[go: up one dir, main page]

JPH08321543A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH08321543A
JPH08321543A JP12666095A JP12666095A JPH08321543A JP H08321543 A JPH08321543 A JP H08321543A JP 12666095 A JP12666095 A JP 12666095A JP 12666095 A JP12666095 A JP 12666095A JP H08321543 A JPH08321543 A JP H08321543A
Authority
JP
Japan
Prior art keywords
insulating film
polyimide
semiconductor device
wiring layer
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12666095A
Other languages
Japanese (ja)
Inventor
Akira Hatsuya
明 初谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12666095A priority Critical patent/JPH08321543A/en
Publication of JPH08321543A publication Critical patent/JPH08321543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: To obtain a semiconductor device of high reliability by preventing bubbles from being generated in a narrow valley between wiring layers, when a polyimide insulating film is formed. CONSTITUTION: On an insulating film, a first wiring layer 21 is formed, on which surface NMP (N-methyl-pyrrolidone) solution 24, main solvent of polyimide coating solution, is spread. Next, the polyimide coating solution is subjected to spin-on-coating. By heat-treating the whole of a wafer, the polyimide coating solution is baked, and a polyimide insulating film turning to an interlayer insulating film is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリイミド系絶縁膜で
層間絶縁とファイナルパッシベーションを行った半導体
装置の、配線層の微細化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to miniaturization of wiring layers in a semiconductor device in which interlayer insulation and final passivation are performed with a polyimide-based insulation film.

【0002】[0002]

【従来の技術】ポリイミド系絶縁膜は、保護膜を安価に
形成できることから、半導体装置の分野、特に多層配線
の層間絶縁膜として広く使われており、ウェハ上にポリ
イミド原液をスピンオン塗布し、これを焼成することに
よって得ることができる。一方、近年の集積回路は、更
なる高集積化、高密度化により、配線層の線幅および配
線層間の距離が狭められ、その値がサブミクロン(1.
0μ以下)の設計ルールが実用化されている。
2. Description of the Related Art A polyimide-based insulating film is widely used in the field of semiconductor devices, especially as an interlayer insulating film for multi-layer wiring because a protective film can be formed at low cost. Can be obtained by firing. On the other hand, in recent integrated circuits, the line width of the wiring layers and the distance between the wiring layers are narrowed due to higher integration and higher density, and the values are submicron (1.
The design rule of 0 μ or less) has been put to practical use.

【0003】また、配線層間の距離が2.0μ程度のも
のでも、本願出願人において出願された特開平02ー1
09102号に記載したように、第1層目配線層の上を
シリコン窒化膜で被覆したものでは、配線層間の間隔が
シリコン窒化膜の膜厚の分だけ狭まるので、上記サブミ
クロンルールの間隔と同様、極めて狭いものになる。図
3は前記特開平02ー109102号に記載されている
Bi−CMOS集積回路を示す断面図である。同図には
P型半導体基板1上のN型エピタキシャル層に集積化し
たNPNトランジスタ2とNチャンネル型MOSFET
3が示されており、4はP+型分離領域、5はN+型埋
め込み層、6はP型ベース領域、7はN+型エミッタ領
域、8はP+型埋め込み層、9はP型ウェル領域、10
はN+型ソース・ドレイン領域、11はゲート電極、1
2は第1層目の配線層、13はシリコン窒化膜、14は
ポリイミド絶縁膜、15は第2層目の配線層、16は最
終パッシベーションとしてのポリイミド絶縁膜である。
Further, even if the distance between the wiring layers is about 2.0 μ, Japanese Patent Application Laid-Open No. 02-1 filed by the applicant of the present application.
As described in No. 09102, in the case where the first wiring layer is covered with the silicon nitride film, the distance between the wiring layers is narrowed by the film thickness of the silicon nitride film. Similarly, it will be extremely narrow. FIG. 3 is a sectional view showing a Bi-CMOS integrated circuit described in the above-mentioned Japanese Patent Laid-Open No. 02-109102. The figure shows an NPN transistor 2 and an N-channel MOSFET integrated in an N-type epitaxial layer on a P-type semiconductor substrate 1.
3 is shown, 4 is a P + type isolation region, 5 is an N + type buried layer, 6 is a P type base region, 7 is an N + type emitter region, 8 is a P + type buried layer, 9 is a P type well region, 10
Is an N + type source / drain region, 11 is a gate electrode, 1
Reference numeral 2 is a first wiring layer, 13 is a silicon nitride film, 14 is a polyimide insulating film, 15 is a second wiring layer, and 16 is a polyimide insulating film as a final passivation.

【0004】前記シリコン窒化膜13は、ポリイミド絶
縁膜14、16のパッシベーション効果に加えて更に強
固なパッシベーション効果を得る目的で設けたものであ
る。シリコン窒化膜13を第1層目配線層12の上に配
置することにより、これをポリイミド絶縁膜14の上に
配置した場合のポリイミドが発生するガスによる膨れ不
良と製造の困難さを防止し、第1層目配線層12の下に
配置した場合のコンタクトホール形成時のエッチングの
困難さを回避している。これにより、シリコン窒化膜1
3のパッシベーション効果を得ると共に、ポリイミド絶
縁膜を層間絶縁膜に用いたことに依る表面平坦化の効果
を同時に得ることができる かかる装置においては、図4に示すように、第1層目配
線層12と第1層目配線層12との間隔が2.0μ程度
であっても、膜厚0.6μ程度のシリコン窒化膜13を
形成することにより両者の間隔(図示X)は0.8μ程
度となり、サブミクロンルールのものと同様、1.0μ
以下の狭い空間が発生することになる。
The silicon nitride film 13 is provided for the purpose of obtaining a stronger passivation effect in addition to the passivation effect of the polyimide insulating films 14 and 16. By disposing the silicon nitride film 13 on the first wiring layer 12, it is possible to prevent swelling defects and manufacturing difficulty due to the gas generated by polyimide when the silicon nitride film 13 is arranged on the polyimide insulating film 14. The difficulty of etching at the time of forming a contact hole when the wiring layer is arranged below the first wiring layer 12 is avoided. As a result, the silicon nitride film 1
In addition to obtaining the passivation effect of No. 3 and the effect of planarizing the surface due to the use of the polyimide insulating film as the interlayer insulating film at the same time, in such a device, as shown in FIG. Even if the distance between the first wiring layer 12 and the first wiring layer 12 is about 2.0 μ, the distance (X) between them is about 0.8 μ by forming the silicon nitride film 13 having a thickness of about 0.6 μ. Is the same as the submicron rule, 1.0μ
The following narrow spaces will occur.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ポリイ
ミド絶縁膜は、先ずポリイミド塗布液をウェハ上にスピ
ンオフ法により塗布し、300乃至400℃の熱処理を
加えることによって形成するものであるが、前記ポリイ
ミド塗布液が比較的粘性の高い(10Poise程度)
液体であるため、上記のような狭い空間があるとその空
間全てを充満することが困難になり、図4に示すように
狭い空間内に気泡17を生じてしまうことが明らかにな
った。この様な気泡17が生じると、後工程での熱処理
により気泡17内部の空気が膨張して、外観不良や配線
の断線不良を多発するという欠点を有していた。
However, the polyimide insulating film is formed by first applying a polyimide coating solution on a wafer by a spin-off method and then applying a heat treatment at 300 to 400 ° C. Liquid is relatively viscous (about 10 Poise)
Since it is a liquid, it becomes difficult to fill the entire space if there is such a narrow space, and it becomes clear that bubbles 17 are generated in the narrow space as shown in FIG. When such bubbles 17 are generated, the air inside the bubbles 17 expands due to the heat treatment in the subsequent process, and there is a drawback that appearance defects and wiring disconnection defects frequently occur.

【0006】また、比較的粘性の低いオリイミド塗布液
を用いることで解決することも可能ではあるが、自ずと
限度があるし、層間絶縁膜として必要になるほどの厚い
膜厚を得ることが困難になる。
Although it is possible to solve the problem by using an oriimide coating solution having a relatively low viscosity, there is a limit naturally, and it becomes difficult to obtain a film thickness as thick as an interlayer insulating film. .

【0007】[0007]

【課題を解決するための手段】本発明は上記従来の欠点
に鑑みなされたもので、ポリイミド塗布液を塗布する前
工程として、粘性の低いポリイミド塗布液の主溶媒のみ
をウェハ上に塗布し、次いでポリイミド塗布液を塗布す
ることにより、気泡を生じることのない層間絶縁膜の製
造方法を提供するものである。
Means for Solving the Problems The present invention has been made in view of the above-mentioned conventional drawbacks. As a pre-process of applying a polyimide coating liquid, only a main solvent of a low-viscosity polyimide coating liquid is applied onto a wafer, Then, a polyimide coating solution is applied to provide a method for producing an interlayer insulating film that does not generate bubbles.

【0008】[0008]

【作用】本発明によれば、主溶媒自体の粘性は低いの
で、濡れ性が高く狭い空間内部にも容易に塗布すること
ができる。そして、ポリイミド塗布液は主溶媒を含むも
のであるから、塗布時の接触角核が下がり、主溶媒を介
して狭い空間内部にもポリイミド塗布液を充満させるこ
とができる。
According to the present invention, since the viscosity of the main solvent itself is low, it has high wettability and can be easily applied even in a narrow space. Since the polyimide coating liquid contains the main solvent, the contact angle nucleus during coating is lowered, and the polyimide coating liquid can be filled in the narrow space through the main solvent.

【0009】[0009]

【実 施 例】以下に本発明の一実施例を図1と図2を参
照しながら、工程順に詳細に説明する。 (1)BIP素子、MOS素子等を形成した集積回路基
板を形成する。集積回路は、BIP型、MOS型、ある
いは図3に示したようなBi−CMOS型がある。各素
子は、イオン注入や熱拡散など、周知の手法により形成
される。
[Embodiment] An embodiment of the present invention will be described in detail below in the order of steps with reference to FIGS. 1 and 2. (1) An integrated circuit substrate having a BIP element, a MOS element, etc. is formed. The integrated circuit is of a BIP type, a MOS type, or a Bi-CMOS type as shown in FIG. Each element is formed by a known method such as ion implantation or thermal diffusion.

【0010】(2)図1Aを参照して、基板を被覆する
シリコン酸化膜20の上に、膜厚0.8〜1.2μのア
ルミニウムまたはアルミニウム・シリコンを蒸着あるい
はスパッタ法により被着せしめ、これをRIE等の手法
でパターニングすることにより第1層目の配線層21を
形成する。シリコン酸化膜20の所望の領域にはコンタ
クトホールが設けられ、第1層目の配線層21は前記コ
ンタクトホールを介して上記回路素子を形成する拡散領
域とコンタクトし、シリコン酸化膜20の上を延在して
各回路素子の電気的接続を行う。この実施例では、第1
の配線層21の線幅を2.0μ、第1の配線層21と第
1の配線層21との間隔(最小設計ルール)を2.0μ
とする。第1の配線層21の側壁はほぼ垂直である。
(2) Referring to FIG. 1A, aluminum or aluminum-silicon having a film thickness of 0.8 to 1.2 μ is deposited on the silicon oxide film 20 covering the substrate by vapor deposition or sputtering, By patterning this by a method such as RIE, the first wiring layer 21 is formed. A contact hole is provided in a desired region of the silicon oxide film 20, and the first wiring layer 21 makes contact with the diffusion region forming the circuit element through the contact hole, and the silicon oxide film 20 is covered with the contact hole. It extends and electrically connects each circuit element. In this embodiment, the first
The wiring width of the wiring layer 21 is 2.0 μ, and the distance between the first wiring layer 21 and the first wiring layer 21 (minimum design rule) is 2.0 μ.
And The side wall of the first wiring layer 21 is almost vertical.

【0011】(2)図1Bを参照して、全面に膜厚0.
5〜0.7μのシリコン窒化膜22を形成する。融点の
低いアルミを形成した後であるので、シリコン窒化膜2
2は低温形成が可能なプラズマCVD法によって形成す
る。シリコン窒化膜22はステップカバレイジがそれ程
高くないので、第1の配線層21の側壁には図示するよ
うに若干オーバーハングした状態で被着される。また、
シリコン窒化膜22の膜厚の2倍の分だけ、第1の配線
層22間の距離(図示X)が狭まり、ここに幅狭の空間
を形成することになる。この例では、シリコン窒化膜の
膜厚を0.6μとすれば、間隔Xは0.8μとなる。深
さは0.8〜1.2μである。
(2) Referring to FIG. 1B, a film thickness of 0.
A silicon nitride film 22 of 5 to 0.7 μm is formed. Since the aluminum having a low melting point is formed, the silicon nitride film 2
2 is formed by the plasma CVD method which can be formed at a low temperature. Since the step coverage of the silicon nitride film 22 is not so high, the silicon nitride film 22 is deposited on the side wall of the first wiring layer 21 in a slightly overhung state as shown in the drawing. Also,
The distance (X in the figure) between the first wiring layers 22 is reduced by twice the thickness of the silicon nitride film 22, and a narrow space is formed here. In this example, if the thickness of the silicon nitride film is 0.6 μ, the interval X is 0.8 μ. The depth is 0.8 to 1.2μ.

【0012】(3)図1Cを参照して、シリコン窒化膜
22の表面に、ポリイミド塗布液の主溶媒23を塗布す
る。ポリイミド塗布液は、主溶媒としのNMP(N・メ
チル・ピロリドン)に高分子ポリマーであるポリアミド
酸を50重量%以上含む溶液であるので、主溶媒23と
してはポリアミド酸を含まない純粋な前記NMP液を使
用する。NMP液自体は粘性が極めて低く、水と同程度
のさらっとした液体であるから、シリコン窒化膜22の
表面には極めて薄い膜厚で、表面が濡れる程度の状態で
塗布される。
(3) Referring to FIG. 1C, the main solvent 23 of the polyimide coating liquid is applied to the surface of the silicon nitride film 22. Since the polyimide coating solution is a solution containing 50% by weight or more of polyamic acid, which is a high-molecular polymer, in NMP (N.methylpyrrolidone) as the main solvent, the pure NMP containing no polyamic acid as the main solvent 23 is used. Use liquid. Since the NMP liquid itself has an extremely low viscosity and is a liquid that is as dry as water, it is applied to the surface of the silicon nitride film 22 with an extremely thin film thickness in such a condition that the surface is wet.

【0013】(4)図2を参照して、シリコン窒化膜2
2の表面が主溶媒23液で濡れている状態で、表面にポ
リイミド塗布液を塗布する。ポリイミド塗布液自体の粘
性は高いものの、シリコン窒化膜22表面が主溶媒23
液で濡れているので、主溶媒23液の作用により、極め
て狭い空間である第1の配線層21間の空間も確実にポ
リイミド塗布液で充満できる。
(4) Referring to FIG. 2, silicon nitride film 2
While the surface of No. 2 is wet with the main solvent 23 liquid, the polyimide coating liquid is applied to the surface. Although the polyimide coating solution itself has a high viscosity, the surface of the silicon nitride film 22 is the main solvent 23.
Since it is wet with the liquid, the space between the first wiring layers 21, which is an extremely narrow space, can be surely filled with the polyimide coating liquid by the action of the main solvent 23 liquid.

【0014】そして、ウェハ全体に300乃至400
℃、数十分の熱処理を与えることにより、ポリイミド塗
布液中のポリアミド酸を脱水縮合反応させてイミド結合
させることにより、膜厚1.5〜3.0μのポリイミド
絶縁膜24を形成する。上記主溶媒の塗布とポリイミド
塗布液の塗布はスピンオン塗布法により行う。例えばス
ピンオン塗布装置に主溶媒23用の第1のノズルとポリ
イミド塗布液用の第2のノズルとの2種類のノズルを用
意し、先ず第1のノズルから主溶媒23液をウェハ上に
供給し、ウェハを回転させてスピンオン塗布し、次いで
回転を止めた後第2のノズルからポリイミド塗布液を供
給し、ウェハを再度回転させてスピンオン塗布する。こ
の様に2種類のノズルを用意すれば、主溶媒23液の塗
布とポリイミド塗布液の塗布との間に時間的な空きがな
いので、特に製造工程を煩雑にすることがなく、主溶媒
23液が乾燥するというような不都合も回避できる。も
ちろん、主溶媒23液を入れた槽にウェハを浸漬するよ
うな手法でもかまわない。
Then, 300 to 400 is applied to the entire wafer.
By subjecting the polyamic acid in the polyimide coating solution to a dehydration condensation reaction to form an imide bond by heat treatment at a temperature of several tens of minutes, a polyimide insulating film 24 having a thickness of 1.5 to 3.0 μm is formed. The application of the main solvent and the application of the polyimide coating solution are performed by the spin-on coating method. For example, a spin-on coating apparatus is provided with two types of nozzles, a first nozzle for the main solvent 23 and a second nozzle for the polyimide coating liquid. First, the main solvent 23 liquid is supplied onto the wafer from the first nozzle. Then, the wafer is rotated for spin-on coating, then the rotation is stopped, and then the polyimide coating solution is supplied from the second nozzle, and the wafer is rotated again for spin-on coating. If two types of nozzles are prepared in this manner, there is no time gap between the application of the main solvent 23 liquid and the application of the polyimide coating liquid, so that the main solvent 23 is not particularly complicated. The inconvenience that the liquid dries can be avoided. Of course, a method of immersing the wafer in a bath containing the main solvent solution 23 may be used.

【0015】このポリイミド絶縁膜24上に多層配線層
を形成する場合は、図4と同様に、先ずポリイミド絶縁
膜24に層間接続用のスルーホールを形成し、アルミ材
料の堆積とパターニングにより第2層目の配線層を形成
し、その上に再度ポリイミド絶縁膜(線間が狭くないの
で、主溶媒による前処理は不要である)を形成してパッ
シベーション皮膜とする。層間絶縁膜としてのポリイミ
ド絶縁膜24より上の絶縁膜は、最終パッシベーション
皮膜までを全てポリイミド系の絶縁膜とする。これで、
有機系絶縁膜(ポリイミド絶縁膜)の上に無機系絶縁膜
(シリコン酸化膜など)を形成することの、製造の困難
さを回避する。
In the case of forming a multi-layer wiring layer on the polyimide insulating film 24, first, through holes for interlayer connection are first formed in the polyimide insulating film 24 as in FIG. A wiring layer of a layer is formed, and a polyimide insulating film (pre-treatment with a main solvent is not necessary because the distance between lines is not narrow) is formed thereon again to form a passivation film. The insulating film above the polyimide insulating film 24 serving as an interlayer insulating film is a polyimide insulating film up to the final passivation film. with this,
Avoid the manufacturing difficulty of forming an inorganic insulating film (such as a silicon oxide film) on an organic insulating film (polyimide insulating film).

【0016】以上に説明した本発明に依れば、配線層間
に狭い空間を形成する装置においても、主溶媒23液の
前処理を行うことによってポリイミド絶縁膜24の気泡
を防止することができるものである。尚、上記実施例は
配線の上にシリコン窒化膜22を形成した結果、狭い空
間が生じたものであるが、シリコン窒化膜22を具備せ
ず、例えば配線層21と配線層21との間隔が1.0μ
以下のサブミクロンルールの半導体装置においても有用
な技術である。この場合は、第1の配線層21形成後、
主溶媒23液の前処理とポリイミド絶縁膜24の形成を
行うので、主溶媒23液はアルミ表面を被覆することに
なる。
According to the present invention described above, even in a device for forming a narrow space between wiring layers, it is possible to prevent bubbles in the polyimide insulating film 24 by pretreatment with the main solvent 23 liquid. Is. It should be noted that in the above-mentioned embodiment, a narrow space is generated as a result of forming the silicon nitride film 22 on the wiring, but the silicon nitride film 22 is not provided, and for example, the distance between the wiring layers 21 and 21 is 1.0μ
This technique is also useful in the following semiconductor devices of the submicron rule. In this case, after forming the first wiring layer 21,
Since the pretreatment of the main solvent 23 liquid and the formation of the polyimide insulating film 24 are performed, the main solvent 23 liquid covers the aluminum surface.

【0017】[0017]

【発明の効果】以上に説明したとおり、本発明に依れ
ば、配線層間に極めて狭い空間を形成する装置において
も、主溶媒23液の前処理によってポリイミド絶縁膜2
4の気泡を防止し、前記狭い空間をポリイミド絶縁膜2
4で充満することが可能な半導体装置の製造方法を提供
するものである。これにより、気泡内部の空気が膨張す
ることに起因する、膨れ不良等を防止でき、半導体装置
の歩留まり向上に寄与できるものである。
As described above, according to the present invention, even in a device for forming an extremely narrow space between wiring layers, the polyimide insulating film 2 is pretreated by the pretreatment of the main solvent 23 liquid.
4 air bubbles are prevented, and the narrow space is filled with the polyimide insulating film 2
The present invention provides a method for manufacturing a semiconductor device that can be filled with the method described in item 4. As a result, it is possible to prevent a swollen defect and the like due to the expansion of the air inside the bubbles, which can contribute to the improvement of the yield of the semiconductor device.

【0018】さらに、本発明によりポリイミド絶縁膜2
4を用いつつ配線層間の微細化を更に押し進めることが
できる。従って、BI−CMOSのような、ポリイミド
絶縁膜だけではブロッキング効果が不足するMOS素子
を具備した半導体装置においても、シリコン窒化膜で補
強することにより、CVD絶縁膜やSOGなどの完全無
機絶縁膜を用いるまでもなくポリイミド絶縁膜により安
価に製造できるという利点を持つものである。
Further, according to the present invention, the polyimide insulating film 2
4 can be used to further promote miniaturization between wiring layers. Therefore, even in a semiconductor device including a MOS element such as BI-CMOS which is insufficient in blocking effect only with a polyimide insulating film, a completely inorganic insulating film such as a CVD insulating film or SOG can be formed by reinforcing it with a silicon nitride film. It has the advantage that it can be manufactured inexpensively by using a polyimide insulating film without using it.

【0019】さらに、粘性の低い溶液を用いる手法に比
べて、絶縁膜の膜厚を大にできるという効果をも有する
ものである。
Further, it has an effect that the thickness of the insulating film can be increased as compared with the method using a solution having a low viscosity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を説明する断面図である。FIG. 1 is a cross-sectional view illustrating a manufacturing method of the present invention.

【図2】本発明の製造方法を説明する断面図である。FIG. 2 is a cross-sectional view illustrating the manufacturing method of the present invention.

【図3】従来例を説明する断面図である。FIG. 3 is a sectional view illustrating a conventional example.

【図4】従来例を説明する断面図である。FIG. 4 is a sectional view illustrating a conventional example.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁膜の上に電極材料を形成し、これを
パターニングして配線層を形成する工程と、 前記配線層および前記絶縁膜の上にポリイミド塗布液を
塗布し、これを焼成してポリイミド絶縁膜を形成する工
程を具備する半導体装置の製造方法において、 前記ポリイミド塗布液の塗布前に、前記ポリイミド塗布
液の主溶媒液で前処理を行う工程を具備することを特徴
とする半導体装置の製造方法。
1. A step of forming an electrode material on an insulating film and patterning the electrode material to form a wiring layer; and a step of applying a polyimide coating liquid on the wiring layer and the insulating film and baking the same. In a method for manufacturing a semiconductor device, which comprises a step of forming a polyimide insulating film by using a semiconductor device, the method includes a step of performing a pretreatment with a main solvent liquid of the polyimide coating liquid before the coating of the polyimide coating liquid. Device manufacturing method.
【請求項2】 隣接する前記配線層間の間隔が1.0ミ
クロン以下であることを特徴とする請求項1記載の半導
体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the distance between the adjacent wiring layers is 1.0 micron or less.
【請求項3】 絶縁膜の上に電極材料を形成し、これを
パターニングして配線層を形成する工程と、 前記電極配線層の表面および前記絶縁膜の表面を被覆す
るシリコン窒化膜を形成する工程と、 前記シリコン窒化膜の表面にポリイミド塗布液を塗布
し、これを焼成してポリイミド絶縁膜を形成する工程と
を具備する半導体装置の製造方法において、 前記ポリイミド塗布液の塗布前に、前記ポリイミド塗布
液の主溶媒液で前処理を行う工程を具備することを特徴
とする半導体装置の製造方法。
3. A step of forming an electrode material on an insulating film and patterning the same to form a wiring layer, and forming a silicon nitride film covering the surface of the electrode wiring layer and the surface of the insulating film. In a method for manufacturing a semiconductor device, which comprises a step, a step of applying a polyimide coating solution to the surface of the silicon nitride film, and forming a polyimide insulating film by baking the same, before applying the polyimide coating solution, A method of manufacturing a semiconductor device, comprising a step of performing a pretreatment with a main solvent liquid of a polyimide coating liquid.
【請求項4】 隣接する前記配線層間の、前記シリコン
窒化膜とシリコン窒化膜との間隔が1.0ミクロン以下
であることを特徴とする請求項3記載の半導体装置の製
造方法。
4. The method of manufacturing a semiconductor device according to claim 3, wherein the distance between the silicon nitride film and the silicon nitride film between adjacent wiring layers is 1.0 micron or less.
【請求項5】 前記ポリシリコン塗布液の主溶媒液がエ
ヌ・メチル・ピロリドンであることを特徴とする請求項
1または請求項3記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein the main solvent liquid of the polysilicon coating liquid is N-methylpyrrolidone.
【請求項6】 前記配線層は第1層目の配線層であり、
前記ポリイミド絶縁膜は層間絶縁膜であり、且つ、層間
絶縁膜からファイナルパッシベーション膜までの全ての
絶縁膜をポリイミド系の絶縁膜で構成することを特徴と
する請求項3記載の半導体装置の製造方法。
6. The wiring layer is a first wiring layer,
4. The method of manufacturing a semiconductor device according to claim 3, wherein the polyimide insulating film is an interlayer insulating film, and all the insulating films from the interlayer insulating film to the final passivation film are made of a polyimide insulating film. .
JP12666095A 1995-05-25 1995-05-25 Manufacture of semiconductor device Pending JPH08321543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12666095A JPH08321543A (en) 1995-05-25 1995-05-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12666095A JPH08321543A (en) 1995-05-25 1995-05-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH08321543A true JPH08321543A (en) 1996-12-03

Family

ID=14940722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12666095A Pending JPH08321543A (en) 1995-05-25 1995-05-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH08321543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120348A1 (en) * 2007-03-29 2008-10-09 Fujitsu Microelectronics Limited Process for producing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120348A1 (en) * 2007-03-29 2008-10-09 Fujitsu Microelectronics Limited Process for producing semiconductor device
US20100009544A1 (en) * 2007-03-29 2010-01-14 Fujitsu Microelectronics Limited Manufacturing method of semiconductor device
JP5375601B2 (en) * 2007-03-29 2013-12-25 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US8629055B2 (en) 2007-03-29 2014-01-14 Fujitsu Semiconductor Limited Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
EP0667036B1 (en) Chip interconnection having a breathable etch stop layer
US5665657A (en) Spin-on-glass partial etchback planarization process
JP3193335B2 (en) Method for manufacturing semiconductor device
US6271119B1 (en) Method for making semiconductor device
JPH10335458A (en) Semiconductor device and manufacturing method thereof
US5502006A (en) Method for forming electrical contacts in a semiconductor device
KR20000057879A (en) Semiconductor device having interconnection implemented by refractory metal nitride layer and refractory metal silicide layer and process of fabrication thereof
JPH08203887A (en) Method for manufacturing semiconductor device
JPH06244185A (en) Wiring structure and its manufacture
KR970052338A (en) Manufacturing method of semiconductor device
JPH08321543A (en) Manufacture of semiconductor device
KR940005723B1 (en) Semiconductor devices
JPH10163198A (en) Semiconductor device and its manufacture
JPH08330296A (en) Manufacture of semiconductor device
JPS6165459A (en) Manufacture of semiconductor device
JPH08306681A (en) Formation of flattened coat insulating film
JPH098131A (en) Manufacture of semiconductor device
KR100187687B1 (en) Metal layer formation method of semiconductor device
JPS60217644A (en) Manufacture of semiconductor device
JP3473302B2 (en) Method for forming coating type insulating film, method for manufacturing semiconductor device, and semiconductor device
KR100197766B1 (en) Manufacturing Method of Semiconductor Device
KR0127689B1 (en) Forming method for multi layered metal line
KR100199344B1 (en) Method of forming semiconductor device
KR100241536B1 (en) Method of forming interlayer insulating film of semiconductor device
KR19980030940A (en) Method of forming interlayer dielectric film of semiconductor device