[go: up one dir, main page]

JPH0831015A - Optical information recording medium and optical information recording / reproducing apparatus - Google Patents

Optical information recording medium and optical information recording / reproducing apparatus

Info

Publication number
JPH0831015A
JPH0831015A JP6156956A JP15695694A JPH0831015A JP H0831015 A JPH0831015 A JP H0831015A JP 6156956 A JP6156956 A JP 6156956A JP 15695694 A JP15695694 A JP 15695694A JP H0831015 A JPH0831015 A JP H0831015A
Authority
JP
Japan
Prior art keywords
phase
information recording
recording medium
optical information
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6156956A
Other languages
Japanese (ja)
Inventor
Hisataka Sugiyama
久貴 杉山
Koichiro Wakabayashi
康一郎 若林
Takeshi Maeda
武志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6156956A priority Critical patent/JPH0831015A/en
Publication of JPH0831015A publication Critical patent/JPH0831015A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To linearize the nonlinear reproduction characteristics generated when phase pits are formed in proximity to each other according to increase in density. CONSTITUTION:The plural phase pits varying in depth are used and are provided with an optical phase difference between the adjacent pits 10 and 11, thereby the pits are made into the linear system of a reproduced signal level increasing monotonously with an increase in the number of the pits included within a light spot. Then, the application of linear signal processing is possible even with the phase pits and, therefore, the formation of the pits in proximity to each other is made possible and the higher densities are attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ディスク等の光情報
記録媒体及び光情報記録再生装置に関し、特に再生時に
隣接データ間の符号間干渉が生じる様な高密度で記録さ
れた情報を再生するために波形等化、またはパーシャル
レスポンス等の信号処理を適用するのに適した光情報記
録媒体及び光情報記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium such as an optical disk and an optical information recording / reproducing apparatus, and particularly to reproducing information recorded at a high density so that intersymbol interference between adjacent data occurs during reproduction. Therefore, the present invention relates to an optical information recording medium and an optical information recording / reproducing apparatus suitable for applying signal processing such as waveform equalization or partial response.

【0002】[0002]

【従来の技術】光ディスクは、画像情報や音声情報ある
いはデジタルデータ等を記録マーク、すなわち記録磁区
やピットの配列として記録し、それに再生光を照射して
記録マークによって変調された反射光検出信号を復調し
てデータを再生するものである。
2. Description of the Related Art An optical disc records image information, audio information, digital data, or the like as recording marks, that is, an array of recording magnetic domains or pits, and irradiates a reproducing light to the reflected light detection signal modulated by the recording marks. It demodulates and reproduces data.

【0003】例えば、ピットによってデータを記憶する
光情報記録媒体は、図7に示すように、ポリカーボネイ
ト等の透明基板30に直径0.4μm程度のピット31
をトラックピッチ1.2μm程度で形成し、その上に反
射膜32としてアルミニウム膜を形成してある。ピット
31の深さは一定であり、再生信号振幅を大きく取るた
めに光源波長λに対し、λ/6〜λ/4の深さに設定さ
れている。光源として例えば波長680nmのレーザ光
を用いる場合、このピット深さは0.1μm程度にな
る。図7に示すように、光源33、ビームスプリッタ3
4、光検出器35を備える光ヘッド36を用いる反射系
では、この深さは2π/3〜πの光学的位相差に対応す
る。ここで光学的位相差は、スポット内におけるピット
部とそれ以外の部分からの反射光間の位相差で主に表す
ことができる。
For example, as shown in FIG. 7, an optical information recording medium for storing data in pits has a pit 31 having a diameter of about 0.4 μm on a transparent substrate 30 such as polycarbonate.
Are formed with a track pitch of about 1.2 μm, and an aluminum film is formed thereon as the reflection film 32. The pit 31 has a constant depth, and is set to a depth of λ / 6 to λ / 4 with respect to the light source wavelength λ in order to obtain a large reproduction signal amplitude. When a laser beam having a wavelength of 680 nm is used as the light source, the pit depth is about 0.1 μm. As shown in FIG. 7, the light source 33 and the beam splitter 3
4. In the reflection system using the optical head 36 including the photodetector 35, this depth corresponds to an optical phase difference of 2π / 3 to π. Here, the optical phase difference can be mainly expressed by the phase difference between the reflected light from the pit portion in the spot and the reflected light from other portions.

【0004】光ディスクにおいて、高記録密度化のため
にマーク間の間隔を詰めると隣接データ間の符号間干渉
が生じ、データ再生時のエラーが増加する。これを解決
する方法として、2つの信号処理方式によるアプローチ
がある。ひとつは、隣接データ間の符号間干渉を低減す
る波形等化処理であり、もう一つは、符号間干渉を積極
的に利用したパーシャルレスポンス方式である。
In an optical disc, if the distance between marks is reduced to increase the recording density, intersymbol interference between adjacent data occurs, and errors during data reproduction increase. As a method for solving this, there are two signal processing approaches. One is a waveform equalization process that reduces intersymbol interference between adjacent data, and the other is a partial response method that positively utilizes intersymbol interference.

【0005】波形等化処理は、例えば江藤、三田、土居
著、日刊工業新聞社発行「デジタルビデオ記録技術」第
59頁に記載されているように、データ信号を取り込む
際に、目標データ検出点の信号に隣接データ点の信号に
重みをかけて加算することにより隣接マークからの波形
間干渉を取り除き、S/Nの高い信号を検出するするも
のである。
Waveform equalization processing is performed, for example, as described in "Digital Video Recording Technology", page 59, published by Nikkan Kogyo Shimbun, written by Eto, Mita, Doi. The signal of adjacent data point is weighted and added to the signal of (1) to remove the inter-waveform interference from the adjacent mark and detect the signal of high S / N.

【0006】また、パーシャルレスポンス及び多値化記
録方式は、例えば、電子情報通信学会論文誌、Vol.
J70−C、No.3、大沢、岡本、田崎「多値記録符
号に対する信号検出方式の性能比較」に記載されている
ように、再生信号系の分解能以上にデータ間隔を詰める
ことにより、再生信号レベルを多値化したり、また記録
マークの長さ、幅又は深さを多段階に変化させることで
多値レベルを設定するものである。
Further, the partial response and the multilevel recording method are described in, for example, the Institute of Electronics, Information and Communication Engineers, Vol.
J70-C, No. 3, Osawa, Okamoto, Tasaki As described in “Performance comparison of signal detection methods for multilevel recording code”, the reproduction signal level is multileveled by reducing the data interval more than the resolution of the reproduction signal system. In addition, the multilevel is set by changing the length, width or depth of the recording mark in multiple steps.

【0007】[0007]

【発明が解決しようとする課題】再生信号のレスポンス
特性は、再生信号の重ね合わせが成り立つものであるこ
とが望ましい。光磁気記録媒体において差動検出を行な
う場合には線形性が成り立つが、その他の媒体、特にR
OM用媒体である位相ピット媒体は、光の回折現象を利
用して再生するものであるため線形性が成り立たず、高
密度化時に信号再生ができないという問題点がある。
It is desirable that the response characteristics of the reproduced signals are such that the reproduced signals are superposed. Linearity is established when differential detection is performed in a magneto-optical recording medium, but other media, especially R
Since the phase pit medium, which is a medium for OM, is reproduced by utilizing the diffraction phenomenon of light, there is a problem that the linearity is not established and the signal cannot be reproduced when the density is increased.

【0008】図8は孤立した1個の記録ピット2を光ス
ポットで走査したときに得られる再生信号波形を示す。
位相ピット2の存在によって反射光量が減少し、再生信
号波形3の最低レベルが信号レベル4となる。ところ
が、ピットが近接してくると、再生信号レベルは孤立し
た位相ピットを走査する場合よりも低下する。図9に、
マーク2が光スポット1を占有する比率に対する信号レ
ベル4の変化を求めたものを示す。位相ピットについて
の再生信号のレベル5と、光磁気媒体における差動検出
信号のレベル6とを比較して示す。マークが近接してく
ると、光磁気信号については、スポットをマークが占め
る範囲が増加するのに比例して信号レベルが増加する。
これは、再生信号特性が線形であることを示す。一方、
位相ピット媒体では、再生信号レベルが飽和し、さらに
低下してくる現象が現われる。これは、非線形な再生特
性であり、線形信号処理に不適であり、前述した高密度
化のための信号処理が適用できなくなる。
FIG. 8 shows a reproduced signal waveform obtained when an isolated recording pit 2 is scanned with a light spot.
The presence of the phase pit 2 reduces the amount of reflected light, and the minimum level of the reproduced signal waveform 3 becomes the signal level 4. However, when the pits come close to each other, the reproduction signal level becomes lower than that when the isolated phase pit is scanned. In Figure 9,
The change in the signal level 4 with respect to the ratio of the mark 2 occupying the light spot 1 is shown. The level 5 of the reproduction signal for the phase pit and the level 6 of the differential detection signal in the magneto-optical medium are shown for comparison. When the marks come close to each other, the signal level of the magneto-optical signal increases in proportion to the increase in the area occupied by the mark.
This indicates that the reproduction signal characteristic is linear. on the other hand,
In the phase pit medium, the reproduction signal level becomes saturated and further decreases. This is a non-linear reproduction characteristic, which is unsuitable for linear signal processing, and the above-described signal processing for increasing the density cannot be applied.

【0009】本発明の目的は、位相ピット媒体における
上記問題を解決し、高密度化のための信号処理を効果的
に適用できる光情報記録媒体及び光情報記録再生装置を
提供することにある。
An object of the present invention is to provide an optical information recording medium and an optical information recording / reproducing apparatus which can solve the above problems in a phase pit medium and can effectively apply signal processing for high density.

【0010】[0010]

【課題を解決するための手段】図8に示す様に、位相ピ
ット2が光スポット1内に1個しか含まれない場合は、
ピット部分とそれ以外の部分の反射光が位相の相違によ
る干渉によって打ち消しあい、その結果、反射光量が低
下し、再生信号レベルが大きく変化する。しかし、図1
0(a)に示すように、ピットが近接し、光スポット1
内にピット2が2個程度含まれるようになると、図10
(b)の断面図に略示するように、隣接ピット2,2’
同士には光学的位相差はないため、基板表面の反射層で
の反射光37,40とピット2,2’による反射光3
8,39は位相差があるため干渉して打ち消しあうが、
ピット2とピット2’による反射光38,39の間には
干渉による光強度の打ち消しが生じず、信号レベルの変
化が得られなくなる。すなわち、再生信号波形は、破線
で示した再生信号の重ね合わせが成り立つような光磁気
記録媒体についての波形から実線で示す波形に変化し、
再生信号レベルが低下する。これが、図9で示した位相
ピット媒体の非線形再生特性の原因である。
As shown in FIG. 8, when only one phase pit 2 is included in the light spot 1,
The reflected light of the pit portion and the reflected light of the other portion cancel each other out due to the interference due to the phase difference, and as a result, the amount of reflected light is reduced, and the reproduction signal level greatly changes. However, FIG.
As shown in 0 (a), the pits are close to each other and the light spot 1
When about 2 pits 2 are included in the inside,
Adjacent pits 2, 2'as schematically shown in the sectional view of (b)
Since there is no optical phase difference between them, the reflected light 37, 40 on the reflective layer on the substrate surface and the reflected light 3 by the pits 2, 2 '
Since 8 and 39 have a phase difference, they interfere and cancel each other.
There is no cancellation of the light intensity due to interference between the reflected lights 38 and 39 reflected by the pit 2 and the pit 2 ', and a change in the signal level cannot be obtained. That is, the reproduction signal waveform changes from the waveform for the magneto-optical recording medium such that the reproduction signals are superposed as indicated by the broken line to the waveform for the solid line,
The playback signal level drops. This is the cause of the nonlinear reproduction characteristics of the phase pit medium shown in FIG.

【0011】本発明では、深さが異なる複数の位相ピッ
トを用い、隣接ピット間に光学的位相差を持たせること
で、再生信号特性を光スポット内に含まれるピット数の
増加と共に再生信号レベルが単調に増加する線形系に
し、前記目的を達成する。すなわち、本発明による光情
報記録媒体は、反射膜を備える透明基板上に位相ピット
の配列として情報を記録した領域を有し、透明基板側か
ら照射した光源波長λの光スポットを走査し位相ピット
列による反射光の変化を検出することで情報を再生する
光情報記録媒体において、隣り合う位相ピットの最小間
隔は光スポット径の略半分であり、位相ピットは深さが
異なる複数種類の位相ピットからなり、各位相ピットの
深さは前記位相ピットの配列を光スポットで走査すると
き各ピットに対して得られる信号強度が反射膜からの反
射光レベルと遮光レベルの差を100%とした再生信号
レベルの50%以上となるように設定されていることを
特徴とする。
According to the present invention, a plurality of phase pits having different depths are used and an optical phase difference is provided between adjacent pits, so that the reproduction signal characteristic is increased as the number of pits included in the light spot increases. Achieves the above-mentioned object by using a linear system in which C increases monotonically. That is, the optical information recording medium according to the present invention has a region on which information is recorded as an array of phase pits on a transparent substrate provided with a reflective film, and scans a light spot of a light source wavelength λ emitted from the transparent substrate side to scan the phase pits. In an optical information recording medium that reproduces information by detecting changes in reflected light due to columns, the minimum interval between adjacent phase pits is approximately half the light spot diameter, and phase pits are multiple types of phase pits with different depths. The depth of each phase pit is such that when the array of phase pits is scanned with a light spot, the signal intensity obtained for each pit is such that the difference between the level of light reflected from the reflective film and the level of light shielding is 100%. It is characterized in that it is set to be 50% or more of the signal level.

【0012】前記位相ピットは深さが異なる第1と第2
の位相ピットからなり、透明基板の反射膜での反射光と
前記第1の位相ピットによる反射光の光学的位相差が第
1の位相ピットによる反射光と第2の位相ピットによる
反射光の位相差に略等しいことが好ましい。最短距離で
隣接する位相ピッチの未記録部に対する光学的位相差
は、π/2と3π/2、4π/3と8π/3、2π/3
と4π/3が望ましい。ただし、実用的にはπ/2±π
/40と3π/2±π/40、4π/3±π/40と8
π/3±π/40、2π/3±π/40と4π/3±π
/40とすることができる。
The phase pits have different depths from the first and second phases.
The optical phase difference between the light reflected by the reflective film of the transparent substrate and the light reflected by the first phase pit is the position of the light reflected by the first phase pit and the light reflected by the second phase pit. It is preferable that the difference is substantially equal to the phase difference. The optical phase difference with respect to the unrecorded portion having the adjacent phase pitch at the shortest distance is π / 2 and 3π / 2, 4π / 3 and 8π / 3, and 2π / 3.
And 4π / 3 are desirable. However, practically π / 2 ± π
/ 40 and 3π / 2 ± π / 40, 4π / 3 ± π / 40 and 8
π / 3 ± π / 40, 2π / 3 ± π / 40 and 4π / 3 ± π
It can be / 40.

【0013】前記光情報記録媒体は、半径方向に凹凸の
周期性を持つ案内溝を有し、周期間隔がスポット径に略
等しく、かつ溝部分と溝間部分の幅が略等しいランド・
グルーブ型のものとすることができる。透明基板の屈折
率をNとするとき、前記溝部分の深さは略λ/(6×
N)とするのが好ましく、溝部分及び溝間部分に設けら
れた位相ピット深さは略λ/(6×N)とするのが好ま
しい。
The optical information recording medium has a guide groove having irregular periodicity in the radial direction, the land interval is substantially equal to the spot diameter, and the widths of the groove portion and the groove portion are substantially equal.
It can be of the groove type. When the refractive index of the transparent substrate is N, the depth of the groove portion is approximately λ / (6 ×
N), and the depth of the phase pits provided in the groove portion and the inter-groove portion is preferably approximately λ / (6 × N).

【0014】また、本発明による光情報記録再生装置
は、前記光情報記録媒体と、光情報記録媒体を駆動する
手段と、光情報記録媒体の透明基板側から光スポットを
照射し反射光を受光する光ヘッドと、光ヘッドを光情報
記録媒体に対して駆動する光ヘッド駆動手段と、光ヘッ
ドによる受光信号を等化処理あるいは多値化処理する手
段を含む。
Further, an optical information recording / reproducing apparatus according to the present invention, the optical information recording medium, a means for driving the optical information recording medium, a light spot is emitted from the transparent substrate side of the optical information recording medium, and reflected light is received. And an optical head driving means for driving the optical head with respect to the optical information recording medium, and means for performing equalization processing or multi-valued processing on a light reception signal by the optical head.

【0015】[0015]

【作用】位相ピットの深さを一定とせず深さの異なる複
数の位相ピットを用いることにより、隣接ピットによる
反射光の間に光学的位相差が生じる。従って、隣接する
ピットで反射した光の間にも干渉が生じ、再生光強度が
減少するため、再生信号特性は光スポット内に含まれる
ピット数の増加と共に再生信号レベルが単調に増加する
略線形系となる。そして、再生信号特性が略線形系にな
るため波形等化等の信号処理が適用でき、高記録密度化
が可能となる。
By using a plurality of phase pits having different depths without making the depths of the phase pits constant, an optical phase difference is generated between the light reflected by the adjacent pits. Therefore, interference also occurs between the light reflected by the adjacent pits, and the reproduction light intensity decreases. Therefore, the reproduction signal characteristic is substantially linear as the reproduction signal level monotonically increases as the number of pits included in the light spot increases. It becomes a system. Since the reproduced signal characteristic is a substantially linear system, signal processing such as waveform equalization can be applied, and high recording density can be achieved.

【0016】各位相ピットの深さを、前記位相ピットの
配列を光スポットで走査するとき各ピットに対して得ら
れる信号強度が前記再生信号レベルの50%以上となる
ように設定したため、エラー率が10-4以下の信頼性を
持つS/Nが得られた。位相ピットを深さが異なる第1
と第2の位相ピットで構成し、透明基板の表面での反射
光と前記第1の位相ピットによる反射光の光学的位相差
を第1の位相ピットによる反射光と第2の位相ピットに
よる反射光の位相差と略等しくすると、再生信号検出レ
ベルが変動しないので2値化データを得るためのスライ
スレベル等の設定が容易である。
Since the depth of each phase pit is set so that the signal intensity obtained for each pit when the array of phase pits is scanned with a light spot is 50% or more of the reproduction signal level, the error rate is increased. S / N having a reliability of 10 -4 or less was obtained. Phase pit with different depth 1st
And the second phase pit, and the optical phase difference between the light reflected on the surface of the transparent substrate and the light reflected by the first phase pit is reflected by the light reflected by the first phase pit and the light reflected by the second phase pit. If the phase difference of the light is substantially equal to the reproduction signal detection level, the slice level and the like for obtaining the binarized data can be easily set.

【0017】前記光情報記録媒体がランドグルーブ型の
ものである場合、溝部分の深さを略λ/(6×N)と
し、溝部分及び溝間部分に設けられた位相ピット深さを
略λ/(6×N)とすると、ランドとグルーブによるR
AMデータ部の隣接トラック間のクロストークを低減で
きるとともに、隣接トラック間の位相ピット間の線形信
号処理が可能となり、高S/N再生が可能となる。個々
のピット信号は、再生信号に等化処理や多値化処理を施
すことにより分離して検出することができる。
When the optical information recording medium is a land-groove type, the depth of the groove portion is approximately λ / (6 × N), and the depth of the phase pits provided in the groove portion and the groove portion is approximately If λ / (6 × N), R due to land and groove
Crosstalk between adjacent tracks in the AM data section can be reduced, linear signal processing between phase pits between adjacent tracks is possible, and high S / N reproduction is possible. Individual pit signals can be detected separately by subjecting the reproduced signal to equalization processing or multilevel processing.

【0018】[0018]

【実施例】以下、本発明を実施例により詳細に説明す
る。 〔実施例1〕図1に、本発明による複数の深さの位相ピ
ットを用いた光ディスクROM(リードオンリーメモ
リ)の断面構造を示す。図1(a)は断面図、図1
(b)は平面図である。
EXAMPLES The present invention will be described in detail below with reference to examples. [Embodiment 1] FIG. 1 shows a sectional structure of an optical disk ROM (read only memory) using phase pits having a plurality of depths according to the present invention. FIG. 1A is a sectional view, FIG.
(B) is a plan view.

【0019】光ディスクは、公知のインジェクション法
によって情報に対応した位相ピット10,11が成形さ
れたポリカーボネイト(屈折率N=1.5)製ディスク
基板7に、反射膜としてアルミニウム膜8をスパッタし
た構造を有する。位相ピットは、2次元格子点12上に
配列される。各ピットは直径0.25μmで、トラック
ピッチは0.45μm、トラック方向の格子点間隔は
0.30μmである。最も近い距離で隣接する位相ピッ
ト10,11は深さが異なり、それらのピットで反射さ
れた反射光は光学的位相差を有する。これに、図1
(a)に示すように、基板7側から、波長630nmの
レーザ光を絞り込みレンズ9によって直径1.0μmの
光スポットとして照射し、走査する。そして、ピットの
有無によって変調された反射光の変化を電気信号に変換
してデータを再生する。
The optical disk has a structure in which an aluminum film 8 is sputtered as a reflective film on a disk substrate 7 made of polycarbonate (refractive index N = 1.5) in which phase pits 10 and 11 corresponding to information are formed by a known injection method. Have. The phase pits are arranged on the two-dimensional lattice points 12. Each pit has a diameter of 0.25 μm, the track pitch is 0.45 μm, and the lattice point spacing in the track direction is 0.30 μm. The phase pits 10 and 11 adjacent to each other at the closest distance have different depths, and the reflected light reflected by these pits has an optical phase difference. In addition to this,
As shown in (a), a laser beam having a wavelength of 630 nm is irradiated from the side of the substrate 7 by the focusing lens 9 as a light spot having a diameter of 1.0 μm and scanning is performed. Then, the change of the reflected light modulated by the presence or absence of the pit is converted into an electric signal to reproduce the data.

【0020】図2に示すように、位相ピットの深さを再
生光の波長λ(630nm)に対して(1/8)λと
(3/8)λ、すなわち52.5nm及び157.5n
mの2種類とし、隣接位相ピット41,42間の深さを
異ならせた。隣接する位相ピットの深さを変えることに
より、図2(b)の断面図に略示するように、基板表面
の反射層での反射光13,16、深さ(1/8)λの位
相ピット41による反射光14、及び深さ(3/8)λ
の位相ピット42による反射光15に各々光学的位相差
を持たせることができるため、再生信号波形は図2
(c)の実線のようになり、ピットを近づけて行っても
再生信号レベルの飽和または低下が生じることがない。
従って、位相ピットによる記録であっても、図9の光磁
気媒体における差動検出再生特性のような略線形特性に
することができる。
As shown in FIG. 2, the depth of the phase pit is (1/8) λ and (3/8) λ with respect to the wavelength λ (630 nm) of the reproduction light, that is, 52.5 nm and 157.5 n.
There are two types, m, and the depth between the adjacent phase pits 41 and 42 is different. By changing the depth of the adjacent phase pits, as shown in the cross-sectional view of FIG. 2B, the reflected light 13 and 16 at the reflection layer on the substrate surface and the phase of depth (1/8) λ Light reflected by pit 41, and depth (3/8) λ
Since the reflected light 15 due to the phase pit 42 of FIG. 2 can have an optical phase difference, the reproduced signal waveform is as shown in FIG.
As indicated by the solid line in (c), the reproduced signal level does not saturate or fall even when the pits are moved closer to each other.
Therefore, even in the case of recording by the phase pits, it is possible to obtain a substantially linear characteristic like the differential detection reproduction characteristic in the magneto-optical medium of FIG.

【0021】高密度で記録した個々のピットは、特開平
5−44875、特開平5−253960に記載されて
いる信号処理を施すことによって互いに分離して検出す
ることができる。図11に、2次元等化処理回路の一例
を示す。隣り合う3本のトラックに3つのスポットを位
置づけ、中央のスポット2が目標のトラックとなる。こ
の時、隣接トラックからの信号の漏れ込みは、スポット
1,3より検出する。スポット2,3による検出信号は
各々遅延回路51,52でτ及び2τの時間だけ遅延さ
せられて加算器53で加算される。このとき、隣接トラ
ックを走査するスポット1及び3からの信号には1以下
の重み付け係数βが乗算される。時定数τは各スポット
が周方向にずれているのを補正するために設定されるも
のである。また、スポット2から得た信号については、
トラック方向の隣接データの漏れ込みを検出するため
に、遅延回路54〜57によって格子点間隔±T,±2
Tからの信号を出力し、各信号に重みα、α2 を付けて
加算器58で加算し、波形間干渉の除去されたEQ信号
を得る。
Individual pits recorded at high density can be detected separately from each other by performing the signal processing described in JP-A-5-44875 and JP-A-5-253960. FIG. 11 shows an example of a two-dimensional equalization processing circuit. Three spots are positioned on three adjacent tracks, and the center spot 2 is the target track. At this time, the signal leak from the adjacent track is detected from the spots 1 and 3. The detection signals from the spots 2 and 3 are delayed by the delay circuits 51 and 52 by τ and 2τ, respectively, and added by the adder 53. At this time, the signals from the spots 1 and 3 scanning the adjacent tracks are multiplied by a weighting coefficient β of 1 or less. The time constant τ is set to correct the deviation of each spot in the circumferential direction. Also, regarding the signal obtained from spot 2,
In order to detect the leak of the adjacent data in the track direction, the delay circuits 54 to 57 use the lattice point intervals ± T and ± 2.
Output the signal from T and weight each signal α, α 2 Are added and added by the adder 58 to obtain an EQ signal from which the inter-waveform interference is removed.

【0022】次に位相ピット深さの最適化について、図
3を用いて説明する。図3は、反射層に対する位相ピッ
トの光学的位相差に対する再生信号レベルを求めたもの
である。最適化の条件は、再生信号レベルの絶対値をあ
まり低下させずにかつ光スポット内に含まれる隣ある部
位、図2では、反射光13と14、反射光14と15、
反射光15と16の光学的位相差が略等しいこと、ある
いは少なくとも2つの反射光の間の光学的位相差が略等
しいことである。というのは、これらの光学的位相差が
略等しい場合、あるいは少なくとも2つの反射光間の光
学的位相差が略等しい場合、再生信号検出レベルが変動
しないので2値化データを得るためのスライスレベル等
の設定が容易になるからである。また、再生信号レベル
は10-4以下のエラーレートを実現するS/Nを確保す
るため、0.5以上あることが望ましい。
Next, optimization of the phase pit depth will be described with reference to FIG. FIG. 3 shows the reproduction signal level with respect to the optical phase difference of the phase pits with respect to the reflective layer. The conditions for optimization are adjacent portions included in the light spot without significantly reducing the absolute value of the reproduction signal level, in FIG. 2, reflected light 13 and 14, reflected light 14 and 15,
The optical phase difference between the reflected lights 15 and 16 is substantially the same, or the optical phase difference between at least two reflected lights is substantially the same. This is because when these optical phase differences are substantially equal to each other, or when the optical phase differences between at least two reflected lights are substantially equal to each other, the reproduction signal detection level does not fluctuate, so that the slice level for obtaining the binarized data is obtained. This is because it becomes easy to set such as. Further, the reproduction signal level is preferably 0.5 or more in order to secure the S / N which realizes an error rate of 10 -4 or less.

【0023】このような条件を満たす2種類の位相ピッ
トの組み合わせとして、図3に示す丸白ヌキ印、三角白
ヌキ印そして、四角白ヌキ印の3つの組合せが有効であ
る。これらの位相差は、反射系において、位相ピット深
さが、λ/(3N)と2λ/(3N)、λ/(8N)と
3λ/(8N)、λ/(6N)とλ/(3N)に対応す
る。ただし、基板の屈折率をNとする。実際には基板越
しに光を入射させるので、位相ピット深さの組み合わせ
は、λ/(3N)±λ/(90N)と2λ/(3N)±
λ/(90N)、λ/(8N)±λ/(90N)と3λ
/(8N)±λ/(90N)、λ/(6N)±λ/(9
0N)とλ/(3N)±λ/(90N)の範囲であれば
十分な効果がある。
As a combination of two types of phase pits satisfying such conditions, three combinations of a circle white blank mark, a triangle white blank mark and a square white blank mark shown in FIG. 3 are effective. These phase differences are caused by the phase pit depths of λ / (3N) and 2λ / (3N), λ / (8N) and 3λ / (8N), and λ / (6N) and λ / (3N) in the reflection system. ) Corresponds to. However, the refractive index of the substrate is N. Since light is actually incident through the substrate, the combination of phase pit depths is λ / (3N) ± λ / (90N) and 2λ / (3N) ±.
λ / (90N), λ / (8N) ± λ / (90N) and 3λ
/ (8N) ± λ / (90N), λ / (6N) ± λ / (9
0N) and λ / (3N) ± λ / (90N) are effective.

【0024】また、上記実施例では、位相ピットの深さ
の種類は2種類であるが、再生信号レベルが50%以上
を満足できるものであれば、3種類以上の深さのピット
を用いてもよい。
Further, in the above-mentioned embodiment, there are two kinds of the depth of the phase pit, but if the reproduction signal level can satisfy 50% or more, the pits of three or more kinds of depth are used. Good.

【0025】〔実施例2〕次に、本発明の位相ピット記
録をランドグルーブ構造に適用した実施例について説明
する。ランドグルーブ構造は、図4に示すように、光ス
ポット1の直径と略等しい周期の溝を設け、データ領域
17は溝間部と溝部の両方ともに情報トラックに割り当
て、マーク27を記録し高密度記録再生を行なう方式で
ある(特開平5−282705号公報参照)。
[Embodiment 2] Next, an embodiment in which the phase pit recording of the present invention is applied to a land groove structure will be described. As shown in FIG. 4, the land-groove structure is provided with grooves having a period substantially equal to the diameter of the light spot 1, the data area 17 is assigned to both the inter-groove portion and the groove portion as an information track, and marks 27 are recorded to achieve high density. This is a system for recording / reproducing (see Japanese Patent Laid-Open No. 5-28275).

【0026】この場合、問題となる隣接トラック間のク
ロストークは、溝深さをλ/6にすることで低減でき
る。ただし、このクロストーク低減効果は、相変化記
録、光磁気記録には適用できるが、位相ピット24には
適用できないという問題がある。そのため、特開平5−
282705号公報では、図4に示すように、溝間部ア
ドレス部18と溝部アドレス部19とをトラック方向に
分離することでクロストークが生じないようなフォーマ
ットにしてある。ただし、両アドレス部18,19をト
ラック方向に分離した分だけフォーマット効率が低下
し、高密度化ができなくなる。さらに、アドレス部分だ
けでなく位相ピットを用いて情報記録を行うROM部分
においても同様の問題が生じる。
In this case, the problematic crosstalk between adjacent tracks can be reduced by setting the groove depth to λ / 6. However, this crosstalk reducing effect is applicable to phase change recording and magneto-optical recording, but is not applicable to the phase pit 24. Therefore, Japanese Patent Laid-Open No. 5-
According to the publication No. 282705, as shown in FIG. 4, the inter-groove address portion 18 and the groove address portion 19 are separated in the track direction so that crosstalk does not occur. However, the format efficiency is reduced by the amount of separation of both address portions 18 and 19 in the track direction, and high density cannot be achieved. Further, not only the address portion but also the ROM portion for recording information using the phase pits causes the same problem.

【0027】これに対し、本実施例では、図5に示すよ
うに、位相ピットによるアドレス領域20は、溝間部と
溝部が共用し、高密度化を行う。その際、実施例1と同
じく隣接ピット25,26間に光学的位相差を持たせ
る。ただし、相変化記録又は光磁気記録によって記録マ
ーク21を記録したデータ領域17のクロストーク低減
溝構造条件によって、溝深さ23を略λ/6に保つ必要
がある。そこで、図6のアドレス領域拡大図に示すよう
に、溝間部位相ピット深さ21と溝部位相ピット深さ2
2は共にλ/6、実用的にはλ/6±λ/24にすれば
よい。これにより、各部位間の深さの違いは、略λ/
6,λ/3、すなわち光学的位相差として略2π/3,
4π/3であり、図3に四角白ヌキ印で示した位相差に
相当し、同じ信号レベルが得られ、かつ線形の特性を得
ることができる。
On the other hand, in this embodiment, as shown in FIG. 5, the inter-groove portion and the groove portion are commonly used for the address area 20 formed of the phase pits, so that the density is increased. At that time, an optical phase difference is provided between the adjacent pits 25 and 26 as in the first embodiment. However, it is necessary to keep the groove depth 23 at approximately λ / 6 depending on the crosstalk reducing groove structure condition of the data area 17 in which the recording mark 21 is recorded by phase change recording or magneto-optical recording. Therefore, as shown in the enlarged view of the address area in FIG. 6, the inter-groove phase pit depth 21 and the groove phase pit depth 2
2 may both be λ / 6, and practically λ / 6 ± λ / 24. As a result, the difference in depth between the parts is approximately λ /
6, λ / 3, that is, approximately 2π / 3 as the optical phase difference
4π / 3, which corresponds to the phase difference shown by the white square marks in FIG. 3, the same signal level can be obtained, and a linear characteristic can be obtained.

【0028】ランド部とグルーブ部の間隔が0.5μm
であるランドグルーブ構造の光記録媒体の隣接するラン
ド部とグルーブ部に、図5のように直径0.25μm、
深さ70nmの位相ピット26を用いてアドレス部を形
成し、スポット径1.0μmに絞った波長630nmの
レーザ光1で再生し、前記実施例と同様に等化処理を施
したところ良好な再生信号が得られた。
The distance between the land portion and the groove portion is 0.5 μm
As shown in FIG. 5, a diameter of 0.25 μm is formed in the adjacent land portion and groove portion of the optical recording medium having the land-groove structure.
An address portion was formed by using the phase pits 26 having a depth of 70 nm, the reproduction was performed with the laser light 1 having a wavelength of 630 nm which was narrowed down to a spot diameter of 1.0 μm, and an equalization process was performed in the same manner as in the above-described example, and good reproduction was performed. The signal was obtained.

【0029】[0029]

【発明の効果】ROMディスクまたは、プリヘッダー部
分に用いられる位相ピットについての再生信号特性を略
線形化できるので、線形信号処理である等化処理、パー
シャルレスポンス方式を適用した高密度化が位相ピット
記録についても可能となる。
Since the reproduction signal characteristics of the phase pits used in the ROM disk or the pre-header portion can be substantially linearized, the equalization process which is a linear signal process and the high density achieved by applying the partial response method are the phase pits. It is also possible to record.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による位相ピット媒体の略断面図。FIG. 1 is a schematic cross-sectional view of a phase pit medium according to the present invention.

【図2】本発明の位相ピット媒体による再生信号波形説
明図。
FIG. 2 is an explanatory diagram of a reproduced signal waveform by the phase pit medium of the present invention.

【図3】隣接マーク間の位相差と再生信号レベルの説明
図。
FIG. 3 is an explanatory diagram of a phase difference between adjacent marks and a reproduction signal level.

【図4】ランドグルーブ構造の概略図。FIG. 4 is a schematic view of a land groove structure.

【図5】本発明による第2の実施例のディスク構造の説
明図。
FIG. 5 is an explanatory diagram of a disk structure according to a second embodiment of the present invention.

【図6】図5のピット部拡大図。6 is an enlarged view of the pit portion of FIG.

【図7】従来の位相ピット媒体の略断面図。FIG. 7 is a schematic cross-sectional view of a conventional phase pit medium.

【図8】孤立した位相ピットに対する再生信号波形。FIG. 8 shows a reproduced signal waveform for an isolated phase pit.

【図9】媒体別再生信号特性の説明図。FIG. 9 is an explanatory diagram of reproduction signal characteristics for each medium.

【図10】従来の位相ピット媒体における再生信号レベ
ルの低下を説明する図。
FIG. 10 is a diagram for explaining a decrease in reproduction signal level in a conventional phase pit medium.

【図11】二次元等化処理回路の説明図。FIG. 11 is an explanatory diagram of a two-dimensional equalization processing circuit.

【符号の説明】[Explanation of symbols]

1…光スポット、2…位相ピット、3…再生信号、4…
再生信号レベル、10,11…位相ピット、12…格子
点、13〜16…反射光、21…溝間部位相ピット深
さ、22…溝部位相ピット深さ、23…溝深さ、24,
25,26…位相ピット、27…マーク、30…透明基
板、31…ピット、32…反射膜、33…光源、34…
ビームスプリッタ、35…光検出器、36…光ヘッド、
37〜40…反射光、51,52,54〜57…遅延回
路、53,58…加算器
1 ... light spot, 2 ... phase pit, 3 ... reproduction signal, 4 ...
Reproduction signal level, 10, 11 ... Phase pit, 12 ... Lattice point, 13-16 ... Reflected light, 21 ... Inter-groove phase pit depth, 22 ... Groove phase pit depth, 23 ... Groove depth, 24,
25, 26 ... Phase pits, 27 ... Marks, 30 ... Transparent substrate, 31 ... Pits, 32 ... Reflective film, 33 ... Light source, 34 ...
Beam splitter, 35 ... Photodetector, 36 ... Optical head,
37-40 ... Reflected light, 51, 52, 54-57 ... Delay circuit, 53, 58 ... Adder

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 反射膜を備える透明基板上に位相ピット
の配列として情報を記録した領域を有し、前記透明基板
側から照射した光源波長λの光スポットを走査し前記位
相ピット列による反射光の変化を検出することで情報を
再生する光情報記録媒体において、 隣り合う位相ピットの最小間隔は前記光スポット径の略
半分であり、前記位相ピットは深さが異なる複数種類の
位相ピットからなり、各位相ピットの深さは前記位相ピ
ットの配列を前記光スポットで走査するとき各ピットに
対して得られる信号強度が前記反射膜からの反射光レベ
ルと遮光レベルの差を100%とした再生信号レベルの
50%以上となるように設定されていることを特徴とす
る光情報記録媒体。
1. A reflected light by the phase pit row having a region on which information is recorded as an array of phase pits on a transparent substrate provided with a reflective film, scanning a light spot of a light source wavelength λ irradiated from the transparent substrate side. In an optical information recording medium that reproduces information by detecting a change in the phase difference, the minimum interval between adjacent phase pits is approximately half the diameter of the light spot, and the phase pits consist of multiple types of phase pits with different depths. The depth of each phase pit is such that the signal intensity obtained for each pit when the array of phase pits is scanned with the light spot is such that the difference between the reflected light level from the reflective film and the light shield level is 100%. An optical information recording medium, which is set to be 50% or more of a signal level.
【請求項2】 前記位相ピットは深さが異なる第1と第
2の位相ピットからなり、前記透明基板の反射膜での反
射光と前記第1の位相ピットによる反射光の光学的位相
差が前記第1の位相ピットによる反射光と前記第2の位
相ピットによる反射光の位相差に略等しいことを特徴と
する請求項1記載の光情報記録媒体。
2. The phase pits are composed of first and second phase pits having different depths, and the optical phase difference between the light reflected by the reflective film of the transparent substrate and the light reflected by the first phase pits is different from each other. 2. The optical information recording medium according to claim 1, wherein the phase difference between the light reflected by the first phase pit and the light reflected by the second phase pit is substantially equal.
【請求項3】 最短距離で隣接する位相ピットの未記録
部に対する光学的位相差は、夫々略π/2及び略3π/
2であることを特徴とする請求項2記載の光情報記録媒
体。
3. The optical phase difference between the unrecorded portions of the phase pits adjacent to each other at the shortest distance is about π / 2 and about 3π /, respectively.
The optical information recording medium according to claim 2, wherein the optical information recording medium is 2.
【請求項4】 最短距離で隣接する位相ピッチの未記録
部に対する光学的位相差は、夫々略4π/3及び略8π
/3であることを特徴とする請求項2記載の光情報記録
媒体。
4. The optical phase difference with respect to the unrecorded portion having the adjacent phase pitch at the shortest distance is about 4π / 3 and about 8π, respectively.
3. The optical information recording medium according to claim 2, wherein the optical information recording medium is / 3.
【請求項5】 最短距離で隣接する位相ピッチの未記録
部に対する光学的位相差は、夫々略2π/3及び略4π
/3であることを特徴とする請求項1記載の光情報記録
媒体。
5. The optical phase difference with respect to the unrecorded portion having the adjacent phase pitch at the shortest distance is about 2π / 3 and about 4π, respectively.
The optical information recording medium according to claim 1, wherein the optical information recording medium is / 3.
【請求項6】 半径方向に凹凸の周期性を持つ案内溝を
有し、前記周期間隔がスポット径に略等しく、かつ溝部
分と溝間部分の幅が略等しいことを特徴とする請求項2
記載の光情報記録媒体。
6. A guide groove having an irregular periodicity in a radial direction, the periodic interval being substantially equal to a spot diameter, and the widths of the groove portion and the inter-groove portion being substantially equal.
The optical information recording medium described.
【請求項7】 前記透明基板の屈折率をNとするとき、
前記溝部分の深さが略λ/(6×N)であることを特徴
とする請求項8記載の光情報記録媒体。
7. When the refractive index of the transparent substrate is N,
9. The optical information recording medium according to claim 8, wherein the depth of the groove portion is approximately λ / (6 × N).
【請求項8】 前記溝部分及び溝間部分に設けられた位
相ピット深さが略λ/(6×N)であることを特徴とす
る請求項7記載の光情報記録媒体。
8. The optical information recording medium according to claim 7, wherein the depth of the phase pits provided in the groove portion and the inter-groove portion is approximately λ / (6 × N).
【請求項9】 請求項1〜9のいずれか1項記載の光情
報記録媒体と、前記光情報記録媒体を駆動する手段と、
前記光情報記録媒体の透明基板側から光スポットを照射
し反射光を受光する光ヘッドと、前記光ヘッドを前記光
情報記録媒体に対して駆動する光ヘッド駆動手段と、前
記光ヘッドによる受光信号を等化処理する手段とを含む
ことを特徴とする光情報記録再生装置。
9. An optical information recording medium according to claim 1, and means for driving the optical information recording medium,
An optical head that irradiates a light spot from the transparent substrate side of the optical information recording medium and receives reflected light, an optical head driving unit that drives the optical head with respect to the optical information recording medium, and a light reception signal by the optical head. An optical information recording / reproducing apparatus comprising:
【請求項10】 請求項1〜9のいずれか1項記載の光
情報記録媒体と、前記光情報記録媒体を駆動する手段
と、前記光情報記録媒体の透明基板側から光スポットを
照射し反射光を受光する光ヘッドと、前記光ヘッドを前
記光情報記録媒体に対して駆動する光ヘッド駆動手段
と、前記光ヘッドによる受光信号を多値化処理する手段
とを含むことを特徴とする光情報記録再生装置。
10. The optical information recording medium according to claim 1, a means for driving the optical information recording medium, and a light spot irradiated and reflected from the transparent substrate side of the optical information recording medium. An optical head comprising: an optical head for receiving light; an optical head driving means for driving the optical head with respect to the optical information recording medium; and a means for multi-value processing a light reception signal from the optical head. Information recording / reproducing apparatus.
【請求項11】 反射膜を備える透明基板上に位相ピッ
トの配列として情報を記録し、前記透明基板側から照射
した光源波長λの光スポットを走査し前記位相ピット列
による反射光の変化を検出することで情報を再生する光
情報記録再生方法において、 隣り合う位相ピットの最小間隔は前記光スポット径の略
半分であり、前記位相ピットは深さが異なる第1と第2
の位相ピットからなり、前記透明基板の表面での反射光
と前記第1の位相ピットによる反射光の光学的位相差が
前記第1の位相ピットによる反射光と前記第2の位相ピ
ットによる反射光の位相差に略等しいことを特徴とする
光情報記録再生方法。
11. Information is recorded as an array of phase pits on a transparent substrate having a reflective film, and a light spot of a light source wavelength λ irradiated from the transparent substrate side is scanned to detect a change in reflected light due to the phase pit row. In the optical information recording / reproducing method for reproducing information by doing so, the minimum interval between adjacent phase pits is approximately half of the light spot diameter, and the phase pits have different depths from the first and second.
Optical phase difference between the light reflected on the surface of the transparent substrate and the light reflected by the first phase pit, the light reflected by the first phase pit and the light reflected by the second phase pit. The optical information recording / reproducing method is characterized in that it is substantially equal to the phase difference.
JP6156956A 1994-07-08 1994-07-08 Optical information recording medium and optical information recording / reproducing apparatus Withdrawn JPH0831015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6156956A JPH0831015A (en) 1994-07-08 1994-07-08 Optical information recording medium and optical information recording / reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6156956A JPH0831015A (en) 1994-07-08 1994-07-08 Optical information recording medium and optical information recording / reproducing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004000039A Division JP2004139739A (en) 2004-01-05 2004-01-05 Optical information recording medium and optical information reproducing method

Publications (1)

Publication Number Publication Date
JPH0831015A true JPH0831015A (en) 1996-02-02

Family

ID=15639005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6156956A Withdrawn JPH0831015A (en) 1994-07-08 1994-07-08 Optical information recording medium and optical information recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JPH0831015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760299B1 (en) 1999-06-30 2004-07-06 Sharp Kabushiki Kaisha Optical disc having pits of different depth formed therein, optical disc device for reproducing the same, and method of reproduction
US7339875B2 (en) 2003-11-06 2008-03-04 Hitachi, Ltd. Information storage medium, playback and recording method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760299B1 (en) 1999-06-30 2004-07-06 Sharp Kabushiki Kaisha Optical disc having pits of different depth formed therein, optical disc device for reproducing the same, and method of reproduction
US7072251B2 (en) 1999-06-30 2006-07-04 Sharp Kabushiki Kaisha Optical disc having pits of different depth formed therein, optical disc device for reproducing the same, and method of reproduction
US7339875B2 (en) 2003-11-06 2008-03-04 Hitachi, Ltd. Information storage medium, playback and recording method

Similar Documents

Publication Publication Date Title
US6118752A (en) Optical information recording medium offset pre-pit array indicating identification information
US6487147B2 (en) Optical information recording medium and an optical information recording/reproduction device
EP0871162A2 (en) Phase change recording medium suitable for tracking servo control based on a differential phase detection tracking method
US5808988A (en) Reproduction of optical information by one-beam optics with reduced crosstalk as recorded in multi-phases and multi-levels at staggered lattice points, and apparatus and recording medium therefor
JPH0721569A (en) Optical disk, optical disk reproducing device and recording and reproducing method for optical disk
JP3227976B2 (en) Optical information recording member, recording / reproducing method, and recording / reproducing device
US5517485A (en) Optical information recording medium having first and second tracks and apparatus for recording to and reproducing from the medium
US6567368B1 (en) Optical recording medium and method and apparatus of reproducing the same
US6014363A (en) Phase change optical disk medium
JPH0831015A (en) Optical information recording medium and optical information recording / reproducing apparatus
JPH0877599A (en) Recorder and optical disk reproducing device
EP1772862B1 (en) Manufacturing method for optical recording medium and optical recording medium
JP2000076718A (en) Magneto-optical recording medium
JP3093364B2 (en) Optical recording medium and reproducing apparatus therefor
US6744706B2 (en) Optical system with tracking controller
JP2004139739A (en) Optical information recording medium and optical information reproducing method
JP2568225B2 (en) Substrate for optical memory device
JPH09147366A (en) Optical information recording medium and optical information recording / reproducing apparatus
JPH01211247A (en) Optical disk device
JP2001256646A (en) Optical information recording / reproducing method
KR100670476B1 (en) Optical record carrier and its playback method
JPH10302404A (en) Copy preventing recording medium
JP2641055B2 (en) Optical information recording medium
JPH06251423A (en) Optical disc and optical disc drive
JPH09198715A (en) Disc-shaped optical recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040105

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040115