[go: up one dir, main page]

JPH08281085A - Composite hollow fiber membrane and its production - Google Patents

Composite hollow fiber membrane and its production

Info

Publication number
JPH08281085A
JPH08281085A JP8705495A JP8705495A JPH08281085A JP H08281085 A JPH08281085 A JP H08281085A JP 8705495 A JP8705495 A JP 8705495A JP 8705495 A JP8705495 A JP 8705495A JP H08281085 A JPH08281085 A JP H08281085A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
solution
liquid
porous hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8705495A
Other languages
Japanese (ja)
Other versions
JP3250644B2 (en
Inventor
Atsuo Kumano
淳夫 熊野
Koji Oguro
宏司 大黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP08705495A priority Critical patent/JP3250644B2/en
Priority to US08/516,460 priority patent/US5783079A/en
Priority to FR9510163A priority patent/FR2723856B1/en
Publication of JPH08281085A publication Critical patent/JPH08281085A/en
Application granted granted Critical
Publication of JP3250644B2 publication Critical patent/JP3250644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: To obtain a high-performance composite hollow fiber membrane by including a fluorine compd. in the composite hollow fiber membrane consisting of a porous hollow fiber membrane and polyamide polymer thin films. CONSTITUTION: A second soln. 2 and a third liquid 3 are brought into contact with the outside surfaces of the porous hollow fiber membrane 4 and at this time, the contact is executed like the second soln. < the third liquid by a difference in sp. gravity. The third liquid 3 contg. a fluorine compd. is fed into a soln. vessel 5 and the second soln. 2 is fed from above so as not to exceed a partition 6. After the porous hollow fiber membrane 4 is immersed into a first soln. 1, the membrane enters the second soln. 2 nearly perpendicular from above the soln. where an interfacial polymn. reaction takes place and the polymer thin films are formed on the porous hollow fiber membrane 4. The membrane thereafter passes the boundary S1 between the second soln. 2 and the third liquid 3 and passes the inside of the third liquid 3. The fluorine compd. is then included in the hollow fiber membrane 4 and the thin films are uniformly, continuously and stably formed on the outside surfaces of the porous hollow fiber membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、逆浸透膜やナノ濾過膜
として有用な複糸膜及びその製造方法に関する。より詳
しくは選択透過性を有する薄膜重合体をいわゆる界面重
合法により多孔質中空糸膜の外表面に形成させることに
より得られる複合中空糸膜に関するものである。これに
より得られた複合中空糸膜により海水の淡水化やカン水
の脱塩、水溶液中の有価物の回収、排水処理、水中の不
純物の除去が可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multifilament membrane useful as a reverse osmosis membrane or a nanofiltration membrane and a method for producing the same. More specifically, it relates to a composite hollow fiber membrane obtained by forming a thin film polymer having selective permeability on the outer surface of a porous hollow fiber membrane by a so-called interfacial polymerization method. The composite hollow fiber membrane thus obtained enables desalination of seawater, desalination of canned water, recovery of valuable substances in aqueous solution, wastewater treatment, and removal of impurities in water.

【0002】[0002]

【従来の技術】相互に反応して重合体を形成し得る一方
の多官能性化合物A含む第1溶液と他方の多官能性化合
物Bを含み、該第1溶液と非混合性の第2溶液に順次、
多孔質支持膜を接触させ、該多孔質支持膜上で該多官能
性化合物を相互に界面反応させて薄膜を形成する、いわ
ゆる、界面重合法による複合膜化技術は平膜では、逆浸
透膜を例にあげると、米国特許第3,744,642 号明細書、
同第4、039、440 号明細書、同第4、259、183 号明細書、同
第4、277、344 号明細書、特開昭55−147106号公
報、特開昭49−133282号公報、特公平1−38
522号公報などが知られている。これらの方法は多孔
質中空糸膜の外表面へそのまま適用しようとすると、界
面重合膜が多孔質中空糸膜の外表面に形成中または直後
に、ローラー等の中空糸膜の移送手段への接触が避けら
れず、形成された薄膜が剥離、または損傷し膜欠点が生
じる。そのため、膜傷等のない均一な薄膜を有する高性
能の複合中空糸膜を安定に連続して得ることはできな
い。
2. Description of the Related Art A second solution containing one polyfunctional compound A capable of reacting with each other to form a polymer and another polyfunctional compound B and immiscible with the first solution. In sequence,
A so-called interfacial polymerization technique for forming a thin film by bringing a porous support membrane into contact with each other and causing the polyfunctional compounds to react with each other on the porous support membrane to form a thin film is a reverse osmosis membrane. For example, U.S. Pat.No. 3,744,642,
No. 4,039,440, No. 4,259,183, No. 4,277,344, JP-A-55-147106, JP-A-49-133282. , Tokkyo 1-38
No. 522, etc. are known. When these methods are applied to the outer surface of the porous hollow fiber membrane as they are, the interfacial polymerized membrane is contacted with a transfer means such as a roller during or immediately after the formation of the interfacial polymerized membrane on the outer surface of the porous hollow fiber membrane. Inevitably, the formed thin film peels off or is damaged, resulting in a film defect. Therefore, it is not possible to stably and continuously obtain a high-performance composite hollow fiber membrane having a uniform thin film having no membrane scratches.

【0003】一方、複合中空糸膜の場合では米国特許第
4、980、061 号明細書、特開昭62−95105号公報、
特開昭60−87807号公報には、前記第1溶液と前
記第2溶液を接触させ形成させた界面に多孔質中空糸膜
を通過させて多孔質中空糸膜の外表面に重合体薄膜を形
成する技術が示されている。またPBレポート81−1
67215にはピペラジン水溶液浴と酸クロライドのシ
クロヘキサン溶液浴に連続して多孔質中空糸膜を浸漬、
通過させて得られる複合中空糸膜及びその製法が示され
ている。さらに特開平2−2842号公報には多孔質中
空糸膜の表面に架橋ポリアミドを形成した複合中空糸膜
の例が示されており、その製造方法として、多孔質中空
糸膜の外表面に薄膜を形成させる場合は多孔質中空糸膜
を多官能アミン溶液に含浸し、風乾後、多官能酸クロラ
イド溶液中に浸漬するという製法が示されている。ま
た、特開平6−114246号公報は前記第2溶液に浸
漬するための槽として、多孔質中空糸膜が出入りするた
めの堰または孔を設けた槽を用いる製法が示されてい
る。
On the other hand, in the case of a composite hollow fiber membrane, US Pat.
4,980,061, Japanese Patent Laid-Open No. 62-95105,
In JP-A-60-87807, a porous hollow fiber membrane is passed through an interface formed by contacting the first solution and the second solution to form a polymer thin film on the outer surface of the porous hollow fiber membrane. The forming technique is shown. See also PB Report 81-1
In 67215, the porous hollow fiber membrane is continuously immersed in a piperazine aqueous solution bath and an acid chloride cyclohexane solution bath,
A composite hollow fiber membrane obtained by passage and a method for producing the same are shown. Further, JP-A-2-2842 shows an example of a composite hollow fiber membrane in which a crosslinked polyamide is formed on the surface of the porous hollow fiber membrane, and as a method for producing the same, a thin film is formed on the outer surface of the porous hollow fiber membrane. In the case of forming a compound, a porous hollow fiber membrane is impregnated with a polyfunctional amine solution, air-dried, and then immersed in a polyfunctional acid chloride solution. Further, Japanese Patent Laid-Open No. 6-114246 discloses a manufacturing method in which a tank provided with a weir or a hole for allowing a porous hollow fiber membrane to come in and out is used as a tank for immersing in the second solution.

【0004】[0004]

【発明が解決しようとする課題】従来の界面重合法によ
る複合中空糸膜の製造方法で前記第1溶液と前記第2溶
液を接触させ形成させた界面に多孔質中空糸膜を通過さ
せて多孔質中空糸膜の外表面に重合体薄膜を形成する方
法(米国特許第4、980、061 号明細書、特開昭62−95
105号公報、特開昭60−87807号公報)では、
多孔質中空糸膜の外表面に形成された薄膜が形成中また
は形成直後にローラー等の多孔質中空糸膜の移送手段に
接触することなく乾燥、熱処理工程へ移送し薄膜の多孔
質中空糸膜への固定化が可能である。しかしながら、前
記界面に平面状に形成された重合膜を曲面である多孔質
中空糸膜上に積層するため多孔質中空糸膜外表面に均一
に薄膜形成できない。また、界面で形成された重合体薄
膜を多孔質中空糸膜上に単に積層するだけの為、多孔質
中空糸膜と薄膜との密着性が低くなることや該第1溶液
に浸漬した後に多孔質中空糸膜に付着した過剰のアミン
溶液を除去または乾燥する工程を導入できないこと、さ
らに、前記2溶液間界面で形成される重合体薄膜のうち
多孔質中空糸膜に随伴されないものは経過時間とともに
厚みを増し、それが多孔質中空糸膜の外表面への重合体
薄膜の形成を阻害する場合があり、連続して均一な薄膜
を多孔質中空糸膜外表面に形成しにくい、などの問題が
有るため透過性能や分離性能がともに高い複合中空糸膜
は得られていないのが現状である。
In the conventional method for producing a composite hollow fiber membrane by the interfacial polymerization method, the porous hollow fiber membrane is passed through the interface formed by bringing the first solution and the second solution into contact with each other to form a porous structure. Of forming a polymer thin film on the outer surface of a porous hollow fiber membrane (US Pat. No. 4,980,061; JP-A-62-95)
No. 105, JP-A-60-87807),
The thin film formed on the outer surface of the porous hollow fiber membrane is dried or transferred to the heat treatment step without contacting the means for transferring the porous hollow fiber membrane such as a roller during or immediately after the formation, and the thin film porous hollow fiber membrane is transferred. Can be fixed to However, since the polymerized membrane formed in a flat shape at the interface is laminated on the porous hollow fiber membrane having a curved surface, it is not possible to uniformly form a thin film on the outer surface of the porous hollow fiber membrane. In addition, since the polymer thin film formed at the interface is simply laminated on the porous hollow fiber membrane, the adhesion between the porous hollow fiber membrane and the thin film becomes low, and the porous thin film after being immersed in the first solution is porous. Inability to introduce a step of removing or drying the excess amine solution adhering to the porous hollow fiber membrane, and further, the polymer thin film formed at the interface between the two solutions, which is not accompanied by the porous hollow fiber membrane, is the elapsed time. Along with the increase in thickness, which may hinder the formation of a polymer thin film on the outer surface of the porous hollow fiber membrane, it is difficult to form a continuous and uniform thin film on the outer surface of the porous hollow fiber membrane, etc. Due to the problem, a composite hollow fiber membrane having high permeation performance and separation performance has not been obtained at present.

【0005】一方、前記PBレポート81−16721
5に示される2つの溶液浴に連続して多孔質中空糸膜を
浸漬、通過させる製法では、具体的な製法プロセスが図
示されていないが、前述した平膜の場合のように薄膜が
形成中または形成直後にローラー等により薄膜が損傷さ
れているものと推察され、データのバラツキが大きく、
分離性能も低い。同様に、前記特開平2−2842号公
報に示される多官能アミン溶液、多官能酸クロライド溶
液中に浸漬するという製法では、具体的な製法プロセス
が図示されていないため製法自体が明確ではないが、単
に間に風乾工程を入れて浸漬工程を繰り返すだけであ
り、これも平膜の場合の例と実質的にはなんら変わって
おらず、得られた複合中空糸膜の性能は低いものしか得
られていない。おそらく、連続した多孔質中空糸膜に適
用した場合は同様な問題が生じるものと推定される。本
発明は、かかる欠点を解消しようとするものであり、多
孔質中空糸膜外表面に均一に薄膜を連続的に安定に形成
することにより、透過性能や分離性能に優れた複合中空
糸膜及びその製造方法を提供することを目的とするもの
である。
On the other hand, the PB Report 81-16721
In the manufacturing method in which the porous hollow fiber membrane is continuously immersed in and passed through the two solution baths shown in 5, a specific manufacturing process is not shown, but a thin film is being formed as in the case of the flat membrane described above. Or it is presumed that the thin film was damaged by the roller etc. immediately after the formation, and the variation of the data was large.
Separation performance is also low. Similarly, in the production method of dipping in the polyfunctional amine solution and the polyfunctional acid chloride solution disclosed in JP-A-2-2842, the production method itself is not clear because a specific production process is not shown. , The air-drying step is simply inserted and the dipping step is repeated, and this is not substantially different from the example of the case of the flat membrane, and the obtained composite hollow fiber membrane has only low performance. Has not been done. It is presumed that a similar problem would occur when applied to a continuous porous hollow fiber membrane. The present invention is intended to eliminate such drawbacks, and by forming a thin film continuously and uniformly on the outer surface of the porous hollow fiber membrane, a composite hollow fiber membrane having excellent permeation performance and separation performance, and It is intended to provide a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者らは、複合中空糸膜中にフッ素化合物
を含有させることにより、高性能の複合中空糸膜を得る
ことができることを見いだし、前記目的が達成されるに
至った。さらに、このフッ素化合物を含有させるととも
に多孔質中空糸膜外表面に均一に薄膜を連続的に安定に
形成させる方法として以下の方法を見いだし本発明に至
った。すなわち、多孔質中空糸膜を第1溶液から続いて
第2溶液に垂直に接触させた後、第2溶液と実質的に非
混合性であり、第2液と界面を形成できるフッ素化合物
を含む第3液に接触させる方法である。別の方法として
は、多孔質中空糸膜を第1溶液から続いてフッ素化合物
を含む第3液に接触させた後、第2溶液に接触させる方
法であり、この第3液は第1溶液及び第2溶液の両者の
どちらとも実質的に非混合性であり、それぞれ界面を形
成できるものである。これらの新規な方法を導入するこ
とにより、フッ素化合物を複合中空糸膜中に含有させる
ことが可能となり、さらに多孔質中空糸膜の外表面上で
のみ界面重合反応を行うことができ、かつ、薄膜形成中
及び/または形成直後にローラー等の多孔質中空糸膜の
移送手段に接触しないように、乾燥、熱処理工程、必要
によってはアルカリ処理工程へ移送し薄膜の多孔質中空
糸膜への固定化が可能であることを見いだした。これ
は、従来の第1溶液と第2溶液の界面で界面重合した重
合体薄膜を多孔質中空糸膜上に積層する形式のものや、
第1溶液槽と第2溶液槽に多孔質中空糸膜を通過させる
だけのものとは技術思想が全く異なるものである。さら
にこの第3液により多孔質中空糸膜表面上に付着した過
剰の第1溶液をかきとり、第1溶液の液膜厚みの制御し
た状態でそのまま連続で第2溶液と接触させ、界面反応
を生じさせることが可能となり、透過性能や分離性能に
優れた複合中空糸膜の製造できるものであることを見い
だし本発明に至った。
As a result of earnest research in view of the above object, the present inventors have found that a high-performance composite hollow fiber membrane can be obtained by incorporating a fluorine compound into the composite hollow fiber membrane. As a result, the above-mentioned object was achieved. Furthermore, the following method was found as a method of containing this fluorine compound and continuously and stably forming a thin film on the outer surface of the porous hollow fiber membrane, and arrived at the present invention. That is, the porous hollow fiber membrane comprises a fluorine compound that is substantially immiscible with the second solution and is capable of forming an interface with the second solution after being contacted vertically from the first solution to the second solution. This is a method of contacting the third liquid. Another method is to contact the porous hollow fiber membrane from the first solution to a third solution containing a fluorine compound and then to a second solution. Both of the second solutions are substantially immiscible and each can form an interface. By introducing these novel methods, it becomes possible to include a fluorine compound in the composite hollow fiber membrane, and further it is possible to carry out an interfacial polymerization reaction only on the outer surface of the porous hollow fiber membrane, and Immobilize the thin film on the porous hollow fiber membrane by transferring it to the drying, heat treatment step, and if necessary alkali treatment step so that it does not come into contact with the porous hollow fiber membrane transfer means such as rollers during and / or immediately after the thin film formation. I found that it is possible. This is a conventional type in which a polymer thin film interfacially polymerized at the interface between a first solution and a second solution is laminated on a porous hollow fiber membrane,
The technical idea is completely different from that of passing the porous hollow fiber membrane through the first solution tank and the second solution tank. Further, this third liquid scrapes off the excess first solution adhering to the surface of the porous hollow fiber membrane, and continuously contacts the second solution with the liquid film thickness of the first solution being controlled to cause an interfacial reaction. It was found that the composite hollow fiber membrane can be produced, and the composite hollow fiber membrane having excellent permeation performance and separation performance can be produced, and the present invention has been completed.

【0007】すなわち、本発明は下記の構成から成る。 (1)多孔質中空糸膜と該多孔質中空糸膜の外表面を被
覆するポリアミド系重合体薄膜からなる複合中空糸膜に
おいて、該複合中空糸膜がフッ素化合物を含有している
ことを特徴とする複合中空糸膜。 (2)上記(1)に記載の複合中空糸膜の製造方法であ
って、2つ以上の反応性のアミノ基を有し少なくとも1
種類からなる多官能性化合物Aを含む第1溶液と、少な
くとも1種類の多官能性酸ハロゲン化物からなる多官能
性化合物Bを含み該第1溶液と実質的に非混合性の第2
溶液に順次、多孔質中空糸膜を接触させ、該多孔質中空
糸膜上で該多官能性化合物A,Bを相互に界面重合させ
て薄膜を形成し連続した複合中空糸膜を製造するにあた
り、該多孔質中空糸膜を、該第1溶液から続いて該第2
溶液に接触させた後に、該第2溶液と実質的に非混合性
であって、フッ素化合物を含む第3液に少なくとも1カ
所接触させることを特徴とする複合中空糸膜の製造方
法。(以下製法Iと略記する。) (3)上記(1)に記載の複合中空糸膜の別の製造方法
であって、2つ以上の反応性のアミノ基を有し少なくと
も1種類からなる多官能性化合物Aを含む第1溶液と、
少なくとも1種類の多官能性酸ハロゲン化物からなる多
官能性化合物Bを含み該第1溶液と実質的に非混合性の
第2溶液に順次、多孔質中空糸膜を接触させ、該多孔質
中空糸膜上で該多官能性化合物A,Bを相互に界面重合
させて薄膜を形成し連続した複合中空糸膜を製造するに
あたり、該多孔質中空糸膜を、該第1溶液から続いて該
第2溶液に接触させる間に、該第1溶液と該第2溶液の
どちらにも実質的に非混合性であって、フッ素化合物を
含む第3液に少なくとも1カ所接触させることを特徴と
する複合中空糸膜の製造方法。(以下製法IIと略記す
る。)
That is, the present invention has the following configuration. (1) A composite hollow fiber membrane comprising a porous hollow fiber membrane and a polyamide polymer thin film coating the outer surface of the porous hollow fiber membrane, wherein the composite hollow fiber membrane contains a fluorine compound. And a composite hollow fiber membrane. (2) The method for producing a composite hollow fiber membrane according to (1) above, which has at least two reactive amino groups and is at least 1
A first solution containing a polyfunctional compound A of one kind and a second solution containing a polyfunctional compound B of at least one kind of a polyfunctional acid halide and substantially immiscible with the first solution.
In order to produce a continuous composite hollow fiber membrane by sequentially contacting the solution with a porous hollow fiber membrane and interfacially polymerizing the polyfunctional compounds A and B with each other on the porous hollow fiber membrane to form a thin film. The porous hollow fiber membrane from the first solution to the second
A method for producing a composite hollow fiber membrane, which comprises contacting with a solution and then contacting at least one location with a third solution which is substantially immiscible with the second solution and which contains a fluorine compound. (Hereinafter, it is abbreviated as Production Method I.) (3) Another production method of the composite hollow fiber membrane according to (1) above, which has at least one reactive amino group and is composed of at least one type. A first solution containing the functional compound A,
A porous hollow fiber membrane is sequentially contacted with a second solution that contains at least one polyfunctional compound B consisting of a polyfunctional acid halide and is substantially immiscible with the first solution. In producing a continuous composite hollow fiber membrane by forming a thin film by interfacially polymerizing the polyfunctional compounds A and B on the fiber membrane, the porous hollow fiber membrane is continuously treated from the first solution. It is characterized in that, while being contacted with the second solution, it is substantially immiscible with both the first solution and the second solution and is contacted with at least one location of the third solution containing a fluorine compound. Method for producing composite hollow fiber membrane. (Hereinafter abbreviated as production method II.)

【0008】本発明において、多孔質中空糸膜は分離対
象物に対して実質的に分離性能を示さず、上記重合体薄
膜を支えるための支持膜であり、従来公知の多孔質中空
糸膜であればどのようなものでもよいが、その外表面に
好ましくは0.1μm以下、より好ましくは0.05μ
m以下の微細孔を有し、外表面以外の裏面までの構造は
流体の透過抵抗を必要以上に大きくしないために、外表
面の微細孔より大きな細孔からなるものが好ましく、網
状、指状ボイドまたはそれらの混合構造のいずれでもよ
い。その透過性能の例を示すと、単位圧力、単位面積あ
たりの透水量は海水淡水化に使用可能な高圧用逆浸透膜
の場合は例えば0.01〜0.2m3/(m2・日・(kg/c
m2))、好ましくは0.02〜0.1m3/(m2・日・(kg/c
m2))、15kg/cm2以下で使用される低圧用逆浸透膜の場
合は0.2〜10m2/(m2・日・(kg/cm2)))、好ましくは
0.5〜5m3/(m2・日・(kg/cm2))、さらに低圧で用いら
れるいわゆるナノ濾過膜の場合は例えば0.5〜50m3
/(m2・日・(kg/cm2))、好ましくは1〜20m3/(m2・日・
(kg/cm2))である。透水量が小さすぎると得られた複合
膜の透過性能も小さくなり、逆にあまりにも大きくなり
すぎると支持膜の強度が小さくなり操作圧力によっては
多孔質中空糸膜が破壊される場合がある。
In the present invention, the porous hollow fiber membrane is a supporting membrane for supporting the above-mentioned polymer thin film, which does not substantially show separation performance for the object to be separated, and is a conventionally known porous hollow fiber membrane. Any material may be used, but its outer surface is preferably 0.1 μm or less, more preferably 0.05 μm.
It is preferable that the structure having fine pores of m or less and having a pore size larger than the fine pores on the outer surface is used in order to prevent the fluid permeation resistance from unnecessarily increasing in the structure from the outer surface to the back surface. It may be a void or a mixed structure thereof. As an example of the permeation performance, in the case of a high pressure reverse osmosis membrane that can be used for seawater desalination, the permeation rate per unit pressure and unit area is, for example, 0.01 to 0.2 m 3 / (m 2 · day ・(kg / c
m 2 )), preferably 0.02-0.1 m 3 / (m 2 · day · (kg / c
m 2 )), in the case of a low pressure reverse osmosis membrane used at 15 kg / cm 2 or less, 0.2 to 10 m 2 / (m 2 · day · (kg / cm 2 ))), preferably 0.5 to 5m 3 / (m 2 · day · (kg / cm 2 )), in the case of a so-called nanofiltration membrane used at low pressure, for example, 0.5 to 50m 3
/ (m 2 · day · (kg / cm 2 )), preferably 1 to 20 m 3 / (m 2 · day ·
(kg / cm 2 )). If the amount of water permeation is too small, the permeation performance of the obtained composite membrane will be small, and if it is too large, the strength of the supporting membrane will be small and the porous hollow fiber membrane may be destroyed depending on the operating pressure.

【0009】素材は多孔質中空糸膜に成形できるもので
あればどのようなものでも使用できる。ただし、第1溶
液、第2溶液、第3液に接触した際に溶解や分解などに
より膜構造が損傷されないことが必要である。たとえ
ば、第1溶液、第2溶液、第3液がそれぞれアミンと酸
捕捉剤の水溶液、酸クロライドのヘキサン溶液、フッ素
系不活性液体の場合、ポリスルホン、ポリエーテルスル
ホン、ポリアクリロニトリル、ポリエチレン、ポリプロ
ピレン、ポリアミドから選ばれる少なくとも一種を主成
分とすることが好ましく、より好ましくはポリスルホ
ン、ポリエ−テルスルホンから選ばれる少なくとも一種
を主成分とするものである。
Any material can be used as long as it can be formed into a porous hollow fiber membrane. However, it is necessary that the membrane structure is not damaged by dissolution or decomposition when contacted with the first solution, the second solution, and the third solution. For example, when the first solution, the second solution, and the third solution are amine and acid scavenger aqueous solutions, acid chloride hexane solutions, and fluorine-based inert liquids, polysulfone, polyether sulfone, polyacrylonitrile, polyethylene, polypropylene, It is preferable to have at least one selected from polyamide as a main component, and more preferable to have at least one selected from polysulfone and polyethersulfone as a main component.

【0010】寸法は特に限定されないが、製膜時の操作
性、モジュールの膜面積、耐圧性を考慮すると外径が1
00(μm)〜2000(μm)、内径が30(μm)
〜1800(μm)の範囲のものが好ましく、外径が1
50(μm)〜500(μm)、内径が50(μm)〜
300(μm)がより好ましい。さらに少なくとも複合
膜としての操作圧力以上の圧力に耐え得ることが必要で
ある。かかる多孔質中空糸膜は各種市販材料から選択可
能であるが、通常は公知の乾湿式製膜法または溶融製膜
法により製造可能である。さらに必要に応じて、製膜後
の多孔質中空糸膜を特開昭58−199007号公報に
開示されているように50℃の湿熱処理を施したり、特
開昭60−190204号公報に開示されているように
90℃以上の熱水処理をしたりしてもよい。また、必要
に応じて該第1溶液が含浸し過ぎないように目詰め剤を
事前に含浸しておいても良い。
The size is not particularly limited, but in consideration of operability during film formation, the film area of the module, and pressure resistance, the outer diameter is 1
00 (μm) to 2000 (μm), inner diameter 30 (μm)
To 1800 (μm) are preferable, and the outer diameter is 1
50 (μm) to 500 (μm), inner diameter 50 (μm) to
300 (μm) is more preferable. Furthermore, it is necessary to withstand at least a pressure higher than the operating pressure of the composite membrane. Although such a porous hollow fiber membrane can be selected from various commercially available materials, it can usually be produced by a known dry-wet film forming method or melt film forming method. Further, if necessary, the porous hollow fiber membrane after membrane formation is subjected to wet heat treatment at 50 ° C. as disclosed in JP-A-58-199007, or disclosed in JP-A-60-190204. As described above, hot water treatment at 90 ° C. or higher may be performed. Further, if necessary, the first solution may be impregnated in advance so that the first solution is not excessively impregnated.

【0011】本発明において、重合体薄膜は界面重合法
により得られるポリアミド系重合体薄膜であり、いわゆ
るアミド結合を有する重合体を主成分とするものであ
る。たとえば、逆浸透膜の場合、多官能性アミンと多官
能性酸ハロゲン化物の界面重縮合反応により得られた架
橋ポリアミド膜などがあげられる。厚みはピンホールが
なければ薄いほど好ましい。製膜安定性、透過性能等を
考慮すると0.5μm以下が好ましく、0.2μm以下
がより好ましい。この分離活性層の表面に必要に応じて
保護層が形成されていてもよい。
In the present invention, the polymer thin film is a polyamide polymer thin film obtained by an interfacial polymerization method, and contains a polymer having a so-called amide bond as a main component. For example, in the case of a reverse osmosis membrane, a crosslinked polyamide membrane obtained by an interfacial polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide may be mentioned. The thinner the pinhole is, the more preferable it is. Considering film forming stability, permeation performance and the like, the thickness is preferably 0.5 μm or less, more preferably 0.2 μm or less. A protective layer may be formed on the surface of the separation active layer, if necessary.

【0012】本発明の複合中空糸膜中に含有するフッ素
化合物はパーフルオロ化合物またはパーフルオロアルキ
ル基を有する化合物であることが好ましい。これらが複
合中空糸膜中に含有することにより均一な薄膜が形成で
き、かつ高透過性能、高分離性能が得られるメカニズム
は明かではないが、これらは一般に低誘電率、低表面張
力、低屈折率の特徴があり、これらが薄膜形成中、また
は直後に存在していることにより薄膜が均一な分散状態
で生成し、結果として均一で欠点のない薄膜を連続して
安定に形成できるもの考えられる。
The fluorine compound contained in the composite hollow fiber membrane of the present invention is preferably a perfluoro compound or a compound having a perfluoroalkyl group. It is not clear that a uniform thin film can be formed by containing these in the composite hollow fiber membrane, and that high permeation performance and high separation performance can be obtained, but these are generally low dielectric constant, low surface tension, low refractive index. It is considered that the thin film is formed in a uniform dispersed state by being present during or immediately after the thin film formation, and as a result, a uniform and defect-free thin film can be continuously and stably formed. .

【0013】また、このフッ素化合物が含有するとは、
分離活性層である重合体薄膜の表面、内部、重合体薄膜
と多孔質中空糸膜の間、多孔質中空糸膜中などに存在し
ていることであり、複合中空糸膜に含有していればその
存在位置はいずれでもかまわない。ただし、これらは薄
膜を形成する重合体及び/または多孔質中空糸膜と化学
的に結合して存在しているものではない。また、このフ
ッ素化合物の含有量は微量でも十分に上記効果が得られ
るが、含有量が多すぎるとフッ素化合物の疎水性の影響
が大きくなり、透水性能は低下するため,乾燥した複合
中空糸膜の重量当たりのフッ素(F)量が1ppm以
上、1000ppm以下が好ましい。
The content of this fluorine compound is
It is present in the surface of the polymer thin film which is the separation active layer, inside, between the polymer thin film and the porous hollow fiber membrane, in the porous hollow fiber membrane, etc., and may be contained in the composite hollow fiber membrane. It does not matter where it is located. However, these do not exist by being chemically bonded to the polymer forming the thin film and / or the porous hollow fiber membrane. Even if the content of this fluorine compound is very small, the above effect can be sufficiently obtained, but if the content is too large, the effect of the hydrophobicity of the fluorine compound becomes large and the water permeability decreases, so a dry composite hollow fiber membrane is obtained. The amount of fluorine (F) per unit weight is preferably 1 ppm or more and 1000 ppm or less.

【0014】次に複合中空糸膜の製造方法について説明
する。本発明の複合中空糸膜の製造方法に用いられる多
官能性化合物A及びBの種類、組み合わせ、使用される
第1溶液、第2溶液を構成する溶媒の種類は、多官能性
化合物A及びB同志が界面で直ちに重合反応を起こし、
ポリアミド系重合体を生成するものであればよく、それ
以外は特に限定されない。以下に例をあげて説明する。
多官能性化合物Aの例としては芳香族アミン、脂肪族ア
ミンが挙げられ、このいずれであってもよい。
Next, a method for manufacturing the composite hollow fiber membrane will be described. The type and combination of the polyfunctional compounds A and B used in the method for producing the composite hollow fiber membrane of the present invention, the type of the solvent constituting the first solution and the second solution used are the polyfunctional compounds A and B. The comrades immediately initiate a polymerization reaction at the interface,
Any material can be used as long as it can produce a polyamide polymer, and other materials are not particularly limited. An example will be described below.
Examples of the polyfunctional compound A include aromatic amines and aliphatic amines, and any of them may be used.

【0015】芳香族アミンとしては一分子中に2個以上
のアミノ基を有する芳香族アミンであり、2官能以上の
アミンとしては例えば、m−フェニレンジアミン、p−
フェニレンジアミン、4,4−ジアミノジフェニルアミ
ン、4,4’−ジアミノジフェニルエーテル、3,4’
−ジアミノジフェニルエーテル、3,3’−ジアミノジ
フェニルアミン、3,5−ジアミノ安息香酸塩、4,
4’−ジアミノジフェニルスルホン、3,3’−ジアミ
ノジフェニルスルホン、3,4’−ジアミノジフェニル
スルホン、1,3,5−トリアミノベンゼンなどが挙げ
られ、これらの混合物であってもよい。なかでもm−フ
ェニレンジアミンが最も好ましい。脂肪族アミンとして
は2官能以上のアミンであればいずれでもよく、具体例
としては、ピペラジンや2−メチルピペラジン、エチル
ピペラジン、2,5−ジメチルピペラジン、ホモピペラ
ジン、t−2,5−ジメチルピペラジンのようなピペラ
ジン誘導体、ビス(4−ピペリジル)メタン、1,2−
ビス(4−ピペリジル)エタン、1,3−ビス(4−ピ
ペリジル)プロパン、N,N' −ジメチルエチレンジア
ミン、エチレンジアミン、プロピレンジアミン、プロピ
レントリアミン、N,N' −ジメチルプロパンジアミ
ン、4−(アミノメチル)ピペリジン、シクロヘキサン
ジアミン、などが挙げられ、これらの混合物であっても
よく、またこれらから構成されるアミドプレポリマーで
あってもよい。
The aromatic amine is an aromatic amine having two or more amino groups in one molecule, and the bifunctional or higher amines are, for example, m-phenylenediamine and p-.
Phenylenediamine, 4,4-diaminodiphenylamine, 4,4'-diaminodiphenyl ether, 3,4 '
-Diaminodiphenyl ether, 3,3'-diaminodiphenylamine, 3,5-diaminobenzoate, 4,
4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 1,3,5-triaminobenzene and the like are mentioned, and a mixture thereof may be used. Among them, m-phenylenediamine is most preferable. The aliphatic amine may be any bifunctional or higher amine, and specific examples thereof include piperazine, 2-methylpiperazine, ethylpiperazine, 2,5-dimethylpiperazine, homopiperazine, t-2,5-dimethylpiperazine. Derivatives such as bis (4-piperidyl) methane, 1,2-
Bis (4-piperidyl) ethane, 1,3-bis (4-piperidyl) propane, N, N′-dimethylethylenediamine, ethylenediamine, propylenediamine, propylenetriamine, N, N′-dimethylpropanediamine, 4- (aminomethyl) ) Piperidine, cyclohexanediamine, etc., and may be a mixture thereof or an amide prepolymer composed of them.

【0016】多官能性化合物Bの例としては多官能性ア
シルハライドが挙げられ、芳香族、脂肪族のいずれでも
よく、また、前記多官能性アミンと反応して重合体を形
成し得る2官能以上であればよい。芳香族または脂環族
の2または3官能酸ハロゲン化物が好ましく例えば、ト
リメシン酸ハライド、トリメリット酸ハライド、ピロメ
リット酸ハライド、ベンゾフェノンテトラカルボン酸ハ
ライド、イソフタル酸ハライド、テレフタル酸ハライ
ド、ジフェニルジカルボン酸ハライド、ナフタレンジカ
ルボン酸ハライド、ベンゼンジスルホン酸ハライド、ク
ロロスルホニルイソフタル酸ハライド、ピリジンジカル
ボン酸ハライド、1,3,5−シクロヘキサントリカル
ボン酸ハライド、などが挙げられる。逆浸透膜性能など
を考慮するとトリメシン酸クロライド、イソフタル酸ク
ロライド、テレフタル酸クロライド、およびこれらの混
合物が好ましい。ここに多官能性化合物A及びBはそれ
ぞれ一種類の化合物に限られず、目的に応じて同じ反応
をする同族の複数の多官能性化合物を同時に使用するこ
とができる。通常は各多官能性化合物は3種類以下から
なることが多い。
Examples of the polyfunctional compound B include polyfunctional acyl halides, which may be aromatic or aliphatic, and which may react with the polyfunctional amine to form a polymer. The above is sufficient. Aromatic or alicyclic bifunctional or trifunctional acid halides are preferable, for example, trimesic acid halide, trimellitic acid halide, pyromellitic acid halide, benzophenone tetracarboxylic acid halide, isophthalic acid halide, terephthalic acid halide, diphenyldicarboxylic acid halide. , Naphthalenedicarboxylic acid halide, benzenedisulfonic acid halide, chlorosulfonylisophthalic acid halide, pyridinedicarboxylic acid halide, 1,3,5-cyclohexanetricarboxylic acid halide, and the like. Considering reverse osmosis membrane performance and the like, trimesic acid chloride, isophthalic acid chloride, terephthalic acid chloride, and mixtures thereof are preferable. Here, each of the polyfunctional compounds A and B is not limited to one kind of compound, and a plurality of polyfunctional compounds of the same group that perform the same reaction can be used simultaneously depending on the purpose. Usually, each polyfunctional compound is often composed of three or less kinds.

【0017】これらの多官能性化合物の濃度について
は、多官能性化合物の種類、溶媒に対する分配係数によ
り異なる。ピペラジン水溶液を前記第1溶液として、ト
リメシン酸クロライドのn−ヘキサン溶液を前記第2溶
液として用いる場合を例に示すとピペラジンの濃度は約
0.1〜10重量%、好ましくは約0.5〜5重量%の
ものが適当であり、トリメシン酸クロライドの濃度は約
0.01〜10重量%、好ましくは約0.1〜5重量%
のものが適当である。これらの濃度が低いと界面重合膜
の形成が不完全で欠点が生じやすく分離性能の低下を招
き、逆に高すぎると界面重合膜が厚くなり過ぎて透過性
能の低下を生じたり、製造膜中の残留未反応物量が増加
し、膜性能へ悪影響を及ぼすことが有り得る。
The concentration of these polyfunctional compounds varies depending on the type of polyfunctional compound and the partition coefficient for the solvent. As an example, a piperazine aqueous solution is used as the first solution, and an n-hexane solution of trimesic acid chloride is used as the second solution. The piperazine concentration is about 0.1 to 10% by weight, preferably about 0.5 to 5% by weight is suitable, and the concentration of trimesic acid chloride is about 0.01 to 10% by weight, preferably about 0.1 to 5% by weight.
The ones are suitable. If the concentration of these is low, the formation of the interfacial polymer film is incomplete and defects are likely to occur, leading to deterioration of the separation performance. It is possible that the amount of residual unreacted substances of (3) increases and the membrane performance is adversely affected.

【0018】なお、縮合反応で酸が発生する場合は水溶
液に酸捕捉剤としてのアルカリを添加したり、多孔質中
空糸膜との濡れ性を向上させるなどのために界面活性剤
を添加したり、この他多官能性化合物の反応促進剤を必
要に応じて添加してもよい。酸捕捉剤の例としては、水
酸化ナトリウムのようなカ性アルカリ、リン酸三ナトリ
ウムのようなリン酸ソーダ、ピリジン、トリエチレンジ
アミン、トリエチルアミン、3級アミン酢酸ソーダなど
が挙げられ、界面活性剤の例としてはラウリルスルホン
酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウム
などが挙げられ、反応促進剤の例としては、ジメチルホ
ルムアミド(DMF)などがある。これらは予め前記第
1溶液中及び/または第2溶液中に含ませることが可能
である。
When an acid is generated in the condensation reaction, an alkali as an acid scavenger is added to the aqueous solution, or a surfactant is added to improve wettability with the porous hollow fiber membrane. In addition to this, a reaction accelerator of a polyfunctional compound may be added as necessary. Examples of the acid scavenger include caustic alkali such as sodium hydroxide, sodium phosphate such as trisodium phosphate, pyridine, triethylenediamine, triethylamine, sodium tertiary amine acetate, and the like. Examples include sodium lauryl sulfonate, sodium lauryl benzene sulfonate, and the like, and examples of the reaction accelerator include dimethylformamide (DMF) and the like. These can be contained in the first solution and / or the second solution in advance.

【0019】本発明において第1溶液とは多孔質中空糸
膜が先に接触する多官能性化合物を含有する液体をい
い、第2溶液とは第1溶液と反応して界面重合可能なも
う一方の液体をいう。ここでの液体は多官能性化合物を
溶媒により溶解した溶液であり、多官能性化合物が液状
モノマーであれば、その多官能性化合物自身でもよい。
ここでの溶媒は多官能性化合物の溶解性、液の比重の調
整、液々界面の形成状態の調整等の目的で複数の溶媒の
混合物が用いられてもよい。
In the present invention, the first solution refers to a liquid containing a polyfunctional compound with which the porous hollow fiber membrane comes into contact first, and the second solution reacts with the first solution to allow interfacial polymerization. Of liquid. The liquid here is a solution in which a polyfunctional compound is dissolved in a solvent, and if the polyfunctional compound is a liquid monomer, the polyfunctional compound itself may be used.
As the solvent here, a mixture of a plurality of solvents may be used for the purposes of solubility of the polyfunctional compound, adjustment of the specific gravity of the liquid, adjustment of the formation state of the liquid-liquid interface, and the like.

【0020】第1溶液の溶媒及び第2溶液の溶媒として
はそれぞれ前記多官能性化合物A、同Bを溶解し、各溶
液が接した場合液々界面を形成し多孔質中空糸膜を損傷
しないものであれば特に限定されない。例えば、多官能
性化合物Aが多官能性アミン、多官能性化合物Bが多官
能性酸ハライドの場合、第1溶液の溶媒としては、水
が、第2溶液の溶媒としてはn−ヘキサン、シクロヘキ
サン、n−ヘプタン、n−オクタン、n−ノナン、n−
デカン、n−ウンデカン等の炭化水素系溶剤が例として
挙げられる。
As the solvent of the first solution and the solvent of the second solution, the polyfunctional compounds A and B are dissolved, respectively, and when each solution comes into contact, a liquid-liquid interface is formed and the porous hollow fiber membrane is not damaged. It is not particularly limited as long as it is one. For example, when the polyfunctional compound A is a polyfunctional amine and the polyfunctional compound B is a polyfunctional acid halide, water is used as the solvent of the first solution and n-hexane or cyclohexane is used as the solvent of the second solution. , N-heptane, n-octane, n-nonane, n-
Hydrocarbon-based solvents such as decane and n-undecane are examples.

【0021】本発明において第3液は、該製法Iの場合
は第2溶液と実質的に非混合性の液体であれば特に限定
されないが、比重の大小関係は装置上の容易性から第2
溶液<第3液が良い。また第1溶液と第2溶液のどちら
とも実質的に非混合性の液体が好ましい。該製法IIの場
合においては第3液は第1溶液と第2溶液のどちらとも
実質的に非混合性の液体であれば特に限定されない。こ
のような第3液は、第1溶液と第2溶液の組み合わせに
より設定する必要があり、また、流動性、凝固点、比重
等の調節のため、複数の液体の混合物となる場合も有り
得る。ここでの非混合性とは相溶性が全く無いかまたは
若干の相溶性はあるが溶液を混合しても相分離し2液体
間に界面を形成するものをいう。各液体間の溶解性は低
いほど好ましく、常温(15〜25℃)での溶解量は好
ましくは10重量%以下、より好ましくは5重量%以下
である。またこの第3液が第1溶液及び第2溶液と実質
的に非混合であることは第1及び、第2溶液の各溶媒と
も実質的に非混合性であるとともに、第1及び、第2溶
液中に溶解している多官能性化合物A及び同Bとも実質
的に非混合性であり、かつ反応も生じないことを意味す
る。
In the present invention, the third liquid is not particularly limited as long as it is a liquid which is substantially immiscible with the second solution in the case of the production method I, but the magnitude relationship of the specific gravities is the second because of the ease of the apparatus.
Solution <3rd solution is good. Further, a liquid that is substantially immiscible with both the first solution and the second solution is preferable. In the case of the production method II, the third liquid is not particularly limited as long as it is a liquid that is substantially immiscible with both the first solution and the second solution. Such a third liquid needs to be set by a combination of the first solution and the second solution, and may be a mixture of a plurality of liquids for adjusting fluidity, freezing point, specific gravity and the like. The immiscibility here means that there is no compatibility or there is some compatibility, but phase separation occurs even when a solution is mixed and an interface is formed between two liquids. The lower the solubility between the liquids, the better, and the dissolution amount at room temperature (15 to 25 ° C.) is preferably 10% by weight or less, more preferably 5% by weight or less. Further, the fact that the third liquid is substantially immiscible with the first solution and the second solution is substantially immiscible with each solvent of the first and second solutions, and the first and second It means that the polyfunctional compounds A and B dissolved in the solution are substantially immiscible with each other, and no reaction occurs.

【0022】第3液の具体例としては、第1溶液、第2
溶液がそれぞれピペラジン水溶液、トリメシン酸クロラ
イドのn−ヘキサン溶液からなる場合はフッ素系不活性
液体、特にパーフルオロ化合物やパーフルオロアルキル
基を有する化合物が挙げられる。これらは、アミン、エ
ーテル、不飽和化合物、芳香族化合物、脂肪族化合物で
あっても前記特性を満足するものであればよく、好まし
い例としては、例えば下記のパーフルオロアルキル3級
アミンが挙げられる。
Specific examples of the third solution include the first solution and the second solution.
When the solution is an aqueous solution of piperazine or an n-hexane solution of trimesic acid chloride, a fluorine-based inert liquid, particularly a perfluoro compound or a compound having a perfluoroalkyl group, may be used. These may be amines, ethers, unsaturated compounds, aromatic compounds, and aliphatic compounds as long as they satisfy the above characteristics, and preferable examples thereof include the following perfluoroalkyl tertiary amines. .

【0023】[0023]

【化1】 (式中Ra 、Rb およびRc はそれぞれ炭素数4〜6の
パーフルオロアルキル基を示し、炭素数の総和は14〜
16である。)
Embedded image (In the formula, Ra, Rb and Rc each represent a perfluoroalkyl group having 4 to 6 carbon atoms, and the total number of carbon atoms is 14 to
Sixteen. )

【0024】より具体的には住友スリーエム株式会社製
フロリナートFC−70が挙げられる。このフッ素系不
活性液体FC−70はCn2n+3N、n=15からなる構
造を主成分とするものである。このフッ素系不活性液体
FC−70と第1溶液の溶媒である水と第2溶液の溶媒
であるn−ヘキサンとの3成分間の溶解性を示すとn−
ヘキサンに対する水の溶解量は0.014重量%(1
5.5℃、溶剤ハンドブック(講談社))、このフッ素
系不活性液体FC−70に対する水の溶解量は0.00
08重量%(25℃、フロリナートカタログ)、このフ
ッ素系不活性液体FC−70に対するn−ヘキサンの溶
解量は1重量%以上、5重量%未満(25℃、フロリナ
ートカタログ、発明者らの実測では約3%(23℃))
である。また、ピペラジン、トリメシン酸クロライドと
もにこのフッ素系不活性液体FC−70にはほとんど溶
解性を示さない。この他、同じく住友スリーエム株式会
社製フロリナートFC−71を好適に用いることができ
る。また、この他に、第2溶液の溶媒としてシクロヘキ
サンを用いた場合、住友スリーエム株式会社製フロリナ
ートFC−70、FC−71の他にFC−84、FC−
77、FC−75、FC−40、FC−43等を用いる
ことができる。
More specifically, Fluorinert FC-70 manufactured by Sumitomo 3M Limited may be mentioned. The fluorine-based inert liquid FC-70 is mainly composed of C n F 2n + 3 N, consisting of n = 15 structure. The solubility between the three components of the fluorine-based inert liquid FC-70, water as the solvent of the first solution and n-hexane as the solvent of the second solution is n-
The amount of water dissolved in hexane is 0.014% by weight (1
5.5 ° C., Solvent Handbook (Kodansha)), the amount of water dissolved in this fluorine-based inert liquid FC-70 is 0.00
08% by weight (25 ° C, Fluorinert catalog), the amount of n-hexane dissolved in this fluorine-based inert liquid FC-70 is 1% by weight or more and less than 5% by weight (25 ° C, Fluorinert catalog, measured by the inventors). About 3% (23 ℃))
Is. In addition, piperazine and trimesic acid chloride show almost no solubility in this fluorine-based inert liquid FC-70. In addition to this, similarly, Fluorinert FC-71 manufactured by Sumitomo 3M Limited can be preferably used. In addition to this, when cyclohexane is used as the solvent of the second solution, FC-84, FC-, in addition to Fluorinert FC-70, FC-71 manufactured by Sumitomo 3M Limited.
77, FC-75, FC-40, FC-43 and the like can be used.

【0025】これら、第1溶液、第2溶液、第3液の各
温度は特に限定されないが、室温で十分迅速に界面反応
が生じる多官能性化合物の組み合わせであれば、操作上
室温程度すなわち5〜35℃の範囲が用いられる。温度
が高すぎると、多官能性化合物の劣化が促進されたり、
溶媒の蒸発が促進される問題が有り、逆に低すぎると、
多孔質中空糸膜への第1溶液の含浸が不足したり、界面
反応速度が小さくなりすぎて重合体薄膜が完全に形成さ
れなかったり、溶媒の粘度が大きくなりすぎて製膜過程
に障害を与える。
The temperatures of the first solution, the second solution, and the third solution are not particularly limited, but in the case of a combination of polyfunctional compounds in which an interfacial reaction occurs at room temperature sufficiently quickly, it is about room temperature in operation, that is, 5 A range of ~ 35 ° C is used. If the temperature is too high, deterioration of the polyfunctional compound may be accelerated,
There is a problem that the evaporation of the solvent is accelerated, and conversely if it is too low,
Impregnation of the porous hollow fiber membrane with the first solution is insufficient, the interfacial reaction rate becomes too small to form a polymer thin film completely, and the viscosity of the solvent becomes too large, which interferes with the film forming process. give.

【0026】本発明において多孔質中空糸膜に各溶液を
接触させるとは多孔質中空糸膜を各液中に浸漬、通過さ
せることである。また第1溶液や第2溶液の界面を通過
させる際は均一な薄膜を形成するために各液界面とでき
るだけ垂直に通過させることが好ましい。
In the present invention, bringing each solution into contact with the porous hollow fiber membrane means immersing and passing the porous hollow fiber membrane in each liquid. Further, when passing through the interfaces of the first solution and the second solution, it is preferable to pass the liquids as perpendicularly as possible to the interfaces of the respective liquids in order to form a uniform thin film.

【0027】第1溶液に浸漬した後、多孔質中空糸膜表
面の過剰溶液の残存は薄膜の剥離を起こす原因となるの
で過剰溶液は除去することが好ましい。除去方法の一例
としては、多孔質中空糸膜を空中走行させ自然落下・自
然乾燥させる方法、第3液を用いてかき取る方法、その
他空気や不活性ガスの吹き付け、乾燥器による乾燥など
が挙げられる。また、第3液通過後、中和及び反応停止
のために酸捕捉剤の水溶液に浸漬しても良い。酸捕捉剤
の例としては、リン酸三ナトリウムのようなリン酸ソー
ダ、炭酸ナトリウムなどが挙げられる。
After the immersion in the first solution, the excess solution remaining on the surface of the porous hollow fiber membrane causes peeling of the thin film, so it is preferable to remove the excess solution. Examples of the removal method include a method in which a porous hollow fiber membrane is allowed to run in the air to spontaneously drop and dry, a method for scraping using a third liquid, other methods such as blowing air or an inert gas, and drying with a drier. To be After passing through the third liquid, it may be immersed in an aqueous solution of an acid scavenger for neutralization and termination of the reaction. Examples of acid scavengers include sodium phosphate such as trisodium phosphate, sodium carbonate and the like.

【0028】以下、本発明の製法Iについて、多孔質中
空糸膜を各溶液、液に接触させる部分をモデル的に示
す。多孔質中空糸膜外表面に第2溶液、第3液を接触さ
せる際、比重の大小関係が、第2溶液<第3液の場合の
例を図1に示す。第3液3を溶液槽5に投入し、仕切6
を越えないように第2溶液2を上から投入する。多孔質
中空糸膜4は第1溶液浸漬後、第2溶液2の上部よりほ
ぼ垂直に入り、ここで界面重合反応が生じ重合体薄膜が
多孔質中空糸膜4上で形成される。その後、第2溶液2
と第3液3の界面S1を通り、第3液3中を通過する。
この第3液3とは界面重合反応は生じないが、第3液と
接触直後で多孔質中空糸膜表面上に残留する多官能性化
合物Aと多官能性化合物Bの反応が続いている場合は、
第3液の一部は膜中に取り込まれる。多孔質中空糸膜4
はこの第3液3中でローラー7’、7を通過し、第3液
3上部よりほぼ垂直方向に出て、速やかに乾燥工程等の
後工程に送られる。本法では第3液を用いることによっ
て、多孔質中空糸膜が第2溶液と接触する際にローラー
7’、7等と接触することなく、各液界面と容易にほぼ
垂直に通過させることができる。
Hereinafter, in the production method I of the present invention, the parts in which the porous hollow fiber membrane is brought into contact with each solution and liquid will be shown as a model. FIG. 1 shows an example of the case where the second solution and the third solution are brought into contact with the outer surface of the porous hollow fiber membrane and the magnitude relationship of the specific gravities is second solution <third solution. The third liquid 3 is charged into the solution tank 5, and the partition 6
The second solution 2 is charged from above so as not to exceed the above. After soaking the first solution, the porous hollow fiber membrane 4 enters almost vertically from the upper part of the second solution 2, where an interfacial polymerization reaction occurs and a polymer thin film is formed on the porous hollow fiber membrane 4. Then, the second solution 2
Through the interface S1 between the third liquid 3 and the third liquid 3.
When an interfacial polymerization reaction does not occur with the third liquid 3, but the reaction between the polyfunctional compound A and the polyfunctional compound B remaining on the surface of the porous hollow fiber membrane immediately after contact with the third liquid continues. Is
Part of the third liquid is taken into the film. Porous hollow fiber membrane 4
Passes through the rollers 7 ′, 7 in the third liquid 3, exits from the upper portion of the third liquid 3 in a substantially vertical direction, and is immediately sent to a subsequent process such as a drying process. By using the third liquid in this method, when the porous hollow fiber membrane contacts the second solution, the porous hollow fiber membrane can easily pass almost perpendicularly to each liquid interface without contacting the rollers 7 ′, 7 and the like. it can.

【0029】第2溶液に揮発性の有機溶媒を用いる場合
は上部の大気開放部の表面積をできるだけ小さくするこ
とが好ましい。これは溶媒の蒸発をできるだけ防止し、
多官能性化合物Bの濃度変化を少なくし、安定した複合
中空糸膜を製造すると同時にクリーンな作業環境維持を
可能とするためである。大気開放部の表面積を小さくす
るためには細い筒状物を用い、その中へ多孔質中空糸膜
を通す方法を用いても良い。
When a volatile organic solvent is used for the second solution, it is preferable to make the surface area of the upper atmosphere open portion as small as possible. This prevents solvent evaporation as much as possible,
This is because the change in the concentration of the polyfunctional compound B is reduced and a stable composite hollow fiber membrane is produced, and at the same time, a clean working environment can be maintained. In order to reduce the surface area of the atmosphere open portion, a thin tubular material may be used, and a method of passing a porous hollow fiber membrane through it may be used.

【0030】当然のことであるが図1ではモデル的に多
孔質中空糸膜1本の場合について述べているが同時に2
本以上の多孔質中空糸膜の処理が容易に可能であり必要
に応じて溶液槽5の幅を設定することになる。
As a matter of course, FIG. 1 describes the case of one porous hollow fiber membrane as a model, but at the same time 2
It is possible to easily treat more than one porous hollow fiber membrane, and the width of the solution tank 5 is set as necessary.

【0031】また、前述したように多孔質中空糸膜を必
要に応じて、乾燥、親水化処理、目詰め剤の含浸等の前
処理を行っても良い。また、残留未反応多官能性化合物
間の界面反応の終結、残留溶剤の除去、重合体薄膜の多
孔質中空糸膜4表面への固着等のために必要に応じて多
孔質中空糸膜4は乾燥、または熱処理装置へ移る。乾
燥、または熱処理条件は多孔質中空糸膜素材、製膜する
重合体薄膜素材、各液の種類により異なるが、例えば多
孔質中空糸膜の素材がポリスルホン、重合体薄膜がポリ
アミド、第1溶液1が多官能アミン水溶液、第2溶液2
が多官能酸クロライドのn−ヘキサン溶液の場合は20
℃〜100℃で10秒〜20分が好ましい。さらに必要
に応じて形成した重合体薄膜の表面に保護剤の層を塗布
等により形成させる工程を設けても良い。また、残留未
反応性化合物の除去や反応副生物の除去、中和ための洗
浄や処理を必要に応じて行う。さらに、製膜後の複合中
空糸膜を必要に応じて乾燥処理しても良く、保存方法も
乾燥保存、湿潤保存のどちらでも本発明は制限されな
い。
Further, as described above, the porous hollow fiber membrane may be subjected to a pretreatment such as drying, hydrophilization treatment, impregnation with a packing agent and the like, if necessary. In addition, the porous hollow fiber membrane 4 may be formed as necessary for the purpose of terminating the interfacial reaction between the residual unreacted polyfunctional compounds, removing the residual solvent, and fixing the polymer thin film to the surface of the porous hollow fiber membrane 4. Move to drying or heat treatment equipment. Drying or heat treatment conditions vary depending on the porous hollow fiber membrane material, the polymer thin film material to be formed, and the type of each liquid. For example, the porous hollow fiber membrane material is polysulfone, the polymer thin film is polyamide, and the first solution 1 Is a polyfunctional amine aqueous solution, second solution 2
Is 20 when n is a polyfunctional acid chloride solution in n-hexane.
C. to 100.degree. C. and 10 seconds to 20 minutes are preferable. Further, if necessary, a step of forming a protective agent layer on the surface of the formed polymer thin film by coating or the like may be provided. In addition, removal of residual unreacted compounds, removal of reaction by-products, and washing and treatment for neutralization are performed as necessary. Furthermore, the composite hollow fiber membrane after membrane formation may be subjected to a drying treatment, if necessary, and the present invention is not limited to either a dry preservation method or a wet preservation method.

【0032】本発明に基づいて複合中空糸膜を製造する
場合に、各液の性質に応じて各液の濃度、温度、多孔質
中空糸膜の走行速度、各液の層の高さ、多孔質中空糸膜
の走行距離すなわち滞留時間を最適に設定することによ
り、目的に適合した複合中空糸膜を得ることができる。
多孔質中空糸膜の走行速度については0.5m/分〜2
0m/分が可能であり、この速度で複合中空糸膜を製造
することが可能である。また、当然のことであるが長期
連続操作する場合は界面反応の進行とともに多官能性化
合物等が消費され溶液濃度が変化するため、必要に応じ
て各溶液槽の溶液を連続的に更新し濃度を調整する手段
を設けても良い。
When a composite hollow fiber membrane is produced according to the present invention, the concentration of each liquid, the temperature, the running speed of the porous hollow fiber membrane, the height of the layer of each liquid, and the porosity of each liquid depending on the properties of each liquid. By optimally setting the running distance of the high quality hollow fiber membrane, that is, the residence time, a composite hollow fiber membrane suitable for the purpose can be obtained.
The running speed of the porous hollow fiber membrane is 0.5 m / min to 2
0 m / min is possible, and it is possible to produce a composite hollow fiber membrane at this speed. In addition, as a matter of course, in the case of continuous operation for a long period of time, the polyfunctional compound is consumed as the interfacial reaction proceeds and the solution concentration changes. You may provide the means to adjust.

【0033】図2は複合膜化工程の概略フローを示して
いる。以下、工程の概要を説明する。多孔質中空糸膜供
給槽11から湿潤状態の多孔質中空糸膜4を駆動ローラ
ー19’、19により取り出し、さらに駆動ローラー
9’、9を経由して第1溶液槽10へ導入、浸漬させ
る。続いて第1溶液1が付着、含浸した多孔質中空糸膜
4は駆動ローラー8’、8を経由して第1溶液槽10か
らほぼ垂直に引き出される。その後の空中走行の部分で
過剰の第1溶液が除去される。この空中走行距離を調節
することにより多孔質中空糸膜4へ第1溶液への第1溶
液の付着量を調節することが可能である。続いて多孔質
中空糸膜4を第2溶液2中にほぼ垂直に導入し、多孔質
中空糸膜4外表面上で界面重合反応を生じさせる。第2
溶液2と第3液3の液々界面S1を貫通させ、第3液3
中に浸漬させ、駆動ローラー7’、7を経由して、第3
液3からほぼ垂直に引き出される。第2溶液との接触の
際に多孔質中空糸膜4を駆動ローラー等に接触させるこ
となく、第3液3を介して乾燥筒12へ導入し薄膜を多
孔質中空糸膜4へ固着させた後、駆動ローラー13’、
13を経由し水洗槽14へ導かれ、水洗水15中を駆動
ローラー16’、16を経由して通過させた後、駆動ロ
ーラー17’、17を経由して複合中空糸膜受入槽18
に導かれる。
FIG. 2 shows a schematic flow of the composite film forming process. The outline of the steps will be described below. The porous hollow fiber membrane 4 in a wet state is taken out from the porous hollow fiber membrane supply tank 11 by the drive rollers 19 ′, 19 and further introduced into the first solution tank 10 via the drive rollers 9 ′, 9 and immersed therein. Subsequently, the porous hollow fiber membrane 4 to which the first solution 1 is attached and impregnated is pulled out from the first solution tank 10 almost vertically through the drive rollers 8 ′, 8. The excess first solution is removed during the subsequent air travel. It is possible to adjust the amount of the first solution attached to the first solution on the porous hollow fiber membrane 4 by adjusting the air travel distance. Then, the porous hollow fiber membrane 4 is introduced substantially vertically into the second solution 2 to cause an interfacial polymerization reaction on the outer surface of the porous hollow fiber membrane 4. Second
The liquid-liquid interface S1 between the solution 2 and the third liquid 3 is penetrated to form the third liquid 3
It is dipped in and is passed through the drive rollers 7 ', 7 to the third
The liquid 3 is withdrawn almost vertically. When the porous hollow fiber membrane 4 was brought into contact with the second solution, the porous hollow fiber membrane 4 was introduced into the drying cylinder 12 through the third liquid 3 and fixed to the porous hollow fiber membrane 4 without contacting the driving roller or the like. After that, the drive roller 13 ',
After being guided to the washing tank 14 via 13 and passing through the washing water 15 via the drive rollers 16 ′, 16, the composite hollow fiber membrane receiving tank 18 via the driving rollers 17 ′, 17
Be led to.

【0034】図3は第3液通過後、界面重合反応生成物
の中和及び未反応基の末端処理のための酸捕捉剤水溶液
の浸漬を行った例である。第1溶液の溶媒が水で、第3
液が第1溶液及び第2溶液のどちらにも実質的に非混合
性で界面を形成する場合、第3液は酸捕捉剤水溶液とも
界面を形成する。液の比重の大小が第2溶液<第3液か
つ酸捕捉剤水溶液<第3液の場合、第3液3を溶液槽5
に投入し、仕切り6を越えないように第2溶液2及び酸
捕捉剤水溶液20をそれぞれ上から投入する。多孔質中
空糸膜4は第1溶液浸漬後、第2溶液2の上部よりほぼ
垂直に入り、ここで界面重合反応が生じ重合体薄膜が多
孔質中空糸膜4上で形成される。その後、第2溶液2と
第3液3の界面S1を通り、第3液3中でローラー
7’、7を通過する。その後、第3液3と酸捕捉剤水溶
液20の界面S2を通り、酸捕捉剤水溶液20中で中和
等を行った後、酸捕捉剤水溶液20上部より出て、速や
かに乾燥工程等の後工程に送られる。本法ではこのよう
な第3液を用いることによって、複合中空糸膜の一連の
製造工程を非常に容易かつ確実に行うことができる。
FIG. 3 shows an example in which, after passing through the third liquid, an aqueous solution of an acid scavenger was used for neutralization of the interfacial polymerization reaction product and terminal treatment of unreacted groups. The solvent of the first solution is water, the third
When the liquid is substantially immiscible with both the first solution and the second solution and forms an interface, the third liquid also forms an interface with the aqueous acid scavenger solution. When the specific gravity of the liquid is the second solution <the third liquid and the acid scavenger aqueous solution <the third liquid, the third liquid 3 is added to the solution tank 5
Then, the second solution 2 and the acid scavenger aqueous solution 20 are respectively charged from above so as not to exceed the partition 6. After soaking the first solution, the porous hollow fiber membrane 4 enters almost vertically from the upper part of the second solution 2, where an interfacial polymerization reaction occurs and a polymer thin film is formed on the porous hollow fiber membrane 4. Then, it passes through the interface S1 between the second solution 2 and the third liquid 3 and passes through the rollers 7 ′, 7 in the third liquid 3. After passing through the interface S2 between the third liquid 3 and the acid scavenger aqueous solution 20, neutralization and the like in the acid scavenger aqueous solution 20, and then exiting from the upper part of the acid scavenger aqueous solution 20 and immediately after the drying step and the like. Sent to the process. In this method, by using such a third liquid, a series of manufacturing steps of the composite hollow fiber membrane can be carried out very easily and reliably.

【0035】図4は第1溶液浸漬後の多孔質中空糸膜表
面の過剰な第1溶液を除去するために、第1溶液浸漬後
に第3液による第1溶液の除去を行った例である。以
下、工程の概要を説明する。図2の場合と同様に多孔質
中空糸供給槽11から湿潤状態の多孔質中空糸膜4を駆
動ローラー19’、19により取り出し、さらに駆動ロ
ーラー9’、9を経由して第1溶液槽10へ導入、浸漬
させる。続いて第1溶液1が付着、含浸した多孔質中空
糸膜4は、駆動ローラー8’、8を経由して第1溶液槽
10からほぼ垂直に引き出される。その後の第3液槽2
1通過部分で過剰の第1溶液が除去される。第3液3が
第1溶液1と非混合性である場合、第3液槽21走行深
さを調節することにより、第1溶液をその濃度を変える
こと無く多孔質中空糸膜4への表面付着量を調節するこ
とが可能である。多孔質中空糸膜4外表面から除去され
た過剰の第1溶液は第3液槽21内の第3液上部より容
易に排出することが可能である。続いて多孔質中空糸膜
4を第2溶液2中にほぼ垂直に導入させて多孔質中空糸
膜4外表面上で界面重合反応を生じさせる。第2溶液2
と第3液の液々界面S1を貫通させ、駆動ローラー
7’、7を経由して第3液からほぼ垂直に引き出され
る。第2溶液との接触の際に多孔質中空糸膜4を駆動ロ
ーラー等に接触させることなく第3液3を介して乾燥筒
12へ導入し、薄膜を多孔質中空糸膜4へ固着させた
後、駆動ローラー13’、13を経由し水洗槽14へ導
かれ、水洗水15中を駆動ローラー16’、16を経由
して通過させた後、駆動ローラー17’、17を経由し
て複合中空糸膜受入空槽18に導かれる。
FIG. 4 shows an example in which the first solution is removed by the third solution after the first solution is dipped in order to remove the excess first solution on the surface of the porous hollow fiber membrane after the first solution is dipped. . The outline of the steps will be described below. As in the case of FIG. 2, the porous hollow fiber membrane 4 in the wet state is taken out from the porous hollow fiber supply tank 11 by the drive rollers 19 ′, 19 and further passed through the drive rollers 9 ′, 9 to the first solution tank 10 Introduce and soak. Subsequently, the porous hollow fiber membrane 4 to which the first solution 1 is attached and impregnated is pulled out from the first solution tank 10 almost vertically through the drive rollers 8 ′, 8. Subsequent third liquid tank 2
Excess first solution is removed in one pass. When the third liquid 3 is immiscible with the first solution 1, the surface of the first liquid solution to the porous hollow fiber membrane 4 can be adjusted by adjusting the running depth of the third liquid tank 21 without changing its concentration. It is possible to adjust the adhesion amount. The excess first solution removed from the outer surface of the porous hollow fiber membrane 4 can be easily discharged from the upper part of the third solution in the third solution tank 21. Then, the porous hollow fiber membrane 4 is introduced almost vertically into the second solution 2 to cause an interfacial polymerization reaction on the outer surface of the porous hollow fiber membrane 4. Second solution 2
And through the liquid-liquid interface S1 of the third liquid, and is pulled out almost vertically from the third liquid via the drive rollers 7 ′, 7. When the porous hollow fiber membrane 4 was brought into contact with the second solution, the porous hollow fiber membrane 4 was introduced into the drying cylinder 12 through the third liquid 3 without contacting the driving roller or the like, and the thin film was fixed to the porous hollow fiber membrane 4. After that, it is guided to the washing tank 14 via the drive rollers 13 ', 13 and passes through the washing water 15 via the drive rollers 16', 16 and then through the drive rollers 17 ', 17 to form a composite hollow. It is guided to the yarn film receiving empty tank 18.

【0036】以下、本発明に使われる製法IIについて、
製法Iとの差異を中心に説明する。まず、多孔質中空糸
膜を各溶液、液に接触させる部分をモデル的に示す。多
孔質中空糸膜外表面に第2溶液、第3液を接触させる場
合、各溶液の比重の大小により接触方法が異なる。比重
の大小関係が、第2溶液<第1溶液<第3液の場合の例
を図5に示す。第3液3を溶液槽に投入し、仕切6を越
えないように第1溶液、第2溶液2をそれぞれ上から投
入し、第1溶液1と第2溶液2を互いの液々界面が形成
しないように設置する。多孔質中空糸膜4は第1溶液1
中を浸漬、通過する。この際、多孔質中空糸膜4に第1
溶液1が付着、含浸する。その後、第1溶液1と第3液
3の界面S3を通過し、この際、第1溶液1の過剰付着
量の一部はかき取られ、第3液3中を通過する。この第
3液3は第1溶液1、第2溶液2ともに実質的に非混合
という特徴を有するため、この第3液中では実質的に界
面重合反応は生じない。さらに、第3液3と第2溶液2
との界面S1を通過し、第2液2中を浸漬、通過し、こ
こで界面重合反応が生じ重合体薄膜が多孔質中空糸膜上
で形成される。この際、微量の第3液が多孔質中空糸膜
表面上に存在するため多官能性化合物Aと多官能性化合
物Bの反応時に、第3液の一部は膜中に取り込まれる。
多孔質中空糸膜4はこの第3液3中でローラー7’、7
を通過し、第3液3上部よりほぼ垂直方向に出て、速や
かに乾燥工程等の後工程に送られる。本法では第3液を
用いることによって、多孔質中空糸膜が第2溶液と接触
する際にローラー7’、7等と接触することなく、各液
界面と容易にほぼ垂直に通過させることができる。
The production method II used in the present invention is described below.
The difference from the manufacturing method I will be mainly described. First, a model is shown in which the porous hollow fiber membrane is brought into contact with each solution and liquid. When the second solution and the third solution are brought into contact with the outer surface of the porous hollow fiber membrane, the contact method differs depending on the specific gravity of each solution. FIG. 5 shows an example in which the magnitude relationship of the specific gravities is the case of the second solution <the first solution <the third solution. The third solution 3 is charged into the solution tank, the first solution and the second solution 2 are respectively charged from above so that the partition 6 is not exceeded, and the first solution 1 and the second solution 2 form a liquid-liquid interface between them. Do not install. The porous hollow fiber membrane 4 is the first solution 1
Soak and pass through. At this time, the porous hollow fiber membrane 4 has a first
Solution 1 adheres and impregnates. After that, it passes through the interface S3 between the first solution 1 and the third liquid 3, and at this time, a part of the excessive adhesion amount of the first solution 1 is scraped off and passes through the third liquid 3. Since the third solution 3 has a characteristic that both the first solution 1 and the second solution 2 are substantially non-mixed, the interfacial polymerization reaction does not substantially occur in the third solution 3. Furthermore, the third liquid 3 and the second solution 2
It passes through the interface S1 with and is immersed in and passes through the second liquid 2, where an interfacial polymerization reaction occurs and a polymer thin film is formed on the porous hollow fiber membrane. At this time, since a trace amount of the third liquid is present on the surface of the porous hollow fiber membrane, part of the third liquid is taken into the membrane during the reaction between the polyfunctional compound A and the polyfunctional compound B.
The porous hollow fiber membrane 4 has rollers 7 ', 7 in the third liquid 3.
Through the upper part of the third liquid 3 in a substantially vertical direction, and immediately sent to a subsequent process such as a drying process. By using the third liquid in this method, when the porous hollow fiber membrane contacts the second solution, the porous hollow fiber membrane can easily pass almost perpendicularly to each liquid interface without contacting the rollers 7 ′, 7 and the like. it can.

【0037】図6は多孔質中空糸膜への第1溶液の付
着、含浸を強化させ、かつ、多孔質中空糸膜を空中走行
させることにより過剰の第1溶液の除去も強化した場合
の例を示している。以下この工程の概略を説明する。多
孔質中空糸膜4を第1溶液槽11に浸漬させ、駆動ロー
ラー8’、8を経由して空中走行させる。この空中走行
の部分で過剰の第1溶液が除去される。続いて、多孔質
中空糸膜を第3液3中に浸漬させ、駆動ローラー7’、
7を経由して、第3液3と第2溶液2の液々界面S1を
貫通させて第2溶液2中に導入させて、多孔質中空糸膜
外表面上で界面重合反応を生じさせる。重合体薄膜が外
表面に形成された多孔質中空糸膜4は駆動ローラー等に
接触させることなく乾燥筒12へ導入し、それ以降は製
法Iの第2図の場合と同様である。この空走距離を調節
することにより多孔質中空糸膜へ第1溶液の付着量を調
節すること可能である。
FIG. 6 shows an example in which the adhesion and impregnation of the first solution to the porous hollow fiber membrane is enhanced, and the removal of the excess first solution is enhanced by running the porous hollow fiber membrane in the air. Is shown. The outline of this step will be described below. The porous hollow fiber membrane 4 is immersed in the first solution tank 11 and traveled in the air via the drive rollers 8 ′, 8. Excessive first solution is removed in this air travel. Then, the porous hollow fiber membrane is dipped in the third liquid 3 to drive the drive roller 7 ′,
It is introduced into the second solution 2 through the liquid-liquid interface S1 between the third solution 3 and the second solution 2 via 7 to cause an interfacial polymerization reaction on the outer surface of the porous hollow fiber membrane. The porous hollow fiber membrane 4 having the polymer thin film formed on the outer surface thereof is introduced into the drying cylinder 12 without contact with a driving roller or the like, and thereafter, it is the same as the case of FIG. The amount of the first solution attached to the porous hollow fiber membrane can be adjusted by adjusting the free running distance.

【0038】各溶液、液の比重の大小関係が第2溶液<
第3液<第1溶液の場合において中空糸膜を各溶液、液
に接触する部分をモデル的に示したものが図7である。
多孔質中空糸膜4は第1溶液1中を浸漬、通過し、続い
て駆動ローラー7’、7を経て第1溶液1と第3液3と
の液々界面S3を貫通し、第3液3中を通過する。続い
て、中空糸膜4は第3液3と第2溶液3の液々界面S1
を貫通し、第2溶液2中をに浸漬、通過し多孔質中空糸
膜外表面上で界面重合反応が生じ、重合体薄膜が形成さ
れる。この際、微量の第3液が多孔質中空糸膜表面上に
存在するため多官能性化合物Aと多官能性化合物Bの反
応時に、第3液の一部は膜中に取り込まれる。続いて、
駆動ローラー等に接触することなく乾燥処理工程等へ移
行できる。この図の場合、第3液3中においても多孔質
中空糸膜は駆動ローラーと接触することがないため、多
孔質中空糸膜の外表面上の第1溶液の付着状態を駆動ロ
ーラー等で乱すことなく第2溶液2中での界面重合反応
を生じさせることが可能である。
The relationship between the respective solutions and the specific gravities of the solutions is the second solution <
FIG. 7 shows, as a model, the hollow fiber membranes in the case of the third liquid <the first solution, and the portions in contact with the respective solutions and liquids.
The porous hollow fiber membrane 4 is immersed in and passed through the first solution 1, and subsequently passes through the liquid-liquid interface S3 between the first solution 1 and the third liquid 3 via the driving rollers 7 ′, 7 to form the third liquid. Pass through 3. Then, the hollow fiber membrane 4 has a liquid-liquid interface S1 between the third liquid 3 and the second solution 3.
To pass through the second solution 2 and pass therethrough to cause an interfacial polymerization reaction on the outer surface of the porous hollow fiber membrane to form a polymer thin film. At this time, since a trace amount of the third liquid is present on the surface of the porous hollow fiber membrane, part of the third liquid is taken into the membrane during the reaction between the polyfunctional compound A and the polyfunctional compound B. continue,
It is possible to shift to a drying process or the like without contact with a driving roller or the like. In the case of this figure, since the porous hollow fiber membrane does not come into contact with the driving roller even in the third liquid 3, the adhesion state of the first solution on the outer surface of the porous hollow fiber membrane is disturbed by the driving roller or the like. It is possible to cause the interfacial polymerization reaction in the second solution 2 without any action.

【0039】[0039]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれらの実施例により何ら制限されるものでは
ない。
The present invention will be described below with reference to examples.
The invention is in no way limited by these examples.

【0040】実施例1 まず、多孔質中空糸膜について説明する。ポリスルホン
(Amoco 社製 Udel P-3500)29重量%、ポリエチレン
グリコール(平均分子量600)14.5重量%、ラウ
リルベンゼンスルホン酸ナトリウム0.5重量%、およ
びジメチルアセトアミド(DMAc)56重量%からな
る紡糸原液を、100℃で12時間溶解撹拌し、紡糸原
液が均一に溶解したことを確認後、−50cmHg、1
00℃で1時間脱泡を行い、次いで紡糸原液を50℃に
冷却した後、紡糸原液吐出部外直径0.66mm、内直
径0.5mm、芯ガス吐出部直径0.2mmを有する二
重管構造の中空糸製造用ノズルから紡糸原液、芯ガス
(窒素ガス)をそれぞれ0.75cm3 /分、0.30
cm3 /分で吐出させ、15m/分の紡糸速度で乾湿式
紡糸を行い連続した多孔質中空糸膜を得た。エアーギャ
ップの長さは0.5cmであり、凝固液として25℃の
DMAc5重量%水溶液を用いた。凝固後水洗いし、更
に90℃の熱水で1時間熱水処理を施し、複合膜化に使
用されるまで純水に浸漬保存した。得られた多孔質中空
糸膜の外径は0.3mmで内径は0.2mmであった。
また、この多孔質中空糸膜の断面構造は内外表面に緻密
層を有しそれ以外は全体一様に網状組織であった。
Example 1 First, a porous hollow fiber membrane will be described. Spinning consisting of 29% by weight of polysulfone (Udel P-3500 manufactured by Amoco), 14.5% by weight of polyethylene glycol (average molecular weight 600), 0.5% by weight of sodium laurylbenzenesulfonate, and 56% by weight of dimethylacetamide (DMAc). The stock solution was dissolved and stirred for 12 hours at 100 ° C., and after confirming that the spinning stock solution was uniformly dissolved, -50 cmHg, 1
After defoaming at 00 ° C. for 1 hour and then cooling the spinning dope to 50 ° C., a double tube having a spinning dope discharge part outer diameter of 0.66 mm, an inner diameter of 0.5 mm, and a core gas discharge part of 0.2 mm. The stock solution for spinning and the core gas (nitrogen gas) are 0.75 cm 3 / min and 0.30 from the hollow fiber manufacturing nozzle, respectively.
It was discharged at cm 3 / min, and dry-wet spinning was performed at a spinning speed of 15 m / min to obtain a continuous porous hollow fiber membrane. The length of the air gap was 0.5 cm, and a 5 wt% DMAc aqueous solution at 25 ° C. was used as a coagulating liquid. After coagulation, it was washed with water, further subjected to hot water treatment with hot water at 90 ° C. for 1 hour, and immersed and stored in pure water until it was used for forming a composite film. The obtained porous hollow fiber membrane had an outer diameter of 0.3 mm and an inner diameter of 0.2 mm.
In addition, the cross-sectional structure of this porous hollow fiber membrane had a dense layer on the inner and outer surfaces, and the rest had a uniform network throughout.

【0041】この多孔質中空糸膜を20本束ねてループ
にし片端をホルダーにいれてエポキシ樹脂で固め、多孔
質中空糸膜を開口させ多孔質中空糸膜束有効長35cm
(外径基準膜面積132cm2 )のミニモジュールを得
た。この多孔質中空糸膜の単位膜面積、単位圧力あたり
の純水透過量は、1.0m3 /(m2・日・(kg/cm2))で平
均分子量18.5万のデキストランの除去率は95%で
あった。なお、多孔質中空糸膜性能は次のようにして求
めた。
Twenty porous hollow fiber membranes were bundled to form a loop, one end of which was placed in a holder and fixed with an epoxy resin to open the porous hollow fiber membrane, and the porous hollow fiber membrane bundle effective length of 35 cm.
A mini module having an outer diameter reference membrane area of 132 cm 2 was obtained. This porous hollow fiber membrane has a unit membrane area and a pure water permeation amount per unit pressure of 1.0 m 3 / (m 2 · day · (kg / cm 2 )), and removal of dextran having an average molecular weight of 185,000. The rate was 95%. The performance of the porous hollow fiber membrane was determined as follows.

【0042】上記多孔質中空糸膜ミニモジュ−ルに操作
圧力5kg/cm2、温度25℃にてRO水(東洋紡績(株)
製HOLLOSEP使用)を透過させ、60分後、透水
量を測定し、操作圧力5kg/cm2における純水透過量とし
た。また、多孔質中空糸膜のデキストラン除去率は濃度
が300g/m3 のデキストランの水溶液を操作圧力5
kg/cm2、温度25℃にて供給し60分後に測定し、デキ
ストラン除去率を求めた。なおデキストラン除去率は次
式で定義した。 〔1−(膜透過液中のデキストランの濃度/供給原液中
のデキストランの濃度)〕×100(%)
RO porous water (Toyobo Co., Ltd.) was applied to the above-mentioned porous hollow fiber membrane mini-module at an operating pressure of 5 kg / cm 2 and a temperature of 25 ° C.
60 minutes later, the amount of water permeation was measured to obtain the amount of pure water permeation at an operating pressure of 5 kg / cm 2 . The removal rate of dextran from the porous hollow fiber membrane was about 5 g with an aqueous solution of dextran at a concentration of 300 g / m 3.
It was supplied at kg / cm 2 and a temperature of 25 ° C., and after 60 minutes, measurement was performed to obtain the dextran removal rate. The dextran removal rate was defined by the following equation. [1- (concentration of dextran in membrane permeate / concentration of dextran in feed stock solution]] × 100 (%)

【0043】次に、複合膜化の例を図2の工程に従って
説明する。多孔質中空糸膜4の走行速度は7m/分とし
た。ピペラジン2重量%、トリエチレンジアミン0.5
重量%、ラウリルスルホン酸ナトリウム0.1重量%を
純水に溶解したアミン水溶液1を作製し、この溶液に前
記の純水に浸漬した連続した多孔質中空糸膜4を3m浸
漬、通過させた。続いてこの多孔質中空糸膜4を75c
m空中走行させた後、トリメシン酸クロライド(以下T
MCと略す)1重量%をn−ヘキサンに溶解したTMC
/n−ヘキサン溶液2中をほぼ垂直に10cm通過させ
界面反応を生じさせた。第3液としてのフッ素系不活性
液体3(住友スリ−エム株式会社製フロリナ−トFC−
70)とTMC/n−ヘキサン溶液2との液々界面S1
を貫通させた後、フッ素系不活性液体3中を20cm通
過させた。この際、フッ素系不活性液体3とTMC/n
−ヘキサン溶液2との液々界面S1には重合膜は全く形
成されておらず、多孔質中空糸膜4の外表面でのみ界面
重合反応が生じているものと推察された。これらの工程
は室温(約25℃)で行われた。
Next, an example of forming a composite film will be described with reference to the steps of FIG. The traveling speed of the porous hollow fiber membrane 4 was 7 m / min. Piperazine 2% by weight, triethylenediamine 0.5
Wt% and 0.1 wt% of sodium laurylsulfonate were dissolved in pure water to prepare an amine aqueous solution 1, and the continuous porous hollow fiber membrane 4 dipped in the pure water was dipped and passed through this solution for 3 m. . Then, the porous hollow fiber membrane 4 was replaced with 75c.
After running in air, trimesic acid chloride (hereinafter T
(Abbreviated as MC) 1% by weight of TMC dissolved in n-hexane
/ N-Hexane solution 2 was passed vertically through 10 cm to cause an interfacial reaction. Fluorine-based inert liquid 3 as third liquid (Sumitomo 3M Fluorinert FC-
70) and liquid-liquid interface S1 between TMC / n-hexane solution 2
And then passed through the fluorine-based inert liquid 3 for 20 cm. At this time, the fluorine-based inert liquid 3 and TMC / n
No polymerized film was formed at the liquid-liquid interface S1 with the hexane solution 2, and it was speculated that the interfacial polymerization reaction occurred only on the outer surface of the porous hollow fiber membrane 4. These steps were performed at room temperature (about 25 ° C).

【0044】続いて多孔質中空糸膜4を50℃の乾燥塔
12内に1.5m通過させ、水洗槽14の水洗水15
(25℃の純水)中に3m浸漬、通過させた後、複合中
空糸膜を得た。得られた湿潤状態の複合中空糸膜を20
本束ねてループにし片端をホルダーに入れてエポキシ樹
脂で固め、中空糸を開口させ複合中空糸膜束有効長35
cm(膜面積132cm2 )のミニモジュールを得た。
この複合中空糸膜の性能を表1に示す。同じように特公
平1−38522号公報の実施例7にはピペラジンとト
リメシン酸クロライドとの界面重合により得られた複合
平膜の性能として塩(NaCl)除去率50%が示され
ている。評価圧力が13.6気圧と評価条件が異なる
が、本発明の実施例1の塩(NaCl)除去率はこれと
同等以上と見なせることより、本発明により多孔質中空
糸膜の外表面に界面重合による重合体薄膜が均一に形成
された複合中空糸膜が得られていると推察された。
Subsequently, the porous hollow fiber membrane 4 is passed through the drying tower 12 at 50 ° C. for 1.5 m, and the washing water 15 in the washing tank 14 is washed.
After being immersed in (pure water at 25 ° C.) for 3 m and passed through, a composite hollow fiber membrane was obtained. 20% of the obtained composite hollow fiber membrane in a wet state
Bundle this into a loop and put one end in a holder and harden it with epoxy resin, open the hollow fiber and let the composite hollow fiber membrane bundle effective length 35
cm (membrane area 132 cm 2 ) mini-module was obtained.
The performance of this composite hollow fiber membrane is shown in Table 1. Similarly, in Example 7 of Japanese Patent Publication No. 1-38522, a salt (NaCl) removal rate of 50% is shown as the performance of the composite flat membrane obtained by interfacial polymerization of piperazine and trimesic acid chloride. Although the evaluation pressure is 13.6 atm and the evaluation conditions are different, the salt (NaCl) removal rate of Example 1 of the present invention can be regarded as equal to or higher than this, so that the present invention provides an interface on the outer surface of the porous hollow fiber membrane. It was inferred that a composite hollow fiber membrane in which a polymer thin film was uniformly formed by polymerization was obtained.

【0045】なお、複合中空糸膜性能は次のようにして
求めた。上記複合中空糸膜ミニモジュ−ルに温度25℃
にてNaClの500g/m3 水溶液を複合中空糸膜の
外側に操作圧力5kg/cm2で供給して脱塩を行い、60分
後に測定を開始し透過水の単位膜面積あたりの透水量、
塩濃度を測定した。この場合の回収率すなわち供給水量
に対する透過水量の割合は5%以下と十分に小さいもの
であった。CaCl2の場合も同様にして求めた。な
お、塩除去率は次式で定義した。 〔1−(膜透過液中の塩の濃度/供給原液中の塩の濃
度)〕×100(%)
The composite hollow fiber membrane performance was determined as follows. The composite hollow fiber membrane mini-module has a temperature of 25 ° C.
At 500 kg / m 3 aqueous solution of NaCl is supplied to the outside of the composite hollow fiber membrane at an operating pressure of 5 kg / cm 2 for desalination, and measurement is started 60 minutes later to measure the permeated water per unit membrane area.
The salt concentration was measured. In this case, the recovery rate, that is, the ratio of the amount of permeated water to the amount of supplied water was 5% or less, which was sufficiently small. In the case of CaCl 2 , it was similarly determined. The salt removal rate was defined by the following equation. [1- (concentration of salt in membrane permeate / concentration of salt in feed stock solution)] × 100 (%)

【0046】また、得られた複合中空糸膜を常温で3昼
夜真空乾燥した後、試料0.1gにエチレングリコール
0.3mlを助燃剤として添加し、アルカリ吸収液20
mlが入った高圧酸素ボンブで燃焼し、液中のFイオン
をイオンクロマトグラフィーで定量した。その結果、乾
燥した複合中空糸膜の重量あたり215ppmのFが検
出され、複合中空糸膜にフッ素系化合物(フロリナ−ト
FC−70)の含有が確認された。
Further, the obtained composite hollow fiber membrane was vacuum dried at room temperature for 3 days and night, and then 0.3 ml of ethylene glycol was added as a combustion improver to 0.1 g of the sample to prepare an alkali absorbing solution 20.
After burning with a high-pressure oxygen bomb containing ml, F ions in the liquid were quantified by ion chromatography. As a result, 215 ppm of F was detected based on the weight of the dried composite hollow fiber membrane, and it was confirmed that the composite hollow fiber membrane contained a fluorine compound (Fluorinate FC-70).

【0047】実施例2 複合膜化の例を図3の工程に従って行い、第3液通過後
の酸捕捉剤水溶液として1重量%炭酸ナトリウム水溶液
を用いた以外は実施例1と同様にして複合中空糸膜を作
製し、性能評価を実施した。その性能を表1に示す。な
お、この複合中空糸膜中には200ppmのFが検出さ
れた。
Example 2 A composite hollow was prepared in the same manner as in Example 1 except that a composite membrane was formed according to the process shown in FIG. 3 and a 1 wt% sodium carbonate aqueous solution was used as the acid scavenger aqueous solution after passing through the third liquid. A thread film was prepared and the performance was evaluated. The performance is shown in Table 1. In this composite hollow fiber membrane, 200 ppm of F was detected.

【0048】実施例3 複合膜化の例を図4の工程に従って行い、アミン水溶液
浸漬後の多孔質中空糸膜表面の過剰アミン水溶液を第3
液により除去を行った以外は実施例1と同様にして複合
中空糸膜を作製し、性能評価を実施した。なお、第3液
としてフッ素系不活性液体(住友スリーエム株式会社製
フロリナートFC−70)を用い、20cm通過させ
た。その性能を表1に示す。なお、この複合中空糸膜中
には331ppmのFが検出された。
Example 3 An example of forming a composite membrane was performed according to the process shown in FIG. 4, and the excess amine aqueous solution on the surface of the porous hollow fiber membrane after immersion in the amine aqueous solution was treated with a third solution.
A composite hollow fiber membrane was prepared in the same manner as in Example 1 except that the removal was performed with a liquid, and the performance was evaluated. As the third liquid, a fluorine-based inert liquid (Fluorinert FC-70 manufactured by Sumitomo 3M Limited) was used and passed through it for 20 cm. The performance is shown in Table 1. 331 ppm of F was detected in this composite hollow fiber membrane.

【0049】実施例4 複合膜化の例を図2の工程に従って行い、アミン水溶液
浸漬後の多孔質中空糸膜表面の過剰アミン水溶液を乾燥
筒により除去を行った以外は実施例1と同様にして複合
中空糸膜を作製し、性能評価を実施した。なお、乾燥条
件としては温度40℃の乾燥筒を2m通過させた。その
性能を表1に示す。なお、この複合中空糸膜中には17
0ppmのFが検出された。
Example 4 Example 4 was carried out in the same manner as in Example 1 except that an example of forming a composite membrane was performed according to the process shown in FIG. 2 and the excess amine aqueous solution on the surface of the porous hollow fiber membrane after immersion of the amine aqueous solution was removed by a drying cylinder. A composite hollow fiber membrane was produced in this way, and the performance was evaluated. As a drying condition, a drying cylinder having a temperature of 40 ° C. was passed through for 2 m. The performance is shown in Table 1. In this composite hollow fiber membrane, 17
0 ppm of F was detected.

【0050】実施例5 紡糸原液のポリスルホン濃度、ポリエチレングリコー
ル、DMAcの濃度がそれぞれ29重量%、23.2重
量%、47.3重量%であり、紡糸原液吐出流量、芯ガ
ス流量、紡糸速度、エアーギャップの長さ、凝固液のD
MAc濃度がそれぞれ、0.54cm3 /分、0.86
cm3 /分、30m/分、1cm、30重量%である以
外は実施例1と同様の製法で、連続した多孔質中空糸膜
を得た。この多孔質中空糸膜を実施例1と同様にして評
価した結果、純水透過量は0.77m3 /(m2・日・(kg/c
m2))、デキストランの除去率は88.8%であった。
Example 5 The concentrations of polysulfone, polyethylene glycol and DMAc in the spinning dope were 29% by weight, 23.2% by weight and 47.3% by weight respectively, and the spinning dope discharge flow rate, core gas flow rate, spinning speed, Air gap length, coagulation liquid D
MAc concentrations of 0.54 cm 3 / min and 0.86, respectively
A continuous porous hollow fiber membrane was obtained by the same production method as in Example 1 except that the content was cm 3 / min, 30 m / min, 1 cm, and 30% by weight. When this porous hollow fiber membrane was evaluated in the same manner as in Example 1, the pure water permeation rate was 0.77 m 3 / (m 2 · day · (kg / c
The removal rate of m 2 )) and dextran was 88.8%.

【0051】複合膜化の例を図6の工程に従って行っ
た。多孔質中空糸膜4の走行速度は1m/分である。実
施例1と同様にして多孔質中空糸膜4をアミン水に含浸
させた。続いてこの多孔質中空糸膜4を40cm空中走
行させた後、第3液としてのフッ素系不活性液体3(住
友スリーエム株式会社製フロリナートFC−70)中を
20cm通過させ、TMC1重量%をn−ヘキサンに溶
解したTMC/n−ヘキサン溶液2とこのフッ素系不活
性液体3との液々界面S1を貫通させた後このTMC/
n−ヘキサン溶液2中を10cm通過させ界面反応を生
じさせた。この際、フッ素系不活性液体3とTMC/n
−ヘキサン溶液2との液々界面S1には重合膜は全く形
成されておらず、多孔質中空糸膜4の外表面でのみ界面
重合反応が生じているものと推察された。これらの工程
は室温(約20℃)で行われた。続いて多孔質中空糸膜
4を50℃の乾燥塔12内に3m通過させ、以下、実施
例1と同様の処理、性能評価を行って得られた性能を表
1に示す。なお、この複合中空糸膜中には375ppm
のFが検出された。
An example of forming a composite film was performed according to the process shown in FIG. The running speed of the porous hollow fiber membrane 4 is 1 m / min. In the same manner as in Example 1, the porous hollow fiber membrane 4 was impregnated with amine water. Subsequently, this porous hollow fiber membrane 4 was run in the air for 40 cm, and then passed through a fluorine-based inert liquid 3 (Fluorinert FC-70 manufactured by Sumitomo 3M Co., Ltd.) as a third liquid for 20 cm, and 1% by weight of TMC was n. After the liquid-liquid interface S1 between the TMC / n-hexane solution 2 dissolved in -hexane and the fluorine-based inert liquid 3 is penetrated, the TMC /
An interface reaction was caused by passing through the n-hexane solution 2 for 10 cm. At this time, the fluorine-based inert liquid 3 and TMC / n
No polymerized film was formed at the liquid-liquid interface S1 with the hexane solution 2, and it was speculated that the interfacial polymerization reaction occurred only on the outer surface of the porous hollow fiber membrane 4. These steps were performed at room temperature (about 20 ° C). Subsequently, the porous hollow fiber membrane 4 was passed through the drying tower 12 at 50 ° C. for 3 m, and the same treatment and performance evaluation as in Example 1 were performed, and the performance obtained is shown in Table 1. In this composite hollow fiber membrane, 375 ppm
F was detected.

【0052】比較例1 実施例1に従って多孔質中空糸膜を作製し、第3液を用
いない図8に示すフロ−の工程で複合中空糸膜を作製し
た。実施例1と異なる部分を説明する。多孔質中空糸膜
4をアミン水溶液1に3m浸漬、通過させ、続いてこの
多孔質中空糸膜4を75cm空中走行させた後、TMC
/n−ヘキサン溶液2中を10cm通過させ界面重合反
応を生じさせた後、50℃の乾燥筒12を通過させ、そ
れ以降は実施例1と同様に処理し、実施例1と同様に性
能評価を実施した。その性能を表1に示す。実施例1に
比較して分離性能、すなわち塩除去率は低い結果であっ
た。なお、この複合中空糸膜中にはFは検出されなかっ
た。この方法において、TMC/n−ヘキサン溶液2中
では、多孔質中空糸膜外表面上で界面重合膜が形成され
ると共に、駆動ローラー7’、7と多孔質中空糸外表面
4とが接触するため、形成された重合体薄膜は剥離する
など損傷を受けているためと推察された。
Comparative Example 1 A porous hollow fiber membrane was prepared according to Example 1, and a composite hollow fiber membrane was prepared by the process shown in FIG. 8 in which the third liquid was not used. The part different from the first embodiment will be described. The porous hollow fiber membrane 4 was immersed in the amine aqueous solution 1 for 3 m and allowed to pass therethrough, and then the porous hollow fiber membrane 4 was run in the air for 75 cm.
/ N-hexane solution 2 was passed through 10 cm to cause an interfacial polymerization reaction, and then passed through a drying cylinder 12 at 50 ° C., and thereafter, treated in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Was carried out. The performance is shown in Table 1. Compared to Example 1, the separation performance, that is, the salt removal rate was low. In addition, F was not detected in this composite hollow fiber membrane. In this method, in the TMC / n-hexane solution 2, an interfacial polymerized film is formed on the outer surface of the porous hollow fiber membrane, and the driving rollers 7 ′, 7 and the outer surface 4 of the porous hollow fiber are in contact with each other. Therefore, it is speculated that the formed polymer thin film is damaged such as peeling off.

【0053】比較例2 実施例5に従って多孔質中空膜を作製し、第3液を用い
ない図8に示すフロ−の工程で複合中空糸膜を作製し
た。実施例5と異なる部分を説明する。多孔質中空糸膜
4をアミン水溶液1に3m浸漬、通過させ、続いてこの
多孔質中空糸膜4を40cm空中走行させた後、TMC
/n−ヘキサン溶液2中を10cm通過させ界面重合反
応を生じさせた後、50℃の乾燥筒12を通過させ、そ
れ以降は実施例5と同様に処理し、性能評価を実施し
た。その性能を表1に示す。実施例5に比較して分離性
能、すなわち塩除去率は低い結果であった。なお、この
複合中空糸膜中にはFは検出されなかった。この方法に
おいて、TMC/n−ヘキサン溶液2中では、多孔質中
空糸膜外表面上で界面重合膜が形成されると共に、駆動
ローラー7’、7と多孔質中空糸外表面4とが接触する
ため、形成された重合体薄膜は剥離するなど損傷を受け
ているためと推察された。
Comparative Example 2 A porous hollow membrane was produced according to Example 5, and a composite hollow fiber membrane was produced by the flow step shown in FIG. 8 without using the third liquid. The part different from the fifth embodiment will be described. The porous hollow fiber membrane 4 was immersed in the amine aqueous solution 1 for 3 m and allowed to pass therethrough, and then the porous hollow fiber membrane 4 was run in the air for 40 cm, and then the TMC was used.
After passing through the / n-hexane solution 2 for 10 cm to cause an interfacial polymerization reaction, it was passed through a drying cylinder 12 at 50 ° C., and thereafter, the same treatment as in Example 5 was carried out to evaluate the performance. The performance is shown in Table 1. As a result, the separation performance, that is, the salt removal rate was lower than that of Example 5. In addition, F was not detected in this composite hollow fiber membrane. In this method, in the TMC / n-hexane solution 2, an interfacial polymerized film is formed on the outer surface of the porous hollow fiber membrane, and the driving rollers 7 ′, 7 and the outer surface 4 of the porous hollow fiber are in contact with each other. Therefore, it is speculated that the formed polymer thin film is damaged such as peeling off.

【0054】比較例3 実施例5に従って多孔質中空糸膜を作製し、第3液を用
いない図9に示すフロ−の工程で複合中空糸膜を作製し
た。実施例5と異なる部分を説明する。多孔質中空糸膜
4をアミン水溶液1に3m浸漬、通過させ、続いてこの
多孔質中空糸膜4を40cm空中走行させた後、再度ア
ミン水溶液1中を20cm浸漬、通過させ、アミン水溶
液1とTMC/n−ヘキサン溶液2の液々界面S4を貫
通させた。この液々界面S4では界面重合反応によると
推察される重合体薄膜が形成されていた。続いて、TM
C/n−ヘキサン溶液2中を10cm通過させて、50
℃の乾燥筒12を通過させ、それ以降は実施例5と同様
に処理し、性能評価を実施した。その性能を表1に示
す。実施例5に比べ分離性能すなわち塩除去率は低い結
果であった。なお、この複合中空糸膜中にはFは検出さ
れなかった。この方法においては、第3液を用いていな
いため、アミン水溶液とTMC/n−ヘキサン溶液の液
々界面S4に界面重合による重合体薄膜が形成し、複合
膜化操作時間の経過とともにその厚みが増加し、多孔質
中空糸膜外表面への重合体薄膜の形成を阻害するため、
分離性能、すなわち塩除去率は低いものと推察される。
Comparative Example 3 A porous hollow fiber membrane was produced according to Example 5, and a composite hollow fiber membrane was produced by the process shown in FIG. 9 in which the third liquid was not used. The part different from the fifth embodiment will be described. The porous hollow fiber membrane 4 was immersed in the amine aqueous solution 1 for 3 m and allowed to pass therethrough, and then the porous hollow fiber membrane 4 was run in the air for 40 cm, and then immersed again in the amine aqueous solution 1 for 20 cm to pass therethrough to obtain the amine aqueous solution 1. The liquid-liquid interface S4 of the TMC / n-hexane solution 2 was penetrated. At the liquid-liquid interface S4, a polymer thin film presumed to be due to an interfacial polymerization reaction was formed. Then TM
After passing through C / n-hexane solution 2 for 10 cm, 50
After passing through the drying cylinder 12 at ℃, after that, the same treatment as in Example 5 was carried out, and the performance evaluation was carried out. The performance is shown in Table 1. The separation performance, that is, the salt removal rate, was lower than that in Example 5. In addition, F was not detected in this composite hollow fiber membrane. In this method, since the third liquid is not used, a polymer thin film is formed by interfacial polymerization at the liquid / liquid interface S4 of the amine aqueous solution and the TMC / n-hexane solution, and the thickness of the polymer thin film changes with the elapse of the composite film forming operation time. Increase and inhibit the formation of a polymer thin film on the outer surface of the porous hollow fiber membrane,
It is assumed that the separation performance, that is, the salt removal rate is low.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【発明の効果】本発明の複合中空糸膜は、多孔質中空糸
膜の外表面に界面重合法によりポリアミド系重合体薄膜
を連続的に安定に形成したものであり、透過性能、分離
性能に優れた複合中空糸膜である。従って、本発明の複
合中空糸膜は、逆浸透膜としては、かん水、海水等の脱
塩による淡水化や半導体の製造に用いられる超純水の製
造、ナノ濾過膜としては、小型純水製造機器、浄水器用
途、高度浄水器用途、有価物の回収用途、排水処理用途
などの様々な分野で用いることができる。
EFFECT OF THE INVENTION The composite hollow fiber membrane of the present invention comprises a porous hollow fiber membrane on the outer surface of which a polyamide polymer thin film is continuously and stably formed by an interfacial polymerization method. It is an excellent composite hollow fiber membrane. Therefore, the composite hollow fiber membrane of the present invention is used as a reverse osmosis membrane for desalination by desalting brine, seawater, etc., for producing ultrapure water used for semiconductor production, and for a nanofiltration membrane, for producing small pure water. It can be used in various fields such as equipment, water purifier use, advanced water purifier use, valuables recovery use, wastewater treatment use, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】製法Iにおいて、比重の大小関係が第2溶液<
第3液の場合の多孔質中空糸膜への各液の接触方法の一
例のモデル図を示す。
FIG. 1 shows the relationship between the specific gravity and the second solution in Manufacturing Method I.
The model figure of an example of the contact method of each liquid to a porous hollow fiber membrane in the case of a 3rd liquid is shown.

【図2】製法Iにおいて、第2溶液と第3液とが液々界
面を形成している場合の複合膜化工程の一例の概略フロ
−を示す。
FIG. 2 is a schematic flow chart showing an example of a composite film formation step in the case where the second solution and the third solution form a liquid-liquid interface in the production method I.

【図3】製法Iにおいて、第3液通過後、酸捕捉剤水溶
液の浸漬を行った場合の多孔質中空糸膜への各液の接触
方法の一例のモデル図を示す。
FIG. 3 is a model diagram showing an example of a method of contacting each liquid with the porous hollow fiber membrane when the aqueous solution of the acid scavenger is immersed in the production method I after passing through the third liquid.

【図4】製法Iにおいて、第1溶液浸漬後の多孔質中空
糸膜表面の過剰な第1溶液を第3液により除去を行った
場合の複合膜化工程の一例の概略フロ−を示す。
FIG. 4 is a schematic flow chart showing an example of a composite membrane-forming step in the case where the excess first solution on the surface of the porous hollow fiber membrane after immersion in the first solution is removed by the third solution in the production method I.

【図5】製法IIにおいて、比重の大小関係が第2溶液<
第1溶液<第3液の場合の多孔質中空糸膜への各液の接
触方法の一例のモデル図を示す。
FIG. 5: In Manufacturing Method II, the magnitude relationship between specific gravities is the second solution <
The model figure of an example of the contact method of each liquid to a porous hollow fiber membrane in case of 1st solution <3rd liquid is shown.

【図6】製法IIにおいて、第2溶液と第3液とが液々界
面を形成している場合の複合膜化工程の一例の概略フロ
−を示す。
FIG. 6 shows a schematic flow of an example of a composite film forming step in the case where the second solution and the third solution form a liquid-liquid interface in the production method II.

【図7】製法IIにおいて、比重の大小関係が第2溶液<
第3液<第1溶液の場合の多孔質中空糸膜への各液の接
触方法の一例のモデル図を示す。
FIG. 7: In Manufacturing Method II, the magnitude relationship between specific gravities is that of the second solution <
The model figure of an example of the contact method of each liquid to the porous hollow fiber membrane in case of 3rd liquid <1st solution is shown.

【図8】比較例1および2での複合膜化工程の概略フロ
−を示す。
FIG. 8 shows a schematic flow chart of a composite film forming process in Comparative Examples 1 and 2.

【図9】比較例3での複合膜化工程の概略フロ−を示
す。
FIG. 9 shows a schematic flow chart of a composite film forming step in Comparative Example 3.

【符号の説明】[Explanation of symbols]

1:第1溶液(アミン水溶液) 2:第2溶液(TMC/n−ヘキサン溶液) 3:第3液 (フッ素系不活性液体) 4:多孔質中空糸膜 5:溶液槽 6:仕切 7、7’:駆動ローラー 8、8’9、9’:駆動ローラー 10:第1溶液槽 11:多孔質中空糸膜供給槽 12:乾燥筒 13、13’:駆動ローラー 14:水洗槽 15:水洗水 16、16’:駆動ローラー 17、17’:駆動ローラー 18:複合中空糸膜受入槽 19、19’:駆動ローラー 20:酸捕捉剤水溶液 21:第3液槽 22:駆動ロ−ラ− S1:第2溶液と第3液の界面 S2:酸捕捉剤水溶液と第3液の界面 S3:第1溶液と第3液の界面 S4:第1溶液と第2溶液の界面 ( )内は実施例および比較例における説明 1: First solution (amine aqueous solution) 2: Second solution (TMC / n-hexane solution) 3: Third solution (fluorine-based inert liquid) 4: Porous hollow fiber membrane 5: Solution tank 6: Partition 7, 7 ': Drive roller 8, 8'9, 9': Drive roller 10: First solution tank 11: Porous hollow fiber membrane supply tank 12: Drying cylinder 13, 13 ': Drive roller 14: Wash tank 15: Wash water 16, 16 ': Driving roller 17, 17': Driving roller 18: Composite hollow fiber membrane receiving tank 19, 19 ': Driving roller 20: Acid scavenger aqueous solution 21: Third liquid tank 22: Driving roller S1: Interface between second solution and third solution S2: Interface between aqueous solution of acid scavenger and third solution S3: Interface between first solution and third solution S4: Interface between first solution and second solution Explanation in comparative example

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 多孔質中空糸膜と該多孔質中空糸膜の外
表面を被覆するポリアミド系重合体薄膜からなる複合中
空糸膜において、該複合中空糸膜がフッ素化合物を含有
していることを特徴とする複合中空糸膜。
1. A composite hollow fiber membrane comprising a porous hollow fiber membrane and a polyamide polymer thin film coating the outer surface of the porous hollow fiber membrane, wherein the composite hollow fiber membrane contains a fluorine compound. A composite hollow fiber membrane characterized by:
【請求項2】 請求項1に記載の複合中空糸膜であっ
て、フッ素化合物がパーフルオロ化合物および/または
パーフルオロアルキル基を有する化合物であることを特
徴とする複合中空糸膜。
2. The composite hollow fiber membrane according to claim 1, wherein the fluorine compound is a perfluoro compound and / or a compound having a perfluoroalkyl group.
【請求項3】 請求項1または2に記載の複合中空糸膜
であって、フッ素化合物の含有量が複合中空糸膜の重量
あたりのフッ素量として1〜1000ppmであること
を特徴とする複合中空糸膜。
3. The composite hollow fiber membrane according to claim 1 or 2, wherein the content of the fluorine compound is 1 to 1000 ppm as the amount of fluorine per weight of the composite hollow fiber membrane. Thread film.
【請求項4】 請求項1〜3のいずれかに記載の複合中
空糸膜であって、該ポリアミド系重合体が架橋ポリアミ
ド系重合体であることを特徴とする複合中空糸膜。
4. The composite hollow fiber membrane according to claim 1, wherein the polyamide-based polymer is a crosslinked polyamide-based polymer.
【請求項5】 請求項1〜4のいずれかに記載の複合中
空糸膜であって、該多孔質中空糸膜の素材がポリスルホ
ン系重合体からなることを特徴とする複合中空糸膜。
5. The composite hollow fiber membrane according to claim 1, wherein the material of the porous hollow fiber membrane is a polysulfone polymer.
【請求項6】 請求項1〜5のいずれかに記載の複合中
空糸膜であって、操作圧力5kg/cm2、温度25℃、pH
6における透水量が0.5m3 /m2 ・日以上であり、
かつ0.05重量%の食塩水の食塩除去率が50%以上
の性能を有することを特徴とする複合中空糸膜。
6. The composite hollow fiber membrane according to claim 1, which has an operating pressure of 5 kg / cm 2 , a temperature of 25 ° C., and a pH.
The water permeability in 6 is 0.5 m 3 / m 2 · day or more,
A composite hollow fiber membrane characterized by having a salt removal rate of 0.05% by weight of saline solution of 50% or more.
【請求項7】 請求項1〜6のいずれかに記載の複合中
空糸膜の製造方法であって、2つ以上の反応性のアミノ
基を有し少なくとも1種類からなる多官能性化合物Aを
含む第1溶液と、少なくとも1種類の多官能性酸ハロゲ
ン化物からなる多官能性化合物Bを含み該第1溶液と実
質的に非混合性の第2溶液に順次、該多孔質中空糸膜を
接触させ、該多孔質中空糸膜の外表面に該多官能性化合
物A,Bを相互に界面重合させて薄膜を形成し連続した
複合中空糸膜を製造するにあたり、該多孔質中空糸膜
を、該第1溶液から続いて該第2溶液に接触させた後
に、該第2溶液と実質的に非混合性であって、フッ素化
合物を含む第3液に少なくとも1カ所接触させることを
特徴とする複合中空糸膜の製造方法。
7. The method for producing a composite hollow fiber membrane according to claim 1, wherein the polyfunctional compound A having at least two reactive amino groups and comprising at least one type is used. A first solution containing the first hollow fiber membrane and a second solution containing a polyfunctional compound B composed of at least one polyfunctional acid halide and substantially immiscible with the first solution, and the porous hollow fiber membranes in order. The porous hollow fiber membranes are contacted with each other to form a thin film by interfacially polymerizing the polyfunctional compounds A and B on the outer surface of the porous hollow fiber membranes to produce a continuous composite hollow fiber membrane. And, after contacting the second solution with the first solution, contacting at least one location with a third solution that is substantially immiscible with the second solution and contains a fluorine compound. A method for producing a composite hollow fiber membrane.
【請求項8】 請求項1〜6のいずれかに記載の複合中
空糸膜の製造方法であって、2つ以上の反応性のアミノ
基を有し少なくとも1種類からなる多官能性化合物Aを
含む第1溶液と、少なくとも1種類の多官能性酸ハロゲ
ン化物からなる多官能性化合物Bを含み該第1溶液と実
質的に非混合性の第2溶液に順次、該多孔質中空糸膜を
接触させ、該多孔質中空糸膜の外表面に該多官能性化合
物A,Bを相互に界面重合させて薄膜を形成し連続した
複合中空糸膜を製造するにあたり、該多孔質中空糸膜
を、該第1溶液から続いて該第2溶液に接触させる間
に、該第1溶液と該第2溶液のどちらにも実質的に非混
合性であって、フッ素化合物を含む第3液に少なくとも
1カ所接触させることを特徴とする複合中空糸膜の製造
方法。
8. The method for producing a composite hollow fiber membrane according to claim 1, wherein the polyfunctional compound A having at least two reactive amino groups and comprising at least one type is used. A first solution containing the first hollow fiber membrane and a second solution containing a polyfunctional compound B composed of at least one polyfunctional acid halide and substantially immiscible with the first solution, and the porous hollow fiber membranes in order. The porous hollow fiber membranes are contacted with each other to form a thin film by interfacially polymerizing the polyfunctional compounds A and B on the outer surface of the porous hollow fiber membranes to produce a continuous composite hollow fiber membrane. , At least a third liquid containing a fluorine compound that is substantially immiscible with both the first and second solutions during contacting the first solution with the second solution. A method for producing a composite hollow fiber membrane, which comprises contacting at one location.
【請求項9】 請求項7または8に記載の製造方法にお
いて、該第2溶液と該第3液とが液々界面を形成してい
ることを特徴とする複合中空糸膜の製造方法。
9. The method for producing a composite hollow fiber membrane according to claim 7 or 8, wherein the second solution and the third solution form a liquid-liquid interface.
【請求項10】 請求項8に記載の製造方法において、
該第1溶液と該第3液とが液々界面を形成していること
を特徴とする複合中空糸膜の製造方法。
10. The manufacturing method according to claim 8,
A method for producing a composite hollow fiber membrane, wherein the first solution and the third solution form a liquid-liquid interface.
【請求項11】 請求項7に記載の製造方法において、
該第3液が該第1溶液及び該第2溶液と実質的に非混合
性であることを特徴とする複合中空糸膜の製造方法。
11. The manufacturing method according to claim 7, wherein
A method for producing a composite hollow fiber membrane, wherein the third liquid is substantially immiscible with the first solution and the second solution.
【請求項12】 請求項7または8に記載の製造方法に
おいて、該第1溶液を接触させた後該多孔質中空糸膜表
面上の過剰な該第1溶液を除去する手段を設けたことを
特徴とする複合中空糸膜の製造方法。
12. The method according to claim 7 or 8, further comprising means for removing an excess of the first solution on the surface of the porous hollow fiber membrane after contacting the first solution. A method for producing a composite hollow fiber membrane characterized.
JP08705495A 1994-08-29 1995-04-12 Composite hollow fiber membrane and method for producing the same Expired - Lifetime JP3250644B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP08705495A JP3250644B2 (en) 1995-04-12 1995-04-12 Composite hollow fiber membrane and method for producing the same
US08/516,460 US5783079A (en) 1994-08-29 1995-08-17 Composite hollow fiber membrane and process for its production
FR9510163A FR2723856B1 (en) 1994-08-29 1995-08-29 COMPOSITE HOLLOW FIBER MEMBRANE AND PROCESS FOR ITS MANUFACTURE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08705495A JP3250644B2 (en) 1995-04-12 1995-04-12 Composite hollow fiber membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08281085A true JPH08281085A (en) 1996-10-29
JP3250644B2 JP3250644B2 (en) 2002-01-28

Family

ID=13904235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08705495A Expired - Lifetime JP3250644B2 (en) 1994-08-29 1995-04-12 Composite hollow fiber membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP3250644B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038162A (en) * 1999-08-04 2001-02-13 Toyobo Co Ltd Membrane module
JP2001038175A (en) * 1999-05-27 2001-02-13 Toyobo Co Ltd Composite semipermeable membrane
WO2001097957A1 (en) * 2000-06-23 2001-12-27 Lg Chemical Co. Ltd. Multi-component composite membrane and method for preparing the same
JP2002095938A (en) * 2000-09-21 2002-04-02 Toyobo Co Ltd Composite semipermeable membrane, its manufacturing method, and composite semipermeable membrane separation element having it built-in
JP2009269028A (en) * 2009-07-03 2009-11-19 Toyobo Co Ltd Composite semi-permeable membrane and method for manufacturing the same
WO2018221684A1 (en) * 2017-06-01 2018-12-06 東レ株式会社 Gas separation membrane, gas separation membrane element, gas separator, and gas separation method
WO2021231704A1 (en) * 2020-05-14 2021-11-18 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes
US12116326B2 (en) 2021-11-22 2024-10-15 Saudi Arabian Oil Company Conversion of hydrogen sulfide and carbon dioxide into hydrocarbons using non-thermal plasma and a catalyst

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578300B1 (en) 2012-10-04 2014-08-27 東洋紡株式会社 Composite separation membrane
US10780403B2 (en) 2015-10-13 2020-09-22 Toyobo Co., Ltd. Composite separation membrane
JP6843162B2 (en) 2016-06-27 2021-03-17 インテグリス・インコーポレーテッド Highly retentive polyamide hollow fiber membrane manufactured by controlled shrinkage
US11260351B2 (en) 2020-02-14 2022-03-01 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems
US11406941B2 (en) 2020-02-14 2022-08-09 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems
US11331632B2 (en) 2020-02-14 2022-05-17 Saudi Arabian Oil Company Thin film composite hollow fiber membranes fabrication systems

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038175A (en) * 1999-05-27 2001-02-13 Toyobo Co Ltd Composite semipermeable membrane
JP2001038162A (en) * 1999-08-04 2001-02-13 Toyobo Co Ltd Membrane module
WO2001097957A1 (en) * 2000-06-23 2001-12-27 Lg Chemical Co. Ltd. Multi-component composite membrane and method for preparing the same
US7087269B2 (en) 2000-06-23 2006-08-08 Lg Chemical Co., Ltd. Multi-component composite membrane and method for preparing the same
JP2002095938A (en) * 2000-09-21 2002-04-02 Toyobo Co Ltd Composite semipermeable membrane, its manufacturing method, and composite semipermeable membrane separation element having it built-in
JP2009269028A (en) * 2009-07-03 2009-11-19 Toyobo Co Ltd Composite semi-permeable membrane and method for manufacturing the same
WO2018221684A1 (en) * 2017-06-01 2018-12-06 東レ株式会社 Gas separation membrane, gas separation membrane element, gas separator, and gas separation method
JPWO2018221684A1 (en) * 2017-06-01 2020-03-26 東レ株式会社 Gas separation membrane, gas separation membrane element, gas separation device and gas separation method
WO2021231704A1 (en) * 2020-05-14 2021-11-18 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes
US11253819B2 (en) 2020-05-14 2022-02-22 Saudi Arabian Oil Company Production of thin film composite hollow fiber membranes
US12116326B2 (en) 2021-11-22 2024-10-15 Saudi Arabian Oil Company Conversion of hydrogen sulfide and carbon dioxide into hydrocarbons using non-thermal plasma and a catalyst

Also Published As

Publication number Publication date
JP3250644B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
US5783079A (en) Composite hollow fiber membrane and process for its production
US10974206B2 (en) Composite semipermeable membrane
EP2595732B1 (en) Interfacial polymerisation process to obtain a solvent resistant nanofiltration membrane
JP6146303B2 (en) Composite semipermeable membrane and method for producing the same
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
JP3250644B2 (en) Composite hollow fiber membrane and method for producing the same
EP0489746A1 (en) HIGH FLOW SEMI-PERMEABLE MEMBRANES.
KR101394317B1 (en) High flux reverse osmosis membrane comprising carbodiimide compound and manufacturing method thereof
JPWO2020059769A1 (en) Forward osmosis membrane and membrane module containing it
KR101659122B1 (en) Polyamide water-treatment membranes having properies of high salt rejection and high flux and manufacturing method thereof
JP2001179061A (en) Composite semipermeable membrane and manufacturing method thereof
KR102212132B1 (en) Separation membrane, composition for active layer of separation membrane, and method for separation membrane
CN113226527A (en) Composite semipermeable membrane
JP5030192B2 (en) Manufacturing method of composite semipermeable membrane
JPH07284639A (en) Production of composite hollow membrane
JP3985387B2 (en) Method for producing composite semipermeable membrane
JP2000202256A (en) Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane
JPH0866625A (en) Production of composite hollow fiber membrane
JPH0938474A (en) Production of composite film and producing device therefor
JP2015123394A (en) Composite semipermeable membrane and method of producing the same
KR20000051528A (en) Method for the perparation of the high flux reverse osmosis membrane
JP3536501B2 (en) Method and apparatus for producing composite semipermeable membrane
JP2014188407A (en) Composite semipermeable membrane
JP2000300972A (en) Manufacture of composite hollow fiber membrane, composite hollow fiber membrane manufacturing device, and composite hollow fiber membrane
JP3588886B2 (en) Method and apparatus for producing composite reverse osmosis membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

EXPY Cancellation because of completion of term