porcelain body | |
| JP3220846B2 (en) | Semiconductor porcelain and method of manufacturing semiconductor porcelain electronic component | |
| JP3103165B2 (en) | Method of manufacturing piezoelectric body | |
| JPH03150265A (en) | Piezoelectric ceramic and production thereof | |
| JP3704424B2 (en) | Dielectric material | |
| JPH083736A (en) | Strontium titanate sputtering target | |
| JPH07247169A (en) | Production of ceramic capacitor raw material powder | |
| JPS59203774A (en) | Floor powder for ceramic formed body baking | |
| JPH03166368A (en) | Production of pb-zr-ti oxide type target material | |
| JP2682824B2 (en) | Method for manufacturing grain boundary layer insulated semiconductor ceramic capacitor | |
| JPH0754137A (en) | Sputtering sintered target material excellent in thermal shock resistance | |
| JP3000821B2 (en) | Manufacturing method of ceramic capacitor | |
| JP2002226267A (en) | Strontium/ruthenium oxide raw material, method for manufacturing strontium/ruthenium oxide sintered compact, and sintered compact | |
| JP2002211978A (en) | Method for producing strontium-ruthenium oxide sintered body, and strontium-ruthenium oxide sintered body | |
| JPH11229126A (en) | Sputtering target material for forming dielectric thin film, and its manufacture | |
| JPH08198671A (en) | Method for manufacturing piezoelectric ceramic material | |
| JPH0330308A (en) | Separator for baking ceramic element and manufacture thereof | |
| JPH11131223A (en) | Dielectric sputtering target | |
| JPH0987016A (en) | Piezoelectric ceramic material and its production | |
| JP2000345328A (en) | Sputtering target for forming high dielectric thin film and method for producing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040116 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040210 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040412 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070123 |