[go: up one dir, main page]

JPH08304075A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JPH08304075A
JPH08304075A JP7105498A JP10549895A JPH08304075A JP H08304075 A JPH08304075 A JP H08304075A JP 7105498 A JP7105498 A JP 7105498A JP 10549895 A JP10549895 A JP 10549895A JP H08304075 A JPH08304075 A JP H08304075A
Authority
JP
Japan
Prior art keywords
electrode
angular velocity
tuning fork
piezoelectric body
velocity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7105498A
Other languages
Japanese (ja)
Other versions
JP3399150B2 (en
Inventor
Masami Tamura
雅巳 田村
Jiro Terada
二郎 寺田
Masayoshi Murakami
昌良 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10549895A priority Critical patent/JP3399150B2/en
Publication of JPH08304075A publication Critical patent/JPH08304075A/en
Application granted granted Critical
Publication of JP3399150B2 publication Critical patent/JP3399150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

(57)【要約】 【目的】 本発明は角速度センサにおいて検知精度の低
下を防止することを目的とするものである。 【構成】 本発明は圧電体3と、この圧電体3に設けた
検知電極7,8および駆動電極6と、前記駆動電極6に
接続された第1の電源とを備え、前記圧電体3にキャン
セル電極を設けると共にこのキャンセル電極には前記第
1の電源から駆動電極に供給される信号とは位相がほぼ
180度異なる信号を供給する第2の電源を接続したも
のである。
(57) [Summary] [Object] An object of the present invention is to prevent deterioration of detection accuracy in an angular velocity sensor. The present invention includes a piezoelectric body 3, detection electrodes 7 and 8 and a drive electrode 6 provided on the piezoelectric body 3, and a first power source connected to the drive electrode 6, A cancel electrode is provided, and the cancel electrode is connected to a second power supply that supplies a signal having a phase difference of approximately 180 degrees from the signal supplied from the first power supply to the drive electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はカーナビゲーションや車
姿勢制御用などに用いられる角速度センサに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an angular velocity sensor used for car navigation and vehicle attitude control.

【0002】[0002]

【従来の技術】この種、角速度センサとして振動型のも
のは音叉形状をした圧電体に検知電極と駆動電極を設け
ており、前記駆動電極に電源から信号を供給することに
より前記圧電体を振動させ、この振動時において角速度
が加わるとコリオリ力により前記振動方向とは直交する
方向に圧電体が湾曲し、そのときに発生する電荷を検知
電極を介して導出する様に構成していた。
2. Description of the Related Art This type of vibrating angular velocity sensor has a tuning-fork-shaped piezoelectric body provided with a detection electrode and a drive electrode, and vibrates the piezoelectric body by supplying a signal from a power source to the drive electrode. When the angular velocity is applied during this vibration, the Coriolis force causes the piezoelectric body to bend in a direction orthogonal to the vibration direction, and the electric charge generated at that time is derived through the detection electrode.

【0003】[0003]

【発明が解決しようとする課題】上記従来の角速度セン
サでは、前記駆動電極から前記圧電体に供給される信号
の1部が前記駆動電極に対して容量結合してしまった検
知電極に流入してしまい、その結果、検知精度が低下し
てしまうという問題があった。すなわち、誘電体でもあ
る圧電体には上述の如く検知電極と駆動電極が設けられ
ているので両者間を少々離しても容量結合は避けられ
ず、どうしても前記駆動電極からの信号の一部が前記検
知電極側に誘電的に流入してしまうものであった。
In the conventional angular velocity sensor described above, a part of the signal supplied from the drive electrode to the piezoelectric body flows into the detection electrode that is capacitively coupled to the drive electrode. As a result, there is a problem that the detection accuracy is lowered. That is, since the piezoelectric body, which is also a dielectric body, is provided with the detection electrode and the drive electrode as described above, capacitive coupling cannot be avoided even if the two are separated from each other. It would flow into the sensing electrode dielectrically.

【0004】本発明の角速度センサは、検知精度を高め
ることを目的とするものである。
The angular velocity sensor of the present invention is intended to improve the detection accuracy.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明は、圧電体と、この圧電体に設けた検知電極お
よび駆動電極と、前記駆動電極に接続された第1の電源
とを備え、前記圧電体にキャンセル電極を設けると共に
このキャンセル電極には前記第1の電源から駆動電極に
供給される信号とは位相がほぼ180度異なる信号を供
給する第2の電源を接続したものである。
To achieve this object, the present invention provides a piezoelectric body, a detection electrode and a drive electrode provided on the piezoelectric body, and a first power source connected to the drive electrode. The piezoelectric body is provided with a cancel electrode, and the cancel electrode is connected to a second power supply for supplying a signal having a phase difference of approximately 180 degrees from the signal supplied from the first power supply to the drive electrode. is there.

【0006】[0006]

【作用】以上の構成とすると、前記第1の電源から前記
駆動電極に供給される信号に対して前記第2の電源から
前記キャンセル電極に供給される信号がほぼ180度位
相が異なるので、前記駆動電極から前記検知電極に誘電
的に流入しようとする信号は前記キャンセル電極から前
記検知電極に誘電的に流入しようとする信号によってキ
ャンセルされることとなり、この結果、前記検知電極は
これら第1、第2の電源による信号の影響を受けず、角
速度に基づく信号を正しく導出することとなり、その検
知精度は極めて高くなるのである。
With the above arrangement, the signal supplied from the second power supply to the cancel electrode is approximately 180 degrees out of phase with the signal supplied from the first power supply to the drive electrode. A signal that tries to inductively flow from the drive electrode to the sensing electrode is canceled by a signal that tries to dielectrically flow from the cancel electrode to the sensing electrode, and as a result, the sensing electrode has these first, The signal based on the angular velocity is correctly derived without being affected by the signal from the second power source, and the detection accuracy thereof is extremely high.

【0007】[0007]

【実施例】【Example】

(実施例1)図4、図5において、1はステンレスより
なる底板で、この底板1上には金属角筒状のケース2が
装着され、これによりケース2内は密封空間となってい
る。この密封空間内には音叉型をした圧電体3が設けら
れ、この圧電体3の下端面はピン4により基台5を介し
て底板1上に支持されている。前記圧電体3は図1〜図
3に示す如く左右に音叉アーム3a,3bを有してお
り、それぞれの立壁面には各々3つの電極を有してい
る。
(Embodiment 1) In FIGS. 4 and 5, reference numeral 1 denotes a bottom plate made of stainless steel, and a case 2 in the shape of a metal square tube is mounted on the bottom plate 1, whereby the inside of the case 2 is a sealed space. A tuning fork-shaped piezoelectric body 3 is provided in the sealed space, and a lower end surface of the piezoelectric body 3 is supported by a pin 4 on a bottom plate 1 via a base 5. As shown in FIGS. 1 to 3, the piezoelectric body 3 has tuning fork arms 3a and 3b on the left and right, and each standing wall surface has three electrodes.

【0008】このうち音叉アーム3aの正面には駆動電
極6を中心として左右に検知電極7,8が設けられ、ま
た、背面には駆動電極9を中心として左右に検知電極1
0,11が設けられ、さらに左側面には駆動電極12を
中心に前後に検知電極7,10が設けられ、さらにまた
右側面には駆動電極13を中心に前後に検知電極8,1
1が設けられている。
Of these, detection electrodes 7 and 8 are provided on the front side of the tuning fork arm 3a on the left and right sides of the drive electrode 6, and on the back side thereof, the detection electrodes 1 and 8 are centered on the drive electrode 9.
0 and 11 are provided, detection electrodes 7 and 10 are provided on the left side face around the drive electrode 12, and detection electrodes 7 and 10 are provided on the right side face around the drive electrode 13.
1 is provided.

【0009】そして前記駆動電極12,13には図3に
示す如く端子14を介して8kHzの正弦波信号が供給
されるようになっている。また前記駆動電極6,9には
端子15を介して同じく8kHzの正弦波信号が加えら
れるようになっているが、前記駆動電極12,13に供
給されるものとは位相が180度異なる。また、対角線
上の検知電極7,11は端子16に、検知電極8,10
は端子19に接続され、角速度信号はこれらの端子1
6,19を通して導出されるようになっている。
A sine wave signal of 8 kHz is supplied to the drive electrodes 12 and 13 via a terminal 14 as shown in FIG. A sine wave signal of 8 kHz is also applied to the drive electrodes 6 and 9 via a terminal 15, but the phase is different by 180 degrees from that supplied to the drive electrodes 12 and 13. Further, the diagonal detection electrodes 7 and 11 are connected to the terminal 16 and the detection electrodes 8 and 10 are connected to each other.
Is connected to terminal 19 and the angular velocity signal is
6 and 19 are derived.

【0010】一方、音叉アーム3b側も同様な電極配置
となっており、音叉アーム3a側と同一図番を付してい
るが、この音叉アーム3bは駆動振幅のモニタ側となっ
ているので、電極12,13,6,9は接続される端子
が音叉アーム3aとは異なる。すなわち音叉アーム3b
の電極12,13はモニタ用の端子17に接続され、電
極6,9はモニタ用の端子18に接続される。
On the other hand, the tuning fork arm 3b side has the same electrode arrangement, and the same reference numeral as that of the tuning fork arm 3a side is given. However, since this tuning fork arm 3b is on the drive amplitude monitor side, The terminals connected to the electrodes 12, 13, 6, 9 are different from the tuning fork arm 3a. That is, the tuning fork arm 3b
The electrodes 12 and 13 are connected to the monitor terminal 17, and the electrodes 6 and 9 are connected to the monitor terminal 18.

【0011】また、前記端子18には電流検出器20が
接続され、さらにこの電流検出器20にはAGC調整器
21を介して端子14が接続されている。また、前記端
子19には電荷検出器22、同期検波器23、積分器2
4を介して出力端子25が接続されている。また、前記
電流検出器20はAGC比較器26を介してAGC調整
器21に接続されている。さらにこのAGC調整器21
の出力側には抵抗27、オペアンプ28のマイナス端子
およびその出力を介して端子15が接続されている。こ
のオペアンプ28のマイナス端子と出力端子間には可変
抵抗29が並列接続されている。
A current detector 20 is connected to the terminal 18, and the terminal 14 is connected to the current detector 20 via an AGC adjuster 21. Further, the charge detector 22, the synchronous detector 23, and the integrator 2 are connected to the terminal 19.
An output terminal 25 is connected via 4. Further, the current detector 20 is connected to an AGC adjuster 21 via an AGC comparator 26. Furthermore, this AGC adjuster 21
The terminal 15 is connected to the output side of the resistor 27 via the resistor 27, the negative terminal of the operational amplifier 28, and the output thereof. A variable resistor 29 is connected in parallel between the negative terminal and the output terminal of the operational amplifier 28.

【0012】上記構成において、前記端子14から前記
駆動電極12,13に正弦波の8kHzの駆動信号が印
加され、そのとき同時に前記端子15からは前記オペア
ンプ28で反転された180度位相が異なる駆動信号が
印加される。その状態を図2においては前記駆動電極1
2,13はD+、前記駆動電極6,9はD−(マイナ
ス)として表している。前記音叉アーム3aは駆動信号
が印加されると、この音叉アーム3a自体が8kHzの
自励共振点をもつものであるので、図2において左右に
振動することになる。すなわち、図2の如く前記音叉ア
ーム3aの各駆動電極12,13,6,9にD+,D−
が印加されると、図6の如くD+側からD−側への矢印
のような電気力線が形成され、これに呼応して前記音叉
アーム3aは前記駆動電極13側が縮み(図中、「ち」
と表現)、前記駆動電極12側が伸び(図中、「の」と
表現)、つまり外方に向けて湾曲することになる。図6
と図7はそれぞれ駆動用電極、検出用電極のみをわかり
やすく示したものであり、実際は両方の電極が音叉アー
ム3a,3b上に配置されている。
In the above structure, a drive signal of a sinusoidal wave of 8 kHz is applied from the terminal 14 to the drive electrodes 12 and 13, and at the same time, a drive having a 180 ° phase difference inverted by the operational amplifier 28 from the terminal 15 is applied. A signal is applied. This state is shown in FIG.
2 and 13 are shown as D +, and the drive electrodes 6 and 9 are shown as D- (minus). When a drive signal is applied to the tuning fork arm 3a, since the tuning fork arm 3a itself has a self-excited resonance point of 8 kHz, it vibrates left and right in FIG. That is, as shown in FIG. 2, the drive electrodes 12, 13, 6, 9 of the tuning fork arm 3a are provided with D +, D-.
6 is applied, an electric force line like an arrow from the D + side to the D− side is formed as shown in FIG. 6, and in response to this, the tuning fork arm 3a contracts on the drive electrode 13 side (in the figure, Chi "
That is, the drive electrode 12 side extends (expressed as “no” in the figure), that is, the drive electrode 12 is curved outward. Figure 6
7 and 7 respectively show only the drive electrodes and the detection electrodes in an easy-to-understand manner. In reality, both electrodes are arranged on the tuning fork arms 3a and 3b.

【0013】この点をさらに詳述すると、音叉は軸方向
(図1の上下方向)の歪または応力と幅方向(図1の左
右方向)の電束密度または電界が極性を伴って相互変換
されるように形成されているので、図6の如く前記音叉
アーム3aにおいては前記駆動電極13から前記駆動電
極6,9に向けて電気力線が発生されると、この部分に
おいて軸方向の縮み現象(電界→歪変換)が起き、また
前記駆動電極12から前記駆動電極6,9に向けて上記
と反対側の電気力線が発生されると、この部分において
軸方向の伸び現象(電界→歪変換)が起き、この結果と
して前記音叉アーム3aは外方に向けて湾曲することに
なるのである。
To further explain this point, in the tuning fork, strain or stress in the axial direction (vertical direction in FIG. 1) and electric flux density or electric field in the width direction (horizontal direction in FIG. 1) are mutually converted with polarity. As shown in FIG. 6, in the tuning fork arm 3a, when an electric force line is generated from the drive electrode 13 toward the drive electrodes 6 and 9, an axial contraction phenomenon occurs at this portion. When (electric field → distortion conversion) occurs and electric lines of force on the opposite side from the above are generated from the drive electrode 12 toward the drive electrodes 6 and 9, an axial elongation phenomenon (electric field → distortion) occurs in this portion. (Conversion) occurs, and as a result, the tuning fork arm 3a bends outward.

【0014】これに伴う音叉共振現象による前記音叉ア
ーム3bでの軸方向の伸び、縮み部分において前記音叉
アーム3aとは逆に幅方向の変位電流現象(歪→電束密
度変換)が起き、前記電極6,9,12,13から電流
信号がピックアップされ、前記端子17を基準に端子1
8、電流検出器20、AGC調整器21の自励発振ルー
プを介して正帰還がかかり、共振現象が誘起増幅され
る。
Along with this, a displacement current phenomenon (distortion → electric flux density conversion) in the width direction occurs opposite to the tuning fork arm 3a in the axial extension and contraction of the tuning fork arm 3b due to the resonance phenomenon of the tuning fork. A current signal is picked up from the electrodes 6, 9, 12, and 13, and the terminal 1 is based on the terminal 17.
8. Positive feedback is applied through the self-excited oscillation loop of the current detector 20, the AGC adjuster 21, and the resonance phenomenon is induced and amplified.

【0015】前記AGC比較器26は前記電流検出器2
0の出力を一定に保つべく前記AGC調整器21に負帰
還をかけている。この様にして音叉アーム3a,3bは
一定の振幅で規則正しく振動をすることになる。
The AGC comparator 26 is the current detector 2
Negative feedback is applied to the AGC regulator 21 in order to keep the output of 0 constant. In this way, the tuning fork arms 3a and 3b vibrate regularly with a constant amplitude.

【0016】この様に前記音叉アーム3a,3bが規則
正しく振動している状況において、角速度が加わると、
コリオリ力により音叉アーム3a,3bはその音叉振動
方向とは直交する方向で互いに逆方向に振動する。そし
て、その角速度信号は図7に示す前記音叉アーム3a,
3bの検知電極8,10,7,11から導出され、前記
端子16を基準に端子19、電荷検出器22、同期検波
器23、積分器24を介して出力端子25から出力され
る。
In this way, when the tuning fork arms 3a and 3b vibrate regularly, when an angular velocity is applied,
The Coriolis force causes the tuning fork arms 3a and 3b to vibrate in directions opposite to each other in a direction orthogonal to the tuning fork vibration direction. Then, the angular velocity signal is the tuning fork arm 3a, shown in FIG.
It is derived from the detection electrodes 8, 10, 7, 11 of 3b, and is output from the output terminal 25 via the terminal 19, the charge detector 22, the synchronous detector 23, and the integrator 24 with reference to the terminal 16.

【0017】この角速度信号の誘起について詳しく説明
すると、この図7に示す如く前記音叉アーム3aが下
方、前記音叉アーム3bが上方に振動した状態では前記
音叉アーム3aの図7における上辺側が伸び、下辺側が
縮み、また逆に前記音叉アーム3bの上辺側が縮み、下
辺側が伸びている。このとき、前記検知電極10から1
1、8から7への変位電流現象(歪→電束密度変換)が
起きる。したがって、矢印の起点の電極8,10を端子
19に、矢印の終点の電極7,11を端子16に接続し
て回路を構成し、前記端子16を基準に前記端子19か
ら電流に変換された角速度信号を電荷検出器22によっ
て積分し、電荷信号として取り出すのである。
The induction of this angular velocity signal will be described in detail. As shown in FIG. 7, when the tuning fork arm 3a vibrates downward and the tuning fork arm 3b vibrates upward, the upper side of the tuning fork arm 3a in FIG. The side is contracted, and conversely, the upper side of the tuning fork arm 3b is contracted and the lower side is extended. At this time, the sensing electrodes 10 to 1
A displacement current phenomenon (strain → electric flux density conversion) from 1, 8 to 7 occurs. Therefore, the electrodes 8 and 10 at the starting point of the arrow are connected to the terminal 19 and the electrodes 7 and 11 at the ending point of the arrow are connected to the terminal 16 to form a circuit, and the terminal 16 is used as a reference to convert the current from the terminal 19 into a current. The angular velocity signal is integrated by the charge detector 22 and extracted as a charge signal.

【0018】さて、本実施例においては、上述の如く前
記音叉アーム3a,3bの検知電極7,11を基準に前
記検知電極8,10から角速度信号を取り出すのである
が、この音叉アーム3aには前記駆動電極6,9,1
2,13から駆動信号が印加されており、電極間の容量
結合によりこの駆動信号の一部が前記検知電極8,10
に侵入し、仮に前記駆動電極が逆極性に構成されていな
ければ、この結果として角速度信号の精度が低下してし
まう恐れがある。ただし、前記音叉アーム3bの駆動電
極6,9は端子17,18を介してアース電位としてい
るので、前記検知電極7,11への容量結合は生じな
い。このことは音叉アームが圧電体であるような本実施
例では、圧電体は誘電体でもあるので容量結合が大き
く、この精度低下は特に顕著となる。
In the present embodiment, as described above, the angular velocity signal is taken out from the detection electrodes 8 and 10 on the basis of the detection electrodes 7 and 11 of the tuning fork arms 3a and 3b. The drive electrodes 6, 9, 1
Drive signals are applied to the detection electrodes 8 and 10 due to capacitive coupling between the electrodes.
If the drive electrodes are not configured to have opposite polarities, the accuracy of the angular velocity signal may deteriorate as a result. However, since the drive electrodes 6 and 9 of the tuning fork arm 3b are set to the ground potential via the terminals 17 and 18, capacitive coupling to the detection electrodes 7 and 11 does not occur. This means that in the present embodiment in which the tuning fork arm is a piezoelectric body, the piezoelectric body is also a dielectric body, so that the capacitive coupling is large, and this decrease in accuracy becomes particularly remarkable.

【0019】しかしながら、本実施例においては前記検
知電極8,10と誘電体(圧電材料)を介して両側に近
接された前記駆動電極6,9と12,13には位相が1
80度異なる互いに逆極性の駆動信号が印加され、その
結果、互いに打ち消し現象(キャンセル現象)が起き、
これにより検知信号の精度低下は起きなくなるのであ
る。尚、駆動信号の逆相印加はオペアンプ28を用いる
が、上記キャンセル現象をより精度の高いものとするた
めに可変抵抗29により調整が行われる。
However, in this embodiment, the drive electrodes 6, 9 and 12, 13 that are close to both sides of the detection electrodes 8 and 10 via the dielectric (piezoelectric material) have a phase of 1.
Drive signals of mutually opposite polarities different by 80 degrees are applied, and as a result, a cancellation phenomenon occurs,
As a result, the accuracy of the detection signal does not decrease. Although the operational amplifier 28 is used to apply the opposite phase of the drive signal, adjustment is performed by the variable resistor 29 in order to make the cancel phenomenon more accurate.

【0020】可変抵抗29による調整を行なわずにプラ
ス側の駆動電極又はマイナス側の駆動電極の検知電極に
対する位置をキャンセル現象を最適化する様に設計した
り、さらにこれらの電極をレーザ等でトリミングするこ
とにより、調整することも出来る。
The position of the positive drive electrode or the negative drive electrode with respect to the detection electrode is designed so as to optimize the cancel phenomenon without adjustment by the variable resistor 29, and these electrodes are further trimmed with a laser or the like. It can also be adjusted.

【0021】(実施例2)図8〜図10は本発明の他の
実施例を示す。この実施例においては音叉の開口部下方
の側面にそれ専用のキャンセル電極30を設け、このキ
ャンセル電極30に図10に示す如くオペアンプ28の
出力である反転された駆動信号をキャンセル信号として
印加するものである。
(Embodiment 2) FIGS. 8 to 10 show another embodiment of the present invention. In this embodiment, a cancel electrode 30 dedicated to the tuning fork is provided on the side surface below the opening, and an inverted drive signal output from the operational amplifier 28 is applied to the cancel electrode 30 as a cancel signal as shown in FIG. Is.

【0022】つまり、図10に示す如くこの実施例にお
ける音叉アーム3bは上記実施例1とは異なり、その駆
動電極6,9に駆動信号が供給され、上記実施例1と同
じく駆動信号が駆動電極12,13に供給される音叉ア
ーム3aと共に自励共振駆動力を発生させる。また、音
叉アーム3aの駆動電極6,9、音叉アーム3bの駆動
電極12,13はアース電位としているので、上記実施
例1のような自らのキャンセル現象を生じさせることが
出来ない。
That is, as shown in FIG. 10, the tuning fork arm 3b in this embodiment is different from that of the first embodiment in that a drive signal is supplied to the drive electrodes 6 and 9 thereof, and the drive signal is supplied to the drive electrode similarly to the first embodiment. A self-excited resonance driving force is generated together with the tuning fork arm 3 a supplied to the 12 and 13. Further, since the drive electrodes 6 and 9 of the tuning fork arm 3a and the drive electrodes 12 and 13 of the tuning fork arm 3b are set to the ground potential, it is not possible to cause the cancellation phenomenon of itself as in the first embodiment.

【0023】そこで本実施例ではキャンセル電極30を
別途設け、ここから供給する駆動信号に対して180度
位相が反転されたキャンセル信号により駆動信号の侵入
による検知信号の精度低下を防止しているのである。
Therefore, in this embodiment, the cancel electrode 30 is separately provided, and the cancel signal whose phase is inverted by 180 degrees with respect to the drive signal supplied from the cancel electrode 30 is used to prevent the accuracy of the detection signal from deteriorating due to the intrusion of the drive signal. is there.

【0024】なお、この実施例においてキャンセル電極
30を開口部31の下方の側面に設けたこと、および、
その幅を開口部31の幅よりも小さくしたのは振動する
音叉アーム3a,3bの電極を少しでも大きくするため
と、このキャンセル電極30による電界で音叉アーム3
a,3bに不用意な振動を誘起させないためである。つ
まりここは振動の支点だからである。
In this embodiment, the cancel electrode 30 is provided on the side surface below the opening 31, and
The width of the tuning fork arms 3a and 3b is made smaller than that of the opening 31 in order to make the electrodes of the vibrating tuning fork arms 3a and 3b as large as possible.
This is because inadvertent vibration is not induced in a and 3b. In other words, this is the fulcrum of vibration.

【0025】(実施例3)図11は本発明のさらに他の
実施例を示し、キャンセル電極30を圧電体3の最下辺
の近傍に水平方向に設けると共に左右の検知電極7の下
辺部分を接続してキャンセル電極30と水平に対向させ
たものである。
(Embodiment 3) FIG. 11 shows still another embodiment of the present invention, in which a cancel electrode 30 is horizontally provided near the lowermost side of the piezoelectric body 3 and the lower side portions of the left and right detection electrodes 7 are connected. Then, the cancel electrode 30 is horizontally opposed to the cancel electrode 30.

【0026】この様にすれば、キャンセル電極30から
検知電極7に向かう電界は圧電体3の音叉アーム3a,
3bよりも下方でしかも軸方向に向かうことになる。こ
れは圧電体として水晶を利用した場合に好適であり、こ
の電界は機械軸方向を向くので機械駆動力を発生しな
い。したがって、音叉駆動の外乱とならない。
In this way, the electric field from the cancel electrode 30 to the detection electrode 7 is applied to the tuning fork arm 3a of the piezoelectric body 3,
It will be below 3b and in the axial direction. This is suitable when quartz is used as the piezoelectric body, and since this electric field is oriented in the machine axis direction, no mechanical driving force is generated. Therefore, there is no disturbance of the tuning fork drive.

【0027】なお、キャンセル電極30の上辺はそのま
まで両側辺を下方に向かって広げるように傾斜させるこ
とにより駆動電極6、検知電極8に向かう両サイドの電
界ベクトルの方向を軸方向に向けるようにしてもよく、
また逆に上辺はそのままで下方に向かって両側辺を狭め
る様にして駆動電極6、検知電極8に向かう両サイドの
電界成分を大幅に減少させるようにしても良い。
The upper side of the cancel electrode 30 is left as it is, and both sides are inclined so as to widen downward so that the electric field vectors on both sides toward the drive electrode 6 and the detection electrode 8 are oriented in the axial direction. Maybe,
On the contrary, the upper side may be left as it is, and both side sides may be narrowed downward to significantly reduce the electric field components on both sides toward the drive electrode 6 and the detection electrode 8.

【0028】[0028]

【発明の効果】以上のように本発明は、圧電体と、この
圧電体に設けた検知電極および駆動電極と、前記駆動電
極に接続された第1の電源とを備え、前記圧電体にキャ
ンセル電極を設けると共にこのキャンセル電極には前記
第1の電源から駆動電極に供給される信号とは位相がほ
ぼ180度異なる信号を供給する第2の電源を接続した
ものである。
As described above, the present invention includes the piezoelectric body, the detection electrode and the drive electrode provided on the piezoelectric body, and the first power source connected to the drive electrode, and the piezoelectric body is canceled. An electrode is provided and a second power supply for supplying a signal having a phase difference of approximately 180 degrees from the signal supplied from the first power supply to the drive electrode is connected to the cancel electrode.

【0029】したがって、前記第1の電源から駆動電極
に供給される信号に対して第2の電源からキャンセル電
極に供給される信号がほぼ180度位相が異なるので、
駆動電極から検知電極に流入しようとする信号はキャン
セル電極から検知電極に流入しようとする信号によって
キャンセルされることとなり、この結果、検知電極はこ
れら第1、第2の電源による信号の影響を受けず角速度
に基づく信号を正しく導出することとなり、その検知精
度は極めて高くなるものである。
Therefore, since the signal supplied from the second power source to the cancel electrode is approximately 180 degrees out of phase with the signal supplied from the first power source to the drive electrode,
The signal flowing from the drive electrode to the detection electrode is canceled by the signal flowing from the cancel electrode to the detection electrode, and as a result, the detection electrode is affected by the signals from the first and second power supplies. The signal based on the angular velocity is correctly derived, and the detection accuracy is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の角速度センサの正面図FIG. 1 is a front view of an angular velocity sensor according to an embodiment of the present invention.

【図2】同角速度センサの上面図FIG. 2 is a top view of the same angular velocity sensor.

【図3】同角速度センサの電気回路図FIG. 3 is an electric circuit diagram of the same angular velocity sensor.

【図4】同角速度センサの全体を示す正面断面図FIG. 4 is a front sectional view showing the entire angular velocity sensor.

【図5】同角速度センサの全体を示す側面断面図FIG. 5 is a side sectional view showing the entire same angular velocity sensor.

【図6】同角速度センサの動作原理を示す図FIG. 6 is a diagram showing the operating principle of the same angular velocity sensor.

【図7】同角速度センサの動作原理を示す図FIG. 7 is a diagram showing an operating principle of the same angular velocity sensor.

【図8】本発明の他の実施例の角速度センサの正面図FIG. 8 is a front view of an angular velocity sensor according to another embodiment of the present invention.

【図9】同角速度センサの上面図FIG. 9 is a top view of the same angular velocity sensor.

【図10】同角速度センサの電気回路図FIG. 10 is an electric circuit diagram of the same angular velocity sensor.

【図11】本発明のさらに他の実施例の角速度センサの
正面図
FIG. 11 is a front view of an angular velocity sensor according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 圧電体 3a 音叉アーム 3b 音叉アーム 6 駆動電極(キャンセル電極) 7 検知電極 8 検知電極 30 キャンセル電極 3 Piezoelectric body 3a Tuning fork arm 3b Tuning fork arm 6 Driving electrode (cancelling electrode) 7 Detecting electrode 8 Detecting electrode 30 Canceling electrode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧電体と、この圧電体に設けた検知電極
および駆動電極と、前記駆動電極に接続された第1の電
源とを備え、前記圧電体にキャンセル電極を設けると共
にこのキャンセル電極には前記第1の電源から駆動電極
に供給される信号とは位相がほぼ180度異なる信号を
供給する第2の電源を接続した角速度センサ。
1. A piezoelectric body, a detection electrode and a drive electrode provided on the piezoelectric body, and a first power source connected to the drive electrode, wherein a cancel electrode is provided on the piezoelectric body and the cancel electrode is provided on the cancel electrode. Is an angular velocity sensor connected to a second power supply for supplying a signal having a phase difference of approximately 180 degrees from the signal supplied to the drive electrode from the first power supply.
【請求項2】 第2の電源は第1の電源から供給される
信号を反転させて得るように構成した請求項1に記載の
角速度センサ。
2. The angular velocity sensor according to claim 1, wherein the second power source is constructed by inverting a signal supplied from the first power source.
【請求項3】 圧電体は音叉形状をしており、この圧電
体の音叉アームの少なくとも1本には検知電極と駆動電
極とキャンセル電極とを設けた請求項1または2に記載
の角速度センサ。
3. The angular velocity sensor according to claim 1, wherein the piezoelectric body has a tuning fork shape, and at least one of the tuning fork arms of the piezoelectric body is provided with a detection electrode, a drive electrode, and a cancel electrode.
【請求項4】 圧電体は音叉形状をしており、この音叉
形状の開口部下方の面にキャンセル電極を設けた請求項
1または2に記載の角速度センサ。
4. The angular velocity sensor according to claim 1, wherein the piezoelectric body has a tuning fork shape, and a cancel electrode is provided on a surface below the opening of the tuning fork shape.
【請求項5】 キャンセル電極は圧電体の開口部の幅よ
りも小さくした請求項4に記載の角速度センサ。
5. The angular velocity sensor according to claim 4, wherein the cancel electrode is smaller than the width of the opening of the piezoelectric body.
【請求項6】 キャンセル電極は音叉形状の圧電体の下
方において水平方向に配置した請求項4または5に記載
の角速度センサ。
6. The angular velocity sensor according to claim 4, wherein the cancel electrode is horizontally arranged below the tuning fork-shaped piezoelectric body.
【請求項7】 水平方向に配置されたキャンセル電極の
両側辺を傾斜させた請求項6に記載の角速度センサ。
7. The angular velocity sensor according to claim 6, wherein both sides of the cancel electrode arranged in the horizontal direction are inclined.
【請求項8】 キャンセル電極が駆動電極と兼用される
構成とした請求項1に記載の角速度センサ。
8. The angular velocity sensor according to claim 1, wherein the cancel electrode is also used as a drive electrode.
JP10549895A 1995-04-28 1995-04-28 Angular velocity sensor Expired - Fee Related JP3399150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10549895A JP3399150B2 (en) 1995-04-28 1995-04-28 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10549895A JP3399150B2 (en) 1995-04-28 1995-04-28 Angular velocity sensor

Publications (2)

Publication Number Publication Date
JPH08304075A true JPH08304075A (en) 1996-11-22
JP3399150B2 JP3399150B2 (en) 2003-04-21

Family

ID=14409274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10549895A Expired - Fee Related JP3399150B2 (en) 1995-04-28 1995-04-28 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JP3399150B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036910A1 (en) * 1999-11-16 2001-05-25 Matsushita Electric Industrial Co., Ltd. Angular speed sensor
WO2001044755A1 (en) * 1999-12-14 2001-06-21 Matsushita Electric Industrial Co. Ltd. Angular speed sensor
JP2001208546A (en) * 1999-11-16 2001-08-03 Matsushita Electric Ind Co Ltd Angular velocity sensor
WO2002018875A1 (en) * 2000-08-30 2002-03-07 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
JP2002267450A (en) * 2001-03-09 2002-09-18 Denso Corp Angular velocity sensor
JP2006284437A (en) * 2005-04-01 2006-10-19 Nec Tokin Corp Tuning fork form piezo-electric vibrating gyroscope
US7802473B2 (en) 2006-12-22 2010-09-28 Tamagawa Seiki Co., Ltd. Angular velocity sensor
CN103308040A (en) * 2012-03-13 2013-09-18 精工爱普生株式会社 Sensor element, sensor device, and electronic apparatus
US11555702B2 (en) 2015-08-26 2023-01-17 Seiko Epson Corporation Physical quantity detection device, manufacturing method for physical quantity detection device, electronic apparatus, and moving object

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4068461A (en) 1976-04-15 1978-01-17 Frontier Inc. Digital electronic alarm watch

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208546A (en) * 1999-11-16 2001-08-03 Matsushita Electric Ind Co Ltd Angular velocity sensor
WO2001036910A1 (en) * 1999-11-16 2001-05-25 Matsushita Electric Industrial Co., Ltd. Angular speed sensor
US6564639B1 (en) 1999-11-16 2003-05-20 Matsushita Electric Industrial Co., Ltd. Angular speed sensor
US6523410B2 (en) 1999-12-14 2003-02-25 Matsushita Electric Industrial Co., Ltd. Angular rate sensor
WO2001044755A1 (en) * 1999-12-14 2001-06-21 Matsushita Electric Industrial Co. Ltd. Angular speed sensor
WO2002018875A1 (en) * 2000-08-30 2002-03-07 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US6666091B2 (en) 2000-08-30 2003-12-23 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
JP2002267450A (en) * 2001-03-09 2002-09-18 Denso Corp Angular velocity sensor
JP2006284437A (en) * 2005-04-01 2006-10-19 Nec Tokin Corp Tuning fork form piezo-electric vibrating gyroscope
US7802473B2 (en) 2006-12-22 2010-09-28 Tamagawa Seiki Co., Ltd. Angular velocity sensor
CN103308040A (en) * 2012-03-13 2013-09-18 精工爱普生株式会社 Sensor element, sensor device, and electronic apparatus
JP2013190303A (en) * 2012-03-13 2013-09-26 Seiko Epson Corp Sensor element, sensor device and electronic apparatus
US11555702B2 (en) 2015-08-26 2023-01-17 Seiko Epson Corporation Physical quantity detection device, manufacturing method for physical quantity detection device, electronic apparatus, and moving object

Also Published As

Publication number Publication date
JP3399150B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JP2872213B2 (en) Vibration structure gyroscope
US5585562A (en) Vibration-sensing gyro
EP0860685B1 (en) Vibrating gyroscope
US7707886B2 (en) Micro-machined gyrometric sensor for differential measurement of the movement of vibrating masses
US6621279B2 (en) Drive feedthrough nulling system
US20130091948A1 (en) Angular velocity detection device and angular velocity sensor including the same
US6167744B1 (en) Angular velocity sensor and diagnosis system for this sensor
US6907784B2 (en) Vibration type angular velocity sensor
JPH05312579A (en) Gyrocompass
WO2002018875A1 (en) Angular velocity sensor
JP2008286597A (en) Detection device, detection method and electronic device
JP2007255890A (en) Gyroscope device
US20070163345A1 (en) Angular velocity sensor
JP3399150B2 (en) Angular velocity sensor
JP4449128B2 (en) Angular velocity sensor
JP2001208546A (en) Angular velocity sensor
JPH10221083A (en) Vibration-type gyro apparatus
JP2001174264A (en) Resonant element and vibration adjustment method thereof
JPH1164005A (en) Piezoelectric rotation sensor for biaxial simultaneous measurement and its measuring circuit
US7085030B2 (en) Optical scanner driving apparatus and optical scanner driving method
US6564639B1 (en) Angular speed sensor
JP3264580B2 (en) Angular velocity detector
JPH08278142A (en) Angular velocity sensor
JP2000105124A (en) Electrostatic drive, electrostatic detection angular velocity sensor
US6316942B1 (en) Electrical potential sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees