JPH08287901A - Manufacture of positive electrode for lithium secondary battery - Google Patents
Manufacture of positive electrode for lithium secondary batteryInfo
- Publication number
- JPH08287901A JPH08287901A JP7093860A JP9386095A JPH08287901A JP H08287901 A JPH08287901 A JP H08287901A JP 7093860 A JP7093860 A JP 7093860A JP 9386095 A JP9386095 A JP 9386095A JP H08287901 A JPH08287901 A JP H08287901A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- lithium
- secondary battery
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Physical Vapour Deposition (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、リチウム二次電池の正
極、特に大電流放電時の放電エネルギ密度の高いリチウ
ム二次電池の正極の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode for a lithium secondary battery, and more particularly to a method for manufacturing a positive electrode for a lithium secondary battery having a high discharge energy density during high-current discharge.
【0002】[0002]
【従来の技術】電子機器用の電源は小型で軽量であるこ
とが求められ、それを実現するものとして放電エネルギ
密度が高いリチウム二次電池の開発が進められている。
リチウム二次電池の正極活物質は、充放電の可逆性が良
いこと、すなわちリチウムイオン(Li+ )の出入りに
伴う結晶構造の変化が小さいことが望まれる。このよう
な物質として、チタン(Ti)、ニオブ(Nb)、モリ
ブデン(Mo)等の硫化物やセレン化物、リチウムを含
む金属酸化物等が用いられる。特に、リチウムマンガン
酸化物(LiMnx Oy )等のリチウムを含む金属酸化
物は高いエネルギ密度を与えることが知られている。2. Description of the Related Art A power source for electronic equipment is required to be small and lightweight, and a lithium secondary battery having a high discharge energy density is being developed to realize it.
It is desired that the positive electrode active material of the lithium secondary battery has good reversibility of charge and discharge, that is, the change in crystal structure due to the inflow and outflow of lithium ions (Li + ) is small. As such a substance, a sulfide or selenide of titanium (Ti), niobium (Nb), molybdenum (Mo), a metal oxide containing lithium, or the like is used. In particular, metal oxides containing lithium such as lithium manganese oxide (LiMn x O y ) are known to give high energy density.
【0003】リチウムマンガン酸化物を含む正極の製造
方法としては、例えば2酸化マンガン(MnO2 )等の
マンガン酸化物と酸化リチウム(Li2 O)の粉体を加
熱し蒸発させる真空蒸着法により、正極基体上にリチウ
ムマンガン酸化物膜を形成する方法が一般に用いられて
いる。この方法によると、マンガン酸化物の蒸着量と酸
化リチウムの蒸着量との比率を制御することにより、容
易に膜組成比を制御することができ、また、膜形成速度
が大きいため生産性が良い。As a method for producing a positive electrode containing lithium manganese oxide, for example, a vacuum vapor deposition method in which manganese oxide such as manganese dioxide (MnO 2 ) and lithium oxide (Li 2 O) powder are heated and evaporated is used. A method of forming a lithium manganese oxide film on a positive electrode substrate is generally used. According to this method, the film composition ratio can be easily controlled by controlling the ratio between the deposition amount of manganese oxide and the deposition amount of lithium oxide, and the productivity is good because the film formation rate is high. .
【0004】しかし、従来の真空蒸着法を用いた正極製
造方法によると、通常、電極基体上にμmオーダーの膜
厚のリチウムマンガン酸化物膜を形成するが、該膜に発
生する内部応力により該膜は基体との密着性が劣り、電
池使用時に一部剥離し易い欠点を有し、実用に供し難い
のが現状である。そこで、リチウムを含む物質の蒸着と
イオン照射とを併用するイオン蒸着薄膜形成(IVD)
法により、電極基体上にリチウムマンガン酸化物膜を形
成する方法が試みられている。この方法によると、照射
イオンの作用で該膜と電極基体との界面に該両者の構成
原子よりなる混合層が形成されて、該膜の密着性が向上
するため、該膜の膜厚を比較的大きくするときにも該膜
は剥離し難い。However, according to the conventional method for producing a positive electrode using the vacuum vapor deposition method, a lithium manganese oxide film having a thickness of the order of μm is usually formed on an electrode substrate, but the internal stress generated in the film causes the lithium manganese oxide film to grow. Under the present circumstances, the film is inferior in adhesiveness to the substrate and has a defect that it is easily peeled off when the battery is used, and it is difficult to put it into practical use. Then, the ion deposition thin film formation (IVD) using the vapor deposition of the substance containing lithium and the ion irradiation together.
An attempt has been made to form a lithium manganese oxide film on an electrode substrate by the method. According to this method, a mixed layer composed of the constituent atoms of the two is formed at the interface between the film and the electrode substrate by the action of irradiation ions, and the adhesion of the film is improved. The film is difficult to peel off even when made large.
【0005】また、薄膜化された正極活物質を備えたリ
チウム二次電池において、形成された膜の結晶化度が高
いほど、放電電圧や放電時間等の電池特性は良好になる
が、IVD法によるとイオン加速エネルギ等を制御する
ことで膜の結晶性を制御できるため、これらのことか
ら、IVD法を用いて電極基体上に正極活物質膜を形成
するリチウム二次電池正極の製造方法は、工業化が期待
されている。In a lithium secondary battery provided with a thinned positive electrode active material, the higher the crystallinity of the formed film, the better the battery characteristics such as discharge voltage and discharge time. According to the above, since the crystallinity of the film can be controlled by controlling the ion acceleration energy, etc., from these facts, a method for manufacturing a lithium secondary battery positive electrode in which a positive electrode active material film is formed on an electrode substrate by the IVD method is , Industrialization is expected.
【0006】[0006]
【発明が解決しようとする課題】しかしながら前記IV
D法によると、照射イオンの加速エネルギの大きさによ
っては形成される膜中に過大な欠陥が生じたり、該膜の
結晶化がかえって妨げられたりする恐れがある。特に、
該膜の密着性向上のために例えば1keV以上の比較的
高い加速エネルギでイオン照射する場合には、膜中欠陥
が生じたり膜の結晶性が低下したりし易い。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the D method, there is a possibility that excessive defects may occur in the formed film or crystallization of the film may be hindered, depending on the magnitude of the acceleration energy of irradiation ions. In particular,
When the ions are irradiated with a relatively high acceleration energy of, for example, 1 keV or more to improve the adhesion of the film, defects in the film or the crystallinity of the film are easily deteriorated.
【0007】そこで本発明は、電極基体上に少なくとも
リチウムを含む金属酸化物の膜を形成してなるリチウム
二次電池正極の製造方法であって、形成される膜の電極
基体との密着性を良好なものにでき、また、該膜の結晶
性を向上させることができるとともに該膜中の欠陥を少
なくすることができ、それにより電極としての性能を向
上させることができるリチウム二次電池正極の製造方法
を提供することを課題とする。Therefore, the present invention is a method for producing a positive electrode for a lithium secondary battery, which comprises forming a metal oxide film containing at least lithium on an electrode substrate, and improving the adhesion of the formed film to the electrode substrate. A positive electrode for a lithium secondary battery, which can improve the crystallinity of the film and can reduce defects in the film, thereby improving the performance as an electrode. It is an object to provide a manufacturing method.
【0008】[0008]
【課題を解決するための手段】前記課題を解決するため
に本発明は、次ののリチウム二次電池正極の製造
方法及びこれらの組み合わせを提供する。 電極基体上への少なくともリチウムを含む物質の蒸
着と、該基体へのイオン照射とを併用し、酸素ガスを該
基体に吹きつけながら該基体上に少なくともリチウムを
含む金属酸化物の膜を形成する工程を含むことを特徴と
するリチウム二次電池正極の製造方法。 電極基体上への少なくともリチウムを含む物質の蒸
着と、該基体へのイオン照射とを併用し、成膜雰囲気中
での高周波放電により得られるプラズマに該基体を曝し
ながら該基体上に少なくともリチウムを含む金属酸化物
の膜を形成する工程を含むことを特徴とするリチウム二
次電池正極の製造方法。 電極基体上への少なくともリチウムを含む物質の蒸
着と、該基体へのイオン照射とを併用し、該基体に電磁
波を照射しながら該基体上に少なくともリチウムを含む
金属酸化物の膜を形成する工程を含むことを特徴とする
リチウム二次電池正極の製造方法。In order to solve the above problems, the present invention provides the following method for producing a positive electrode for a lithium secondary battery and a combination thereof. Deposition of a substance containing at least lithium on an electrode substrate and ion irradiation to the substrate are used in combination to form a metal oxide film containing at least lithium on the substrate while blowing oxygen gas on the substrate. A method of manufacturing a positive electrode for a lithium secondary battery, comprising the steps of: Deposition of a substance containing at least lithium on an electrode substrate and ion irradiation to the substrate are used in combination, and at least lithium is deposited on the substrate while exposing the substrate to plasma obtained by high frequency discharge in a film forming atmosphere. A method of manufacturing a lithium secondary battery positive electrode, comprising the step of forming a metal oxide film containing the same. A step of forming a metal oxide film containing at least lithium on the substrate while irradiating the substrate with an electromagnetic wave by using vapor deposition of a substance containing at least lithium on the electrode substrate and irradiation of the substrate with ions. A method of manufacturing a lithium secondary battery positive electrode, comprising:
【0009】これらからの方法は、そのうち2以上
を組み合わせて実施してもよい。前記の少なくともリチ
ウムを含む金属酸化物としては、LiMnO2 、LiM
n2 O4 、LiMn3 O6 等のリチウムマンガン酸化物
(LiMnx Oy )、リチウムコバルト酸化物(LiC
ox Oy )、リチウムニッケル酸化物(LiNi
x Oy )、リチウムバナジウム酸化物(LiVx Oy )
等を挙げることができる。The methods from these are two or more of them.
You may implement in combination. At least licti above
As the metal oxide containing um, LiMnO2, LiM
n2OFour, LiMn3O6Lithium manganese oxide such as
(LiMnxOy), Lithium cobalt oxide (LiC
oxOy), Lithium nickel oxide (LiNi
xOy), Lithium vanadium oxide (LiVxOy)
Etc. can be mentioned.
【0010】前記電極基体上へリチウムを含む物質を蒸
着させるとき、その蒸発源は一つでも複数でもよい。例
えばリチウムマンガン酸化物を蒸着させる場合、蒸発源
としてリチウム酸化物用とマンガン酸化物用の二つを用
いたり、或いはこれらの物質を混合して一つの蒸発源か
ら蒸発させたりすることができる。蒸発物質としては、
リチウム(Li)、マンガン(Mn)、コバルト(C
o)、バナジウム(V)、ニッケル(Ni)等の単体、
或いはこれらの酸化物等が考えられる。電子ビーム蒸発
源のように大きな蒸発速度が得られる蒸発源を用いる場
合には蒸発物質が帯電し易いが、単体の蒸発物質を用い
ると、蒸発物質が帯電しようとするのが抑制される。When depositing the substance containing lithium on the electrode substrate, the evaporation source may be one or plural. For example, in the case of depositing lithium manganese oxide, two evaporation sources, one for a lithium oxide and one for a manganese oxide can be used, or these substances can be mixed and evaporated from one evaporation source. As evaporation material,
Lithium (Li), manganese (Mn), cobalt (C
o), vanadium (V), nickel (Ni), etc.,
Or these oxides etc. are considered. When an evaporation source such as an electron beam evaporation source that can obtain a high evaporation rate is used, the evaporation substance is easily charged, but when a simple evaporation material is used, it is possible to suppress the evaporation substance from trying to be charged.
【0011】前記のリチウムを含む物質の蒸着は、電子
ビーム、抵抗、レーザ、高周波等により蒸発物質を加熱
して蒸発させる真空蒸着法、又はイオンビーム、マグネ
トロン、高周波等の手段によりターゲットをスパッタす
るスパッタ蒸着法等を用いて行うことができる。本発明
方法において照射されるイオンは、不活性ガスイオン
(ヘリウム(He)ガスイオン、ネオン(Ne)ガスイ
オン、アルゴン(Ar)ガスイオン、クリプトン(K
r)ガスイオン、キセノン(Xe)ガスイオン)及び酸
素(O)イオンからなる群より選ばれた少なくとも一種
のイオンであることが考えられる。For the vapor deposition of the substance containing lithium, the target is sputtered by a vacuum vapor deposition method in which the vaporized substance is heated and vaporized by electron beam, resistance, laser, high frequency or the like, or by means of ion beam, magnetron, high frequency or the like. It can be performed using a sputter deposition method or the like. Ions irradiated in the method of the present invention include inert gas ions (helium (He) gas ions, neon (Ne) gas ions, argon (Ar) gas ions, krypton (K).
It is considered to be at least one ion selected from the group consisting of r) gas ion, xenon (Xe) gas ion) and oxygen (O) ion.
【0012】前記イオンの照射は、少なくともリチウム
を含む物質の蒸着と同時、交互、又は該物質蒸着後等に
行う。また、基体へのイオンビームの入射角度は基体表
面に対して0°〜90°程度とすることが考えられる。
前記イオン照射における加速エネルギは、100eV以
上40keV以下とすることが考えられる。これは、1
00eVより小さいと十分な膜密着力を得ることができ
ず、40keVより大きいと形成される膜中に過大な欠
陥が生じるからである。Irradiation of the ions is carried out simultaneously with, or alternately with, the deposition of the substance containing at least lithium, or after the deposition of the substance. The angle of incidence of the ion beam on the substrate may be about 0 ° to 90 ° with respect to the surface of the substrate.
It is considered that the acceleration energy in the ion irradiation is 100 eV or more and 40 keV or less. This is 1
This is because if it is smaller than 00 eV, sufficient film adhesion cannot be obtained, and if it is larger than 40 keV, excessive defects occur in the formed film.
【0013】前記電極基体は、電池に用いられる電極で
あれば特に限定されず、材質としては、ニッケル(N
i)、アルミニウム(Al)、銅(Cu)、ステンレス
スチール(SUS)、炭素(C)等の導電性の材質を挙
げることができ、その形状は板状、フィルム状、発泡体
状、不織布状等であることが考えられ、特に限定はな
い。The electrode substrate is not particularly limited as long as it is an electrode used in a battery, and the material is nickel (N
i), aluminum (Al), copper (Cu), stainless steel (SUS), carbon (C), and other electrically conductive materials can be mentioned, and their shapes are plate-like, film-like, foam-like, and non-woven fabric-like. Etc., and there is no particular limitation.
【0014】前記の方法において、酸素ガスの吹きつ
けは、基体支持手段に支持された電極基体付近まで酸素
ガスを導入し、例えばガスノズルを用いて該ガスを基体
に向けて吹きつけることにより行うことが考えられる。
吹きつける酸素ガスの量は、照射イオンの種類とその照
射量又は(及び)蒸発物質の種類とその蒸着量により適
宜定める。蒸発物質として酸素原子を含む物質を用いる
場合や照射イオンとして酸素イオンを含むイオンを用い
る場合は、目的とする膜組成を得るために追加供給しな
ければならない酸素原子を与えるだけの酸素ガス量とす
る。In the above method, the oxygen gas is blown by introducing the oxygen gas up to the vicinity of the electrode substrate supported by the substrate supporting means and blowing the gas toward the substrate using, for example, a gas nozzle. Can be considered.
The amount of the oxygen gas to be blown is appropriately determined depending on the type of irradiation ion and its irradiation amount, and / or the type of evaporation substance and its evaporation amount. When a substance containing oxygen atoms is used as the vaporized substance or when ions containing oxygen ions are used as irradiation ions, the amount of oxygen gas required to supply additional oxygen atoms must be additionally supplied to obtain the target film composition. To do.
【0015】前記の方法においては、例えば、成膜を
行う容器内に高周波電極を設けておき、該電極に高周波
電圧を印加して該電極と基体支持手段又は該容器との間
に放電を起こさせることが考えられる。該容器内の雰囲
気中には、イオン源に導入される照射イオンの原料ガス
が該容器内にも導入されて存在するが、高周波放電によ
り該ガスがプラズマ化され、該プラズマの下で電極基体
への成膜が行われる。該電極は、電極基体とリチウムを
含む物質を蒸発させる蒸発源との中間位置に設置するこ
とが好ましい。高周波の出力はそれには限定されない
が、普通には10W以上とすることが考えられる。これ
は10Wより小さいとプラズマを十分な密度で発生させ
ることが困難になるからである。また、成膜を行う容器
内の真空度は、それには限定されないが、高周波放電を
安定して維持する上で、圧力1×10-6Torr以上と
することが考えられる。In the above method, for example, a high-frequency electrode is provided in a container for film formation, and a high-frequency voltage is applied to the electrode to cause a discharge between the electrode and the substrate supporting means or the container. It is possible to make it. In the atmosphere in the container, the source gas of the irradiation ions introduced into the ion source is also introduced and exists in the container, but the gas is turned into plasma by the high frequency discharge, and the electrode substrate is formed under the plasma. Film formation is performed. The electrode is preferably installed at an intermediate position between the electrode base and the evaporation source that evaporates the substance containing lithium. The high-frequency output is not limited to that, but it is usually considered to be 10 W or more. This is because if it is less than 10 W, it becomes difficult to generate plasma with a sufficient density. The degree of vacuum in the container for film formation is not limited to that, but it is considered that the pressure is set to 1 × 10 −6 Torr or more in order to stably maintain the high frequency discharge.
【0016】前記の方法において照射される電磁波
は、粒子エネルギが1×10-2eV以上1×106 eV
以下のものを用いることが考えられる。これは、粒子エ
ネルギが1×10-2eVより小さいと、蒸発原子を十分
高励起化することができず、1×106 eVより大きい
と、電磁波の照射により膜に損傷が生じる恐れがあるか
らである。このような粒子エネルギを有する電磁波照射
装置としては、紫外線照射ランプ、重水素ランプ等を用
いることができ、このような照射装置が成膜を行う容器
に設置される。The electromagnetic wave irradiated in the above method has a particle energy of 1 × 10 −2 eV or more and 1 × 10 6 eV.
It is possible to use the following. This is because if the particle energy is smaller than 1 × 10 −2 eV, the vaporized atoms cannot be sufficiently excited, and if the particle energy is larger than 1 × 10 6 eV, the film may be damaged by electromagnetic wave irradiation. Because. As the electromagnetic wave irradiation device having such particle energy, an ultraviolet irradiation lamp, a deuterium lamp or the like can be used, and such an irradiation device is installed in a container for forming a film.
【0017】[0017]
【作用】本発明のリチウム二次電池正極の製造方法によ
ると、酸素ガスを電極基体上に吹きつけながら、又は、
成膜雰囲気中での高周波放電により得られるプラズマに
電極基体を曝しながら、又は、電極基体に電磁波を照射
しながら、又は、これらの任意の組み合わせを行いなが
ら、少なくともリチウムを含む物質の蒸着とイオン照射
を併用して該基体上に少なくともリチウムを含む金属酸
化物の膜を形成する。According to the method for producing a lithium secondary battery positive electrode of the present invention, while blowing oxygen gas onto the electrode substrate, or
While exposing the electrode substrate to plasma obtained by high-frequency discharge in a film forming atmosphere, or irradiating the electrode substrate with electromagnetic waves, or performing any combination thereof, vapor deposition and ionization of a substance containing at least lithium. Irradiation is also used to form a metal oxide film containing at least lithium on the substrate.
【0018】電極基体への酸素ガスの吹きつけを行う場
合は、膜堆積中に酸素原子が該膜中に取り込まれて膜構
成原子となるため、形成される膜の組成比の均一性が向
上し、膜組成比の不均一性に起因する膜欠陥が生じるの
が抑制される。さらに、膜欠陥が減少することから膜の
結晶性が向上する。また、高周波放電により得られる成
膜雰囲気ガスのプラズマに電極基体を曝す場合は、該プ
ラズマにより蒸発原子が高励起化され、形成される膜の
結晶性が向上する。さらに、膜の結晶性が向上すること
から、結晶の不規則性に起因する結晶格子欠陥が減少す
る。When oxygen gas is blown to the electrode substrate, oxygen atoms are taken into the film during film deposition and become film-constituting atoms, so that the uniformity of the composition ratio of the film formed is improved. However, the occurrence of film defects due to the nonuniformity of the film composition ratio is suppressed. Further, since the film defects are reduced, the crystallinity of the film is improved. Further, when the electrode substrate is exposed to the plasma of the film forming atmosphere gas obtained by the high frequency discharge, the vaporized atoms are highly excited by the plasma, and the crystallinity of the formed film is improved. Further, since the crystallinity of the film is improved, crystal lattice defects due to crystal irregularity are reduced.
【0019】また、電極基体に電磁波を照射する場合
は、電磁波により蒸発原子が高励起化され、膜の結晶性
が向上する。さらに、膜の結晶性が向上することから、
結晶の不規則性に起因する結晶格子欠陥が減少する。ま
た、本発明方法においては、イオン照射時の加速エネル
ギを、十分な膜密着性が得られるだけの混合層が形成さ
れる大きさとしても、膜の結晶性を向上させたり膜中欠
陥を低減させたりすることができる。Further, when the electrode substrate is irradiated with electromagnetic waves, the electromagnetic waves highly excite vaporized atoms, and the crystallinity of the film is improved. Furthermore, since the crystallinity of the film is improved,
Crystal lattice defects due to crystal irregularity are reduced. Further, in the method of the present invention, the crystallinity of the film is improved and defects in the film are reduced even if the acceleration energy at the time of ion irradiation is set to a size at which the mixed layer is formed to obtain sufficient film adhesion. It can be done.
【0020】[0020]
【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明のリチウム二次電池正極の製造方法
の実施に用いる成膜装置の例の概略構成を示す図であ
る。この装置は、真空容器1を有し、容器1内には被成
膜電極基体Sを支持するホルダ2、並びにこれに対向す
る位置に、蒸発源3及びイオン源4が設置されている。
また基体ホルダ2付近には、例えば水晶振動子式膜厚モ
ニタ等の膜厚モニタ5、及び例えばファラデーカップ等
のイオン電流測定器6が配置されている。また容器1に
は排気装置11が付設されて容器1内を所定の真空度に
することができる。さらに、図示の例では、容器1には
酸素ガス供給部7が設けられ、酸素ガス供給部7は、マ
スフローコントローラ71、弁72を介して接続された
酸素ガスのガス源73と、マスフローコントローラ71
から延びる配管に接続されたガスノズル74とからなっ
ている。ガスノズル74はホルダ2付近に設置され、酸
素ガスを基体Sに向けて吹きつけることができるように
なっている。また、容器1内のホルダ2と蒸発源3との
中間位置にコイル状の高周波電極81が設置され、電極
81は容器1外に設置された整合回路82を介して高周
波電源83に接続されている。また、容器1内には電磁
波照射器として水銀アークを利用した紫外線照射ランプ
9が設置されている。なお、図1には酸素ガス供給部
7、高周波電極81及び紫外線照射ランプ9を全て示し
たが、これらのうち成膜にあたって使わないものがある
ときには、それは省略される。また、蒸発源として、例
えば基体S上にリチウムマンガン酸化物膜を形成する場
合には、リチウム酸化物用とマンガン酸化物用、リチウ
ム単体用とマンガン酸化物用、リチウム酸化物用とマン
ガン単体用のように2以上の蒸発源を用いることもある
が、図1では蒸発源3としてまとめて示し、蒸発物質に
ついても物質3aとしてまとめて示した。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of an example of a film forming apparatus used for carrying out the method for producing a lithium secondary battery positive electrode of the present invention. This apparatus has a vacuum container 1, in which a holder 2 for supporting a film-forming electrode substrate S, and an evaporation source 3 and an ion source 4 are installed at positions facing the holder 2.
Further, a film thickness monitor 5 such as a crystal oscillator type film thickness monitor and an ion current measuring device 6 such as a Faraday cup are arranged near the substrate holder 2. Further, an exhaust device 11 is attached to the container 1 so that the inside of the container 1 can have a predetermined degree of vacuum. Further, in the illustrated example, the container 1 is provided with an oxygen gas supply unit 7. The oxygen gas supply unit 7 includes a mass flow controller 71, an oxygen gas source 73 connected via a valve 72, and a mass flow controller 71.
And a gas nozzle 74 connected to a pipe extending from. The gas nozzle 74 is installed near the holder 2 so that oxygen gas can be blown toward the substrate S. Further, a coil-shaped high frequency electrode 81 is installed at an intermediate position between the holder 2 and the evaporation source 3 in the container 1, and the electrode 81 is connected to a high frequency power source 83 via a matching circuit 82 installed outside the container 1. There is. Further, in the container 1, an ultraviolet irradiation lamp 9 using a mercury arc is installed as an electromagnetic wave irradiation device. Although all of the oxygen gas supply unit 7, the high frequency electrode 81 and the ultraviolet irradiation lamp 9 are shown in FIG. 1, if some of them are not used for film formation, they are omitted. When forming a lithium manganese oxide film on the substrate S as an evaporation source, for example, for lithium oxide and manganese oxide, for lithium simple substance and manganese oxide, and for lithium oxide and manganese simple substance. As described above, two or more evaporation sources may be used, but in FIG. 1, they are collectively shown as the evaporation source 3 and the evaporated substances are also collectively shown as the substance 3a.
【0021】この装置を用いて本発明のリチウム二次電
池正極の製造方法を実施するにあたっては、電極基体S
をホルダ2に支持させた後、真空容器1内を所定の真空
度にする。次いで、基体Sに向けて蒸発源3から目的と
する膜の構成原子を含む蒸発物質3aを真空蒸着させ、
それと同時、又は交互、又は該蒸着後にイオン源4から
不活性ガスイオン及び酸素イオンのうち少なくとも一種
のイオンを含むイオンを当該蒸着面に照射する。また、
これとともにガス源73から弁72、マスフローコント
ローラ71及びガスノズル74を介して電極基体Sの当
該蒸着面に酸素ガスを吹きつけ、又は、高周波電源83
から例えば周波数13.56MHzの高周波を発生さ
せ、整合回路82にて高周波の入射波と反射波の整合を
調整し、高周波電極81に高周波電圧を印加して電極8
1とホルダ2との間に高周波放電を生じさせ、又は、紫
外線ランプ9から電極基体Sに対して紫外線を照射し、
又は、これらを組み合わせて行う。In carrying out the method for producing a lithium secondary battery positive electrode of the present invention using this apparatus, the electrode substrate S
After being supported by the holder 2, the inside of the vacuum container 1 is set to a predetermined vacuum degree. Next, the evaporation material 3a containing the constituent atoms of the target film is vacuum-deposited from the evaporation source 3 toward the substrate S,
Simultaneously with it, alternately, or after the vapor deposition, the vapor deposition surface is irradiated with ions containing at least one kind of ions of inert gas ions and oxygen ions from the ion source 4. Also,
Along with this, oxygen gas is blown from the gas source 73 through the valve 72, the mass flow controller 71 and the gas nozzle 74 onto the vapor deposition surface of the electrode substrate S, or the high frequency power source 83 is used.
Then, a matching circuit 82 is used to adjust the matching of the incident wave and the reflected wave of the high frequency, and a high frequency voltage is applied to the high frequency electrode 81 to generate a high frequency of 13.56 MHz.
1 causes a high-frequency discharge between the holder 1 and the holder 2, or irradiates the ultraviolet rays from the ultraviolet lamp 9 to the electrode substrate S,
Alternatively, these are combined.
【0022】前記成膜操作において、イオン加速エネル
ギは100eV以上40keV以下とし、基体Sに対す
るイオンビームの入射角度は0°〜90°とする。高周
波電源83から高周波を発生させる場合、その出力は1
0W以上とし、容器1内の圧力は1×10-6Torr以
上とする。紫外線ランプ9から紫外線を照射する場合、
光子エネルギは1×10-2eV以上1×106 eV以下
とする。In the film forming operation, the ion acceleration energy is 100 eV or more and 40 keV or less, and the incident angle of the ion beam with respect to the substrate S is 0 ° to 90 °. When a high frequency is generated from the high frequency power source 83, the output is 1
The pressure in the container 1 is set to 0 W or more and the pressure in the container 1 is set to 1 × 10 −6 Torr or more. When irradiating ultraviolet rays from the ultraviolet lamp 9,
The photon energy is set to 1 × 10 −2 eV or more and 1 × 10 6 eV or less.
【0023】このようにして、基体S上に少なくともリ
チウムを含む金属酸化物の膜が形成される。この方法に
よると、イオン照射により、少なくともリチウムを含む
金属酸化物の膜と基体Sとの間に該両者の混合層が形成
されて該膜の密着性は良好なものとなる。In this way, a metal oxide film containing at least lithium is formed on the substrate S. According to this method, a mixed layer of the metal oxide film containing at least lithium and the substrate S is formed by the ion irradiation, and the adhesion of the film is improved.
【0024】酸素ガス供給部7により基体Sへの酸素ガ
スの吹きつけを行う場合は、蒸発原子や照射イオンに由
来する酸素原子に代えて、或いはそれと共に酸素ガス由
来の酸素原子が膜に取り込まれて膜構成原子となるた
め、膜組成比の均一性が向上し、膜組成比の不均一性に
起因する膜欠陥が生じるのが抑制される。さらに、膜欠
陥が減少することから膜の結晶性が向上する。When the oxygen gas is supplied to the substrate S by the oxygen gas supply unit 7, oxygen atoms derived from oxygen gas are incorporated into the film in place of or together with oxygen atoms derived from vaporized atoms or irradiation ions. Since the film composition atoms are included in the film composition, the uniformity of the film composition ratio is improved, and the occurrence of film defects due to the non-uniformity of the film composition ratio is suppressed. Further, since the film defects are reduced, the crystallinity of the film is improved.
【0025】高周波電極81から高周波放電を起こさせ
る場合は、発生したプラズマにより蒸発物質3aからの
原子が高励起化され、形成される膜の結晶化度が高ま
り、結晶性が向上する。さらに、膜の結晶性が向上する
ことから結晶の不規則性に起因する結晶格子欠陥が減少
する。紫外線照射ランプ9から紫外線を照射する場合
は、蒸発物質3aからの原子が光子エネルギを吸収して
高励起化され、形成される膜の結晶化度が高まり、結晶
性が向上する。さらに、膜の結晶性が向上することから
結晶の不規則性に起因する結晶格子欠陥が減少する。When a high-frequency discharge is generated from the high-frequency electrode 81, the generated plasma highly excites the atoms from the vaporized substance 3a, the crystallinity of the formed film is increased, and the crystallinity is improved. Further, since the crystallinity of the film is improved, crystal lattice defects caused by crystal irregularity are reduced. When ultraviolet rays are emitted from the ultraviolet ray irradiation lamp 9, atoms from the evaporation material 3a absorb photon energy and are highly excited, so that the degree of crystallinity of the formed film is increased and the crystallinity is improved. Further, since the crystallinity of the film is improved, crystal lattice defects caused by crystal irregularity are reduced.
【0026】次に、図1に示す装置を用いた本発明方法
実施の具体例について説明する。 実験例1 ステンレススチールSUS304よりなる電極基体Sを
ホルダ2に設置し、当初真空容器1内を5×10-6To
rr以下の真空度とした。その後、酸化リチウム(Li
2 O)及び1酸化マンガン(MnO)を混合した蒸発物
質3aを電子ビーム蒸発源3を用いて蒸気化し、基体S
上に成膜した。それと同時にイオン源4に容器1内が2
×10-5Torrになるまでアルゴンガスを導入し、イ
オン化させ、アルゴンイオンを基体Sに対して垂直に、
5keVの加速エネルギで照射した。この成膜と同時に
ガスノズル74から基体Sに向けて酸素ガスを吹きつけ
た。酸素吹きつけ時の容器1内の真空度は1×10-4T
orrとした。Next, a specific example of carrying out the method of the present invention using the apparatus shown in FIG. 1 will be described. Experimental Example 1 An electrode substrate S made of stainless steel SUS304 was installed in a holder 2, and the inside of the vacuum container 1 was initially set to 5 × 10 −6 To.
The degree of vacuum was rr or less. After that, lithium oxide (Li
The 2 O) and 1 evaporated substance 3a obtained by mixing manganese oxide (MnO) vaporized using electron beam evaporation source 3, substrate S
The film was formed on top. At the same time, there are 2
Argon gas was introduced until it reached × 10 -5 Torr and ionized, and the argon ions were made perpendicular to the substrate S,
Irradiation was performed with an acceleration energy of 5 keV. Simultaneously with this film formation, oxygen gas was blown from the gas nozzle 74 toward the substrate S. The degree of vacuum in the container 1 when blowing oxygen is 1 × 10 -4 T
orr.
【0027】このようにして基体S上に膜厚5μmのリ
チウムマンガン酸化物膜を形成した。 実験例2 実験例1において、イオン源4に導入するガスとしてア
ルゴンガスと共に酸素ガスを用い、また、酸素ガス吹き
つけ時の容器1内の真空度を実験例1より低く、8×1
0-5Torrとした。その他の条件は実験例1と同様と
し、基体S上に膜厚5μmのリチウムマンガン酸化物膜
を形成した。 実験例3 実験例1において、酸素ガスの吹きつけに代えて、高周
波電源81から出力200Wで高周波を発生させて電極
83に高周波電圧を印加し、電極83から高周波放電を
生じさせた。このときの容器1内の真空度は1×10-4
Torrとした。その他の条件は実験例1と同様とし、
基体S上に膜厚5μmのリチウムマンガン酸化物膜を形
成した。 実験例4 実験例2において、膜形成時に、酸素ガスの吹きつけに
加えて、高周波電源81から出力200Wで高周波を発
生させて電極83に高周波電圧を印加し、電極83から
高周波放電を生じさせた。その他の条件は実施例2と同
様とし、基体S上に膜厚5μmのリチウムマンガン酸化
物膜を形成した。 実験例5 実験例1において、酸素ガスの吹きつけに代えて、紫外
線照射ランプ9から容器1内に紫外線を照射した。この
ときの容器1内の真空度は1×10-4Torrとした。
その他の条件は実施例1と同様とし、基体S上に膜厚5
μmのリチウムマンガン酸化物膜を形成した。 比較例1 実験例1において、酸素ガスの吹きつけ及びイオン照射
を行わず、その他の条件は実験例1と同様として酸化リ
チウム及び1酸化マンガンの蒸着のみを行い、基体S上
に膜厚5μmのリチウムマンガン酸化物膜を形成した。 比較例2 実験例1において、酸素ガスの吹きつけを行わず、その
他の条件は実験例1と同様として酸化リチウム及び1酸
化マンガンの蒸着及びアルゴンイオン照射のみを行い、
基体S上に膜厚5μmのリチウムマンガン酸化物膜を形
成した。In this way, a 5 μm thick lithium manganese oxide film was formed on the substrate S. Experimental Example 2 In Experimental Example 1, oxygen gas was used together with argon gas as a gas to be introduced into the ion source 4, and the degree of vacuum in the container 1 at the time of blowing the oxygen gas was lower than that in Experimental Example 1 by 8 × 1.
It was set to 0 -5 Torr. Other conditions were the same as in Experimental Example 1, and a lithium manganese oxide film having a film thickness of 5 μm was formed on the substrate S. Experimental Example 3 In Experimental Example 1, instead of blowing the oxygen gas, a high frequency was generated from the high frequency power source 81 with an output of 200 W, a high frequency voltage was applied to the electrode 83, and a high frequency discharge was generated from the electrode 83. At this time, the degree of vacuum in the container 1 is 1 × 10 −4
Torr. Other conditions are the same as in Experimental Example 1,
A lithium manganese oxide film having a thickness of 5 μm was formed on the substrate S. Experimental Example 4 In Experimental Example 2, at the time of film formation, in addition to blowing oxygen gas, a high frequency power was generated from the high frequency power source 81 at an output of 200 W to apply a high frequency voltage to the electrode 83 to cause high frequency discharge from the electrode 83. It was Other conditions were the same as in Example 2, and a lithium manganese oxide film having a film thickness of 5 μm was formed on the substrate S. Experimental Example 5 In Experimental Example 1, instead of blowing oxygen gas, the container 1 was irradiated with ultraviolet rays from the ultraviolet irradiation lamp 9. The degree of vacuum in the container 1 at this time was 1 × 10 −4 Torr.
The other conditions are the same as in Example 1, and the film thickness of 5 is formed on the substrate S.
A μm lithium manganese oxide film was formed. Comparative Example 1 In Experimental Example 1, the blowing of oxygen gas and ion irradiation were not performed, and the other conditions were the same as in Experimental Example 1 except that only lithium oxide and manganese monoxide were vapor-deposited, and a film thickness of 5 μm was formed on the substrate S. A lithium manganese oxide film was formed. Comparative Example 2 In Experimental Example 1, oxygen gas was not sprayed, and other conditions were the same as in Experimental Example 1 except that vapor deposition of lithium oxide and manganese monoxide and irradiation of argon ions were performed.
A lithium manganese oxide film having a thickness of 5 μm was formed on the substrate S.
【0028】次に、実験例1、2、3、4、5及び比較
例1、2により得られたリチウム二次電池正極の膜の結
晶構造とその結晶化度をX線回折法により分析した実
験、並びに実験例1、4及び比較例1、2により得られ
たリチウム二次電池正極の膜の組成をX線光電子分光法
(XPS)により分析した実験について説明する。X線
回折によると、何れの膜についてもLiMn2 O4 に由
来すると考えられるX線ピークが観察された。また、
(111)面のピーク強度は実験例1、2、3、4、5
による膜の方が比較例1、2による膜より大きく、すな
わち結晶化度が高いことが分かる。また、X線光電子分
光分析によると、実験例1、2、4による膜の組成はL
i:Mn:O=1:2:4であったが、比較例1、2に
よる膜の組成はLi:Mn:O=1:2:4−xで酸素
原子が欠損しており、膜欠陥が生じていることが分か
る。Next, the crystal structure and crystallinity of the films of the positive electrodes of the lithium secondary batteries obtained in Experimental Examples 1, 2, 3, 4, 5 and Comparative Examples 1 and 2 were analyzed by the X-ray diffraction method. Experiments and experiments in which the compositions of the films of the lithium secondary battery positive electrodes obtained in Experimental Examples 1 and 4 and Comparative Examples 1 and 2 were analyzed by X-ray photoelectron spectroscopy (XPS) will be described. According to X-ray diffraction, an X-ray peak believed to be derived from LiMn 2 O 4 was observed in all the films. Also,
The peak intensities of the (111) plane are in Experimental Examples 1, 2, 3, 4, and 5.
It can be seen that the film according to (1) is larger than the films according to Comparative Examples 1 and 2, that is, the crystallinity is higher. Further, according to X-ray photoelectron spectroscopy analysis, the composition of the film according to Experimental Examples 1, 2, and 4 was L.
Although i: Mn: O = 1: 2: 4, the composition of the films according to Comparative Examples 1 and 2 was Li: Mn: O = 1: 2: 4-x, and oxygen atoms were deficient. It can be seen that
【0029】また、比較例1による膜は形成後に該膜が
一部剥離したが、実験例1、2、3、4、5及び比較例
2による膜では剥離は観察されなかった。このことから
真空蒸着にイオン照射を併用することによる膜密着性の
向上が確認された。The film of Comparative Example 1 was partially peeled off after formation, but no peeling was observed in the films of Experimental Examples 1, 2, 3, 4, 5 and Comparative Example 2. From this, it was confirmed that the film adhesion was improved by using the ion irradiation together with the vacuum deposition.
【0030】[0030]
【発明の効果】本発明によると、電極基体上に少なくと
もリチウムを含む金属酸化物の膜を形成してなるリチウ
ム二次電池正極の製造方法であって、形成される膜の電
極基体との密着性を良好なものにでき、また、該膜の結
晶性を向上させることができるとともに該膜中の欠陥を
少なくすることができ、それにより電極性能を向上させ
ることができるリチウム二次電池正極の製造方法を提供
することができる。According to the present invention, there is provided a method for producing a positive electrode for a lithium secondary battery, which comprises forming a metal oxide film containing at least lithium on an electrode substrate, wherein the film formed is in close contact with the electrode substrate. Of the positive electrode of the lithium secondary battery, which can improve the crystallinity of the film and can reduce the defects in the film, thereby improving the electrode performance. A manufacturing method can be provided.
【0031】また、このことから、本発明方法により得
られる正極を用いたリチウム二次電池では、大電流の充
放電が行え、その際のエネルギ密度が高く、充放電サイ
クルに伴う容量低下が抑制される。Further, from the above, the lithium secondary battery using the positive electrode obtained by the method of the present invention can be charged and discharged with a large current, the energy density at that time is high, and the decrease in capacity due to the charge and discharge cycle is suppressed. To be done.
【図1】本発明方法の実施に用いる成膜装置の1例の概
略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an example of a film forming apparatus used for carrying out a method of the present invention.
1 真空容器 11 排気装置 2 基体ホルダ 3 蒸発源 3a 少なくともリチウムを含む蒸発物質 4 イオン源 5 膜厚モニタ 6 イオン電流測定器 7 酸素ガス供給部 71 マスフローコントローラ 72 弁 73 酸素ガス源 74 ガスノズル 81 高周波電極 82 整合回路 83 高周波電源 9 紫外線ランプ S 電極基体 DESCRIPTION OF SYMBOLS 1 Vacuum container 11 Exhaust device 2 Substrate holder 3 Evaporation source 3a Evaporation substance containing at least lithium 4 Ion source 5 Film thickness monitor 6 Ion current measuring instrument 7 Oxygen gas supply part 71 Mass flow controller 72 Valve 73 Oxygen gas source 74 Gas nozzle 81 High frequency electrode 82 Matching Circuit 83 High Frequency Power Supply 9 Ultraviolet Lamp S Electrode Base
───────────────────────────────────────────────────── フロントページの続き (72)発明者 緒方 潔 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Kiyoshi Ogata 47 Umezu Takaunecho, Ukyo-ku, Kyoto City Nissin Electric Co., Ltd.
Claims (7)
む物質の蒸着と、該基体へのイオン照射とを併用し、酸
素ガスを該基体に吹きつけながら該基体上に少なくとも
リチウムを含む金属酸化物の膜を形成する工程を含むこ
とを特徴とするリチウム二次電池正極の製造方法。1. A metal oxide containing at least lithium on an electrode substrate in combination with vapor deposition of a substance containing at least lithium and ion irradiation on the substrate, while blowing oxygen gas onto the substrate. A method for producing a positive electrode for a lithium secondary battery, which comprises the step of forming the film.
れるプラズマに前記基体を曝しながら前記膜を形成する
請求項1記載のリチウム二次電池正極の製造方法。2. The method for producing a lithium secondary battery positive electrode according to claim 1, wherein the film is formed while exposing the substrate to plasma obtained by high-frequency discharge in a film forming atmosphere.
を形成する請求項1又は2記載のリチウム二次電池正極
の製造方法。3. The method for producing a lithium secondary battery positive electrode according to claim 1, wherein the film is formed while irradiating the substrate with electromagnetic waves.
む物質の蒸着と、該基体へのイオン照射とを併用し、成
膜雰囲気中での高周波放電により得られるプラズマに該
基体を曝しながら該基体上に少なくともリチウムを含む
金属酸化物の膜を形成する工程を含むことを特徴とする
リチウム二次電池正極の製造方法。4. The substrate, wherein the vapor deposition of a substance containing at least lithium on an electrode substrate and ion irradiation to the substrate are used in combination while exposing the substrate to plasma obtained by high frequency discharge in a film forming atmosphere. A method of manufacturing a lithium secondary battery positive electrode, comprising the step of forming a metal oxide film containing at least lithium thereon.
を形成する請求項4記載のリチウム二次電池正極の製造
方法。5. The method for producing a lithium secondary battery positive electrode according to claim 4, wherein the film is formed while irradiating the substrate with electromagnetic waves.
む物質の蒸着と、該基体へのイオン照射とを併用し、該
基体に電磁波を照射しながら該基体上に少なくともリチ
ウムを含む金属酸化物の膜を形成する工程を含むことを
特徴とするリチウム二次電池正極の製造方法。6. A metal oxide containing at least lithium is deposited on the substrate while irradiating the substrate with an electromagnetic wave by using vapor deposition of a substance containing at least lithium on the electrode substrate and ion irradiation of the substrate. A method of manufacturing a positive electrode for a lithium secondary battery, comprising the step of forming a film.
オン及び酸素イオンからなる群より選ばれた少なくとも
一種のイオンである請求項1から6に記載のリチウム二
次電池正極の製造方法。7. The method for producing a lithium secondary battery positive electrode according to claim 1, wherein the irradiated ions are at least one kind of ions selected from the group consisting of inert gas ions and oxygen ions.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7093860A JPH08287901A (en) | 1995-04-19 | 1995-04-19 | Manufacture of positive electrode for lithium secondary battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7093860A JPH08287901A (en) | 1995-04-19 | 1995-04-19 | Manufacture of positive electrode for lithium secondary battery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH08287901A true JPH08287901A (en) | 1996-11-01 |
Family
ID=14094198
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7093860A Withdrawn JPH08287901A (en) | 1995-04-19 | 1995-04-19 | Manufacture of positive electrode for lithium secondary battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH08287901A (en) |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000228186A (en) * | 1999-02-08 | 2000-08-15 | Wilson Greatbatch Ltd | Physically deposited electrode component and its manufacture |
| WO2001073883A3 (en) * | 2000-03-24 | 2003-02-20 | Cymbet Corp | Low-temperature fabrication of thin-film energy-storage devices |
| US6906436B2 (en) | 2003-01-02 | 2005-06-14 | Cymbet Corporation | Solid state activity-activated battery device and method |
| US7211351B2 (en) | 2003-10-16 | 2007-05-01 | Cymbet Corporation | Lithium/air batteries with LiPON as separator and protective barrier and method |
| US7294209B2 (en) | 2003-01-02 | 2007-11-13 | Cymbet Corporation | Apparatus and method for depositing material onto a substrate using a roll-to-roll mask |
| US7425223B2 (en) | 2001-09-03 | 2008-09-16 | Matsushita Electric Industrial Co., Ltd. | Method for preparing electrochemical device with a layer structure |
| JP2008282731A (en) * | 2007-05-11 | 2008-11-20 | Sumitomo Electric Ind Ltd | Lithium battery, positive electrode for lithium battery and method for producing the same |
| US7494742B2 (en) | 2004-01-06 | 2009-02-24 | Cymbet Corporation | Layered barrier structure having one or more definable layers and method |
| JP2009193701A (en) * | 2008-02-12 | 2009-08-27 | Sumitomo Electric Ind Ltd | Lithium battery, positive electrode for lithium battery and method for producing the same |
| JP2009218120A (en) * | 2008-03-11 | 2009-09-24 | Toyota Motor Corp | Positive electrode active material |
| US7603144B2 (en) | 2003-01-02 | 2009-10-13 | Cymbet Corporation | Active wireless tagging system on peel and stick substrate |
| JP2017084675A (en) * | 2015-10-29 | 2017-05-18 | Jx金属株式会社 | Positive electrode active material powder for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material powder for lithium ion battery |
| US9853325B2 (en) | 2011-06-29 | 2017-12-26 | Space Charge, LLC | Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices |
| US10601074B2 (en) | 2011-06-29 | 2020-03-24 | Space Charge, LLC | Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices |
| US10658705B2 (en) | 2018-03-07 | 2020-05-19 | Space Charge, LLC | Thin-film solid-state energy storage devices |
| US11527774B2 (en) | 2011-06-29 | 2022-12-13 | Space Charge, LLC | Electrochemical energy storage devices |
-
1995
- 1995-04-19 JP JP7093860A patent/JPH08287901A/en not_active Withdrawn
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000228186A (en) * | 1999-02-08 | 2000-08-15 | Wilson Greatbatch Ltd | Physically deposited electrode component and its manufacture |
| US7389580B2 (en) | 2000-03-24 | 2008-06-24 | Cymbet Corporation | Method and apparatus for thin-film battery having ultra-thin electrolyte |
| WO2001073883A3 (en) * | 2000-03-24 | 2003-02-20 | Cymbet Corp | Low-temperature fabrication of thin-film energy-storage devices |
| US6924164B2 (en) | 2000-03-24 | 2005-08-02 | Cymbet Corporation | Method of continuous processing of thin-film batteries and like devices |
| US6962613B2 (en) | 2000-03-24 | 2005-11-08 | Cymbet Corporation | Low-temperature fabrication of thin-film energy-storage devices |
| US6986965B2 (en) | 2000-03-24 | 2006-01-17 | Cymbet Corporation | Device enclosures and devices with integrated battery |
| US7131189B2 (en) | 2000-03-24 | 2006-11-07 | Cymbet Corporation | Continuous processing of thin-film batteries and like devices |
| US7144655B2 (en) | 2000-03-24 | 2006-12-05 | Cymbet Corporation | Thin-film battery having ultra-thin electrolyte |
| US7157187B2 (en) | 2000-03-24 | 2007-01-02 | Cymbet Corporation | Thin-film battery devices and apparatus for making the same |
| US7194801B2 (en) | 2000-03-24 | 2007-03-27 | Cymbet Corporation | Thin-film battery having ultra-thin electrolyte and associated method |
| US7433655B2 (en) | 2000-03-24 | 2008-10-07 | Cymbet Corporation | Battery-operated wireless-communication apparatus and method |
| US7425223B2 (en) | 2001-09-03 | 2008-09-16 | Matsushita Electric Industrial Co., Ltd. | Method for preparing electrochemical device with a layer structure |
| US7274118B2 (en) | 2003-01-02 | 2007-09-25 | Cymbet Corporation | Solid state MEMS activity-activated battery device and method |
| US6906436B2 (en) | 2003-01-02 | 2005-06-14 | Cymbet Corporation | Solid state activity-activated battery device and method |
| US7603144B2 (en) | 2003-01-02 | 2009-10-13 | Cymbet Corporation | Active wireless tagging system on peel and stick substrate |
| US7294209B2 (en) | 2003-01-02 | 2007-11-13 | Cymbet Corporation | Apparatus and method for depositing material onto a substrate using a roll-to-roll mask |
| US7211351B2 (en) | 2003-10-16 | 2007-05-01 | Cymbet Corporation | Lithium/air batteries with LiPON as separator and protective barrier and method |
| US7344804B2 (en) | 2003-10-16 | 2008-03-18 | Cymbet Corporation | Lithium/air batteries with LiPON as separator and protective barrier and method |
| US7494742B2 (en) | 2004-01-06 | 2009-02-24 | Cymbet Corporation | Layered barrier structure having one or more definable layers and method |
| JP2008282731A (en) * | 2007-05-11 | 2008-11-20 | Sumitomo Electric Ind Ltd | Lithium battery, positive electrode for lithium battery and method for producing the same |
| JP2009193701A (en) * | 2008-02-12 | 2009-08-27 | Sumitomo Electric Ind Ltd | Lithium battery, positive electrode for lithium battery and method for producing the same |
| JP2009218120A (en) * | 2008-03-11 | 2009-09-24 | Toyota Motor Corp | Positive electrode active material |
| US9853325B2 (en) | 2011-06-29 | 2017-12-26 | Space Charge, LLC | Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices |
| US10199682B2 (en) | 2011-06-29 | 2019-02-05 | Space Charge, LLC | Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices |
| US10601074B2 (en) | 2011-06-29 | 2020-03-24 | Space Charge, LLC | Rugged, gel-free, lithium-free, high energy density solid-state electrochemical energy storage devices |
| US11527774B2 (en) | 2011-06-29 | 2022-12-13 | Space Charge, LLC | Electrochemical energy storage devices |
| JP2017084675A (en) * | 2015-10-29 | 2017-05-18 | Jx金属株式会社 | Positive electrode active material powder for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material powder for lithium ion battery |
| US10658705B2 (en) | 2018-03-07 | 2020-05-19 | Space Charge, LLC | Thin-film solid-state energy storage devices |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH08287901A (en) | Manufacture of positive electrode for lithium secondary battery | |
| JP5095412B2 (en) | LiCoO2 deposition | |
| JP3971911B2 (en) | Solid lithium secondary battery and manufacturing method thereof | |
| JP4802570B2 (en) | Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same | |
| US20100143583A1 (en) | Energy device and method for producing the same | |
| JPH11250900A (en) | Manufacture and manufacturing device for electrode for nonaqueous electrolyte secondary battery, electrode, and electrolyte secondary battery using its electrode | |
| JP3979859B2 (en) | Method for producing electrode for lithium secondary battery | |
| JP3979800B2 (en) | Apparatus and method for forming electrode for lithium secondary battery | |
| JP2003007291A (en) | Forming device and forming method of electrode for lithium secondary battery | |
| JP4326162B2 (en) | Method for manufacturing lithium secondary battery | |
| JP4748970B2 (en) | Energy device and manufacturing method thereof | |
| JP2001262335A (en) | Film coating method | |
| JPH02280310A (en) | Manufacture of electrode material for electrolytic capacitor | |
| JP4526806B2 (en) | Method for producing lithium ion secondary battery | |
| CN116770246A (en) | Method for enhancing adhesion of composite copper foil and composite copper foil | |
| JP2005243371A (en) | Positive electrode and wound electrochemical device using the same | |
| JPS63307272A (en) | Ion beam sputtering device | |
| JP7496133B2 (en) | Nanostructures, electrodes and batteries | |
| JPH07316818A (en) | Head carbon coating film covered substrate and its formation | |
| JP3216440B2 (en) | Apparatus and method for producing alloy thick film having hydrogen storage capacity | |
| JP2000226653A (en) | Production of manganese oxide thin film and lithium battery using the manganese oxide thin film | |
| JP2004263243A (en) | Thin film manufacturing method | |
| JP7433816B2 (en) | Nanostructure manufacturing method and device | |
| JP2002025625A (en) | Nonaqueous electrolyte secondary battery | |
| JPS6017070A (en) | Method and device for forming thin film |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020702 |