JPH08322824A - Anesthetic depth detector - Google Patents
Anesthetic depth detectorInfo
- Publication number
- JPH08322824A JPH08322824A JP7136948A JP13694895A JPH08322824A JP H08322824 A JPH08322824 A JP H08322824A JP 7136948 A JP7136948 A JP 7136948A JP 13694895 A JP13694895 A JP 13694895A JP H08322824 A JPH08322824 A JP H08322824A
- Authority
- JP
- Japan
- Prior art keywords
- living body
- blood pressure
- heartbeat cycle
- fluctuation signal
- fluctuation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003444 anaesthetic effect Effects 0.000 title abstract description 10
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 11
- 206010002091 Anaesthesia Diseases 0.000 claims description 83
- 230000037005 anaesthesia Effects 0.000 claims description 83
- 230000036772 blood pressure Effects 0.000 claims description 68
- 238000001514 detection method Methods 0.000 claims description 17
- 238000000605 extraction Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000036391 respiratory frequency Effects 0.000 description 8
- 230000002889 sympathetic effect Effects 0.000 description 7
- 230000006698 induction Effects 0.000 description 6
- 210000005036 nerve Anatomy 0.000 description 5
- 230000011514 reflex Effects 0.000 description 5
- 230000000747 cardiac effect Effects 0.000 description 4
- 206010005746 Blood pressure fluctuation Diseases 0.000 description 3
- 210000001367 artery Anatomy 0.000 description 3
- 108091008698 baroreceptors Proteins 0.000 description 3
- 210000003414 extremity Anatomy 0.000 description 3
- 230000008035 nerve activity Effects 0.000 description 3
- 210000001774 pressoreceptor Anatomy 0.000 description 3
- 230000000241 respiratory effect Effects 0.000 description 3
- 230000036760 body temperature Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 210000000720 eyelash Anatomy 0.000 description 2
- 210000005037 parasympathetic nerve Anatomy 0.000 description 2
- 210000001747 pupil Anatomy 0.000 description 2
- 230000036387 respiratory rate Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000001013 sinoatrial node Anatomy 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000035488 systolic blood pressure Effects 0.000 description 2
- 230000001515 vagal effect Effects 0.000 description 2
- 210000001186 vagus nerve Anatomy 0.000 description 2
- 230000001457 vasomotor Effects 0.000 description 2
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 239000003983 inhalation anesthetic agent Substances 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 210000002321 radial artery Anatomy 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 210000001034 respiratory center Anatomy 0.000 description 1
- 210000003291 sinus of valsalva Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は生体の麻酔深度を検出す
るための装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting the depth of anesthesia in a living body.
【0002】[0002]
【従来の技術】手術などにおいて患者に麻酔を施す場合
には、そのストレスから患者を保護するために適度な麻
酔深度を維持することが望まれる。そのために、従来に
おいては、たとえば、手術刺激に対する患者の血圧値や
心拍数や呼吸数などの変化を監視したり、患者の睫毛反
射や瞳孔の大きさや四肢末梢の色調、体温などを観察し
たりすることに基づいて麻酔深度を主観的或いは経験的
に把握することが行われている。2. Description of the Related Art When a patient is anesthetized during surgery or the like, it is desired to maintain an appropriate depth of anesthesia in order to protect the patient from the stress. Therefore, conventionally, for example, to monitor changes in the patient's blood pressure, heart rate, respiratory rate, etc., due to surgical stimuli, and to observe the patient's eyelash reflex, pupil size, color tone of the extremities, and body temperature. Based on this, the depth of anesthesia is grasped subjectively or empirically.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記血
圧値や心拍数や呼吸数の変化による麻酔深度の把握や上
記睫毛反射や瞳孔の大きさや四肢末梢の色調、体温によ
る麻酔深度の把握は麻酔医療従事者等の主観に頼って行
われることから、長期の訓練や熟練を必要とするだけで
なく、麻酔深度を客観的に或いは正確に把握することは
必ずしも容易なものではなかった。すなわち、本発明の
目的とするところは、生体の麻酔深度を客観的に検出し
得る麻酔深度検出装置を提供することにある。However, it is necessary to know the depth of anesthesia by the change of the blood pressure value, the heart rate, and the respiratory rate, and the eyelash reflex, the size of the pupil, the color tone of the extremities of the extremities, and the depth of anesthesia by the body temperature. Since it is performed depending on the subjectivity of workers, it requires not only long-term training and skill, but it is not always easy to objectively or accurately grasp the depth of anesthesia. That is, it is an object of the present invention to provide an anesthesia depth detection device capable of objectively detecting the anesthesia depth of a living body.
【0004】本発明者等は以上の事情に基づいて種々検
討を重ねるうち、生体に麻酔を施した場合において、生
体の心拍周期の変動成分に含まれる呼吸同期性のゆらぎ
の大きさや、血圧値の変動成分に含まれる呼吸よりも低
い周波数成分から成るゆらぎの大きさが、生体の副交感
神経或いは交感神経の活動レベルと密接な関係を示し、
それらのゆらぎの大きさに基づいて生体の麻酔深度を客
観的に表現できることを見い出した。The present inventors have made various studies based on the above circumstances, and when an anesthetized body is anesthetized, the magnitude of the fluctuation of respiratory synchrony and the blood pressure value contained in the fluctuation component of the heartbeat cycle of the body. The magnitude of fluctuation consisting of frequency components lower than the respiration contained in the fluctuation component of is closely related to the activity level of parasympathetic nerves or sympathetic nerves of the living body,
We found that the depth of anesthesia in a living body can be objectively expressed based on the magnitude of those fluctuations.
【0005】[0005]
【課題を解決するための第1の手段】本発明はかかる知
見に基づいて為されたものであって、その要旨とすると
ころは、生体の麻酔深度を検出するための装置であっ
て、(a) 前記生体の心拍周期を連続的に検出する心拍周
期検出手段と、(b) その心拍周期検出手段により連続的
に検出された生体の心拍周期のゆらぎから、前記生体の
呼吸に略同期して発生する心拍周期の変動成分である第
1心拍周期変動信号と、その第1心拍周期変動成分より
も低い所定の周波数成分から成る第2心拍周期変動信号
とを抽出する心拍周期変動信号抽出手段と、(c) その心
拍周期変動信号抽出手段により抽出された前記第1心拍
周期変動信号と前記第2心拍周期変動信号との比に基づ
いて、前記生体の麻酔深度を決定する麻酔深度決定手段
とを、含むことにある。[First Means for Solving the Problem] The present invention has been made based on such findings, and the gist thereof is an apparatus for detecting anesthesia depth of a living body, a) a heartbeat cycle detecting means for continuously detecting the heartbeat cycle of the living body, and (b) a fluctuation of the heartbeat cycle of the living body continuously detected by the heartbeat cycle detecting means, which is substantially synchronized with the respiration of the living body. Heartbeat cycle fluctuation signal extracting means for extracting a first heartbeat cycle fluctuation signal which is a fluctuation component of the heartbeat cycle generated by the above and a second heartbeat cycle fluctuation signal having a predetermined frequency component lower than the first heartbeat cycle fluctuation component. (C) Anesthesia depth determining means for determining the anesthesia depth of the living body based on the ratio of the first heartbeat cycle fluctuation signal and the second heartbeat cycle fluctuation signal extracted by the heartbeat cycle fluctuation signal extracting means. And are included.
【0006】[0006]
【作用および第1発明の効果】このようにすれば、心拍
周期検出手段により連続的に検出された生体の心拍周期
のゆらぎから、生体の呼吸に略同期して発生する心拍周
期の変動成分である第1心拍周期変動信号と、その第1
心拍周期変動成分よりも低い所定の周波数成分から成る
第2心拍周期変動信号とが、心拍周期変動信号抽出手段
により抽出される。そして、麻酔深度決定手段により上
記第1心拍周期変動信号と前記第2心拍周期変動信号と
の比に基づいて生体の麻酔深度が決定される。したがっ
て、客観的或いは定量的に生体の麻酔深度を決定でき、
生体の麻酔深度を熟練などを要することなく正確に検出
することができる。In this way, the fluctuation component of the heartbeat cycle that is generated substantially in synchronization with the respiration of the living body is derived from the fluctuation of the heartbeat cycle of the living body continuously detected by the heartbeat cycle detecting means. A certain first heartbeat cycle fluctuation signal and its first
The second heartbeat cycle fluctuation signal composed of a predetermined frequency component lower than the heartbeat cycle fluctuation component is extracted by the heartbeat cycle fluctuation signal extraction means. Then, the anesthesia depth determination means determines the anesthesia depth of the living body based on the ratio between the first heartbeat cycle fluctuation signal and the second heartbeat cycle fluctuation signal. Therefore, the depth of anesthesia of the living body can be determined objectively or quantitatively,
The anesthesia depth of the living body can be accurately detected without requiring skill.
【0007】[0007]
【課題を解決するための第2の手段】また、前記目的を
達成するための第2発明の要旨とするところは、生体の
麻酔深度を検出するための装置であって、(a) 前記生体
の血圧値を連続的に検出する連続血圧検出手段と、(b)
その連続血圧検出手段により連続的に検出された生体の
血圧値のゆらぎから、その生体の呼吸よりも低い所定の
周波数成分である血圧値変動信号を抽出する血圧値変動
信号抽出手段と、(c) 前記血圧値変動信号の強度に基づ
いて前記生体の麻酔深度を決定する麻酔深度決定手段と
を、含むことにある。A second aspect of the present invention for achieving the above object is an apparatus for detecting anesthesia depth of a living body, comprising: (a) the living body Continuous blood pressure detection means for continuously detecting the blood pressure value of (b)
From the fluctuation of the blood pressure value of the living body continuously detected by the continuous blood pressure detecting means, a blood pressure value fluctuation signal extracting means for extracting a blood pressure value fluctuation signal which is a predetermined frequency component lower than the respiration of the living body, and (c ) Anesthesia depth determining means for determining anesthesia depth of the living body based on the strength of the blood pressure value fluctuation signal.
【0008】[0008]
【作用および第2発明の効果】このようにすれば、連続
血圧検出手段により生体の血圧値が連続的に検出され、
その連続的に検出された生体の血圧値のゆらぎからその
生体の呼吸よりも低い所定の周波数成分である血圧値変
動信号が血圧値変動信号抽出手段により抽出されると、
麻酔深度決定手段により上記血圧値変動信号の強度に基
づいて生体の麻酔深度が決定される。したがって、客観
的或いは定量的に生体の麻酔深度を決定でき、生体の麻
酔深度を熟練などを要することなく正確に検出すること
ができる。With the above arrangement, the blood pressure value of the living body is continuously detected by the continuous blood pressure detecting means.
When the blood pressure value fluctuation signal which is a predetermined frequency component lower than the respiration of the living body is extracted by the blood pressure value fluctuation signal extraction means from the fluctuation of the blood pressure value of the living body detected continuously,
The anesthesia depth determination means determines the anesthesia depth of the living body based on the strength of the blood pressure value fluctuation signal. Therefore, the anesthesia depth of the living body can be determined objectively or quantitatively, and the anesthesia depth of the living body can be accurately detected without requiring skill.
【0009】[0009]
【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.
【0010】図1は本発明の麻酔深度検出装置の一構成
例を示す図である。図において、心電誘導装置10は、
生体に貼り着けられる複数の電極12を備えており、イ
ソフルレン等の吸入麻酔薬により全身麻酔が施された生
体から心拍に同期して連続的に発生するよく知られた心
電誘導信号をA/D変換器14を介して演算制御装置1
6のCPU18へ逐次供給する。FIG. 1 is a diagram showing an example of the configuration of the anesthesia depth detection device of the present invention. In the figure, the electrocardiographic induction device 10 is
Equipped with a plurality of electrodes 12 attached to a living body, a well-known electrocardiographic induction signal that is continuously generated in synchronization with a heartbeat from a living body that has undergone general anesthesia with an inhalation anesthetic such as isoflurane is A / Operation control device 1 via D converter 14
6 is sequentially supplied to the CPU 18.
【0011】連続血圧測定装置20は、図示しない装着
バンド等によって頚動脈、撓骨動脈、足背動脈などの生
体の動脈に対して押圧される圧脈波検出プローブ22を
備えており、全身麻酔が施された生体の血圧値を1拍毎
に連続的に検出し、血圧値を表す血圧値信号をA/D変
換器24を介して演算装置16のCPU18へ逐次供給
する。この連続血圧測定装置20は、たとえば特開平5
−253196号公報に記載された血圧モニタ装置と同
様に構成される。The continuous blood pressure measuring device 20 is equipped with a pressure pulse wave detection probe 22 which is pressed against an artery of a living body such as a carotid artery, a radial artery, a dorsalis pedis artery by a wearing band or the like (not shown). The applied blood pressure value of the living body is continuously detected for each beat, and a blood pressure value signal representing the blood pressure value is sequentially supplied to the CPU 18 of the arithmetic unit 16 via the A / D converter 24. This continuous blood pressure measuring device 20 is disclosed in, for example, Japanese Patent Laid-Open No.
It is configured similarly to the blood pressure monitoring device described in Japanese Patent Publication No. 253196.
【0012】上記演算制御装置16は、CPU18、R
OM26、RAM28などを含む所謂マイクロコンピュ
ータであって、RAM28の一時記憶機能を利用しつ
つ、予めROM26に記憶されたプログラムに従って入
力信号すなわち心電誘導信号および血圧値信号を処理
し、生体の麻酔深度Dを表示器30に表示する。The arithmetic and control unit 16 includes a CPU 18, R
A so-called microcomputer including the OM 26, the RAM 28, etc., which processes an input signal, that is, an electrocardiographic induction signal and a blood pressure value signal in accordance with a program stored in advance in the ROM 26 while utilizing a temporary storage function of the RAM 28, to obtain an anesthesia depth of a living body. D is displayed on the display 30.
【0013】図2は、上記演算制御装置16の制御機能
を示す機能ブロック線図である。図において、心拍周期
検出手段50は、心電波形の時間間隔たとえばR波間の
時間間隔を算出することにより麻酔中の生体の心拍周期
TRRを1拍毎に連続的に検出する。このように連続的に
検出される心拍周期TRRには、たとえば図3に示すよう
にゆらぎ(変動)が存在する。FIG. 2 is a functional block diagram showing the control function of the arithmetic and control unit 16. In the figure, the heartbeat cycle detection means 50 continuously detects the heartbeat cycle T RR of the living body under anesthesia by calculating the time interval of the electrocardiographic waveform, for example, the time interval between R waves. The heartbeat cycle T RR thus continuously detected has fluctuation (variation) as shown in FIG. 3, for example.
【0014】心拍周期変動信号抽出手段52は、上記心
拍周期検出手段50により連続的に検出された生体の心
拍周期TRRのゆらぎから、生体の呼吸に略同期して発生
する心拍周期の変動成分である第1心拍周期変動信号H
FCRRと、その第1心拍周期変動信号HFCRRよりも低
い所定の周波数成分から成る第2心拍周期変動信号LF
CRRとを抽出する。この心拍周期変動信号抽出手段52
では、たとえば高速フィーリエ変換(FFT)法或いは
自己回帰(AR)法などが用いられることにより心拍周
期TRRのゆらぎが周波数解析され、生体の呼吸周波数帯
付近(たとえば0.25Hz)に発生するピークを有する
周波数成分の信号強度(信号パワー)を第1心拍周期変
動信号HFCRRとして出力し、上記生体の呼吸周波数の
1/3乃至1/4程度の周波数帯付近(たとえば0.0
7Hz)に発生するピークを有する周波数成分の信号強度
(信号パワー)を第2心拍周期変動信号LFCRRとして
出力する。図4は、上記心拍周期TRRのゆらぎから抽出
された第1心拍周期変動信号HFCRR、第2心拍周期変
動信号LFCRR、および0Hz周波数成分(直流成分)の
信号DCRRの信号強度をそれぞれ示している。The heartbeat cycle fluctuation signal extracting means 52 is a fluctuation component of the heartbeat cycle which is generated substantially in synchronization with the respiration of the living body from the fluctuation of the heartbeat cycle T RR of the living body continuously detected by the heartbeat cycle detecting means 50. The first heartbeat cycle fluctuation signal H that is
FC RR and a second heartbeat cycle fluctuation signal LF composed of a predetermined frequency component lower than the first heartbeat cycle fluctuation signal HFC RR
Extract C RR . This heartbeat cycle fluctuation signal extraction means 52
Then, the fluctuation of the heartbeat period T RR is subjected to frequency analysis by using, for example, a fast Fourier transform (FFT) method or an autoregressive (AR) method, and a peak generated near the respiratory frequency band of the living body (for example, 0.25 Hz). The signal strength (signal power) of the frequency component having is output as the first heartbeat cycle fluctuation signal HFC RR , and the vicinity of the frequency band of about 1/3 to 1/4 of the respiratory frequency of the living body (for example, 0.0
The signal strength (signal power) of the frequency component having the peak occurring at 7 Hz) is output as the second heartbeat cycle fluctuation signal LFC RR . FIG. 4 shows the signal strengths of the first heartbeat cycle fluctuation signal HFC RR , the second heartbeat cycle fluctuation signal LFC RR , and the 0 Hz frequency component (DC component) signal DC RR extracted from the fluctuations of the heartbeat cycle T RR. Shows.
【0015】麻酔深度決定手段62に含まれる第1麻酔
深度決定手段54は、上記心拍周期変動信号抽出手段5
2により抽出された第1心拍周期変動信号HFCRRと第
2心拍周期変動信号LFCRRとの比(LFCRR/HFC
RR)に基づいて、生体の麻酔深度DRRを決定する。この
第1麻酔深度決定手段54は、たとえば、図5に示す予
め記憶された関係から上記実際の比(LFCRR/HFC
RR)に基づいて麻酔深度DRRを決定する。The first anesthesia depth determining means 54 included in the anesthesia depth determining means 62 is the heartbeat cycle fluctuation signal extracting means 5 described above.
The ratio of the first heartbeat cycle fluctuation signal HFC RR and the second heartbeat cycle fluctuation signal LFC RR extracted by 2 (LFC RR / HFC
RR ) to determine the anesthesia depth D RR of the living body. The first anesthesia depth determination means 54 uses the actual ratio (LFC RR / HFC) based on the relationship stored in advance shown in FIG. 5, for example.
RR ) to determine the depth of anesthesia D RR .
【0016】脳幹レベルでの呼吸中枢から循環中枢への
緩衝と心肺受容体からの求心性信号の呼吸性変動に起因
して、循環中枢からの遠心路である心臓迷走神経の活動
には呼吸性変動が生じると考えられ、洞結節発火頻度に
現れるゆらぎが前記生体の呼吸周波数帯付近(たとえば
0.25Hz)に発生するピークを有する周波数成分の信
号強度(信号パワー)すなわち第1心拍周期変動信号H
FCRRであると考えられる。その洞結節を支配する交感
神経にも呼吸性変動は生じるけれども、その交感神経に
よる心拍数制御は低域フィルタとしての特性を有するこ
とから、極めて低い周波数たとえば0.15Hz以下の心
拍変動しか伝達できず、通常の呼吸周波数であるHFC
RRは専ら迷走神経によって媒介される。このため、HF
CRRの振幅すなわち信号強度は心臓迷走神経活動レベル
と比例し、選択的かつ定量的な心臓迷走神経活動指標と
なり得る。一方、第1心拍周期変動信号HFCRRの数分
の1程度の周波数成分からなる第2心拍周期変動信号L
FCRRは、血圧の圧受容体反射メカニズムを介して心拍
変動に現れたものと考えられ、その反射の求心路は大動
脈洞神経で遠心路は心臓副交感神経および交感神経であ
り、血圧の振幅と圧受容体感受性との積に比例するの
で、交感神経の活動レベルを評価するには、圧受容体反
射感受性が一定であると過程できる場合に限られる。そ
して、比(LFCRR/HFCRR)を用いることにより、
個人差の影響を除いた状態で、神経活動レベルと密接に
対応させることができる。図5の関係は、そのようなこ
とを根拠としたものであり、予め実験的に求められる。[0016] Due to the buffering from the respiratory center to the circulatory center at the brainstem level and the respiratory fluctuation of the afferent signal from the cardiopulmonary receptors, the activity of the cardiac vagus nerve, which is a centrifugal path from the circulatory center, is respirable. It is considered that fluctuations occur, and fluctuations appearing in the frequency of sinus node firing occur at a signal intensity (signal power) of a frequency component having a peak near the respiratory frequency band of the living body (for example, 0.25 Hz), that is, a first heartbeat cycle fluctuation signal. H
It is considered to be FC RR . Respiratory variability also occurs in the sympathetic nerves that control the sinus node, but since heart rate control by the sympathetic nerve has the characteristic of a low-pass filter, only heart rate variability of an extremely low frequency of 0.15 Hz or less can be transmitted. HFC which is normal respiratory frequency without
RR is mediated exclusively by the vagus nerve. Therefore, HF
The amplitude or signal strength of C RR is proportional to the level of cardiac vagal activity and can be a selective and quantitative index of cardiac vagal activity. On the other hand, the second heartbeat cycle fluctuation signal L composed of a frequency component of about a fraction of the first heartbeat cycle fluctuation signal HFC RR.
It is thought that FC RR appears in heart rate variability via the baroreceptor reflex mechanism of blood pressure. The reflex afferents are the aortic sinus nerve and the efferents are the cardiac parasympathetic nerve and sympathetic nerve. Since it is proportional to the product of baroreceptor sensitivity, the evaluation of sympathetic nerve activity level is limited to the case where baroreceptor reflex sensitivity can be processed to be constant. Then, by using the ratio (LFC RR / HFC RR ),
It can be closely related to the nerve activity level without the influence of individual differences. The relationship in FIG. 5 is based on such a thing, and is experimentally obtained in advance.
【0017】また、連続血圧検出手段56は、たとえば
前記連続血圧測定装置22により構成されるものであ
り、生体の血圧値を連続的に検出する。血圧値変動信号
抽出手段58は、上記連続血圧検出手段56により連続
的に検出された生体の血圧値たとえば最高血圧値PSYS
のゆらぎから、生体の呼吸よりも低い所定の周波数成分
である血圧値変動信号LFCSYS を抽出する。この血圧
値変動信号抽出手段58でも、たとえば高速フィーリエ
変換(FFT)法或いは自己回帰(AR)法などが用い
られることにより血圧値PSYS のゆらぎが周波数解析さ
れ、生体の呼吸周波数の1/3乃至1/4程度の周波数
帯付近(たとえば0.07Hz)に発生するピークを有す
る周波数成分の信号強度(信号パワー)を血圧値変動信
号LFCSY S として出力する。Further, the continuous blood pressure detecting means 56 is constituted by, for example, the continuous blood pressure measuring device 22 and continuously detects the blood pressure value of the living body. The blood pressure value fluctuation signal extraction means 58 uses the blood pressure value of the living body continuously detected by the continuous blood pressure detection means 56, for example, the systolic blood pressure value P SYS.
From fluctuation, and extracts the blood pressure fluctuation signal LFC SYS is a predetermined frequency component lower than the breath of the living body. Also in the blood pressure value fluctuation signal extracting means 58, the fluctuation of the blood pressure value P SYS is subjected to frequency analysis by using, for example, the fast Fourier transform (FFT) method or the autoregressive (AR) method, and ⅓ of the respiratory frequency of the living body. The signal strength (signal power) of a frequency component having a peak generated in the vicinity of a frequency band of about 1/4 (for example, 0.07 Hz) is output as a blood pressure value fluctuation signal LFC SY S.
【0018】麻酔深度決定手段62に含まれる第2麻酔
深度決定手段60は、たとえば図6に示す予め記憶され
た関係から、上記血圧値変動信号LFCSYS の強度に基
づいて生体の麻酔深度DSYS を決定する。血圧値のゆら
ぎを構成する血圧値変動信号LFCSYS は、交感神経性
血管運動調節系の遅れ要素に由来するものと考えられる
ことから、その振幅(信号強度)は血管運動性交感神経
活動の定量的指標として用いることができる。図6の関
係は、そのようなことを根拠としたものであり、予め実
験的に求められる。The second anesthesia depth determining means 60 included in the anesthesia depth determining means 62 has an anesthesia depth D SYS of the living body based on the intensity of the blood pressure value fluctuation signal LFC SYS from the relationship stored in advance as shown in FIG. 6, for example. To decide. Since the blood pressure value fluctuation signal LFC SYS , which constitutes the fluctuation of blood pressure value, is considered to be derived from the delay element of the sympathetic vasomotor control system, its amplitude (signal strength) is quantified for vasomotor sympathetic nerve activity. Can be used as a dynamic indicator. The relationship in FIG. 6 is based on such a thing, and is experimentally obtained in advance.
【0019】図7は、前記演算制御装置16の制御作動
の要部を説明するフローチャートであって、脈拍周期に
同期、或いは血圧値の入力周期に同期して実行されるル
ーチンを示している。FIG. 7 is a flow chart for explaining the main part of the control operation of the arithmetic and control unit 16 and shows a routine executed in synchronization with the pulse cycle or the input cycle of the blood pressure value.
【0020】図7において、前記心拍周期検出手段50
に対応するSA1では、心電誘導装置10から入力され
た心電波形のR波間の時間間隔を演算することにより心
拍周期TRRが算出される。次いで、前記心拍周期変動信
号抽出手段52に対応するSA2では、逐次算出される
上記心拍周期TRRの変動成分のゆらぎ(変動)に対して
たとえば高速フィーリエ変換(FFT)法或いは自己回
帰(AR)法などにより周波数解析が実行されることに
より、生体の呼吸周波数帯付近(たとえば0.25Hz)
に発生するピークを有する周波数成分の信号強度(信号
パワー)が第1心拍周期変動信号HFCRRとして抽出さ
れ、上記生体の呼吸周波数の1/3乃至1/4程度の周
波数帯付近(たとえば0.07Hz)に発生するピークを
有する周波数成分の信号強度(信号パワー)が第2心拍
周期変動信号LFCRRとして抽出される。In FIG. 7, the heartbeat period detecting means 50 is shown.
In SA1 corresponding to, the heartbeat cycle T RR is calculated by calculating the time interval between the R waves of the electrocardiographic waveform input from the electrocardiographic induction device 10. Next, in SA2 corresponding to the heartbeat period fluctuation signal extraction means 52, for example, the fluctuation (fluctuation) of the fluctuation component of the heartbeat period T RR that is sequentially calculated is determined by, for example, a fast Fourier transform (FFT) method or autoregression (AR). Near the respiratory frequency band of the living body (for example, 0.25 Hz) by performing frequency analysis using the method
The signal strength (signal power) of the frequency component having the peak occurring at the peak is extracted as the first heartbeat cycle fluctuation signal HFC RR , and the vicinity of the frequency band of about 1/3 to 1/4 of the respiratory frequency of the living body (for example, 0. The signal strength (signal power) of the frequency component having the peak occurring at 07 Hz) is extracted as the second heartbeat cycle fluctuation signal LFC RR .
【0021】次いで、前記第1麻酔深度決定手段54に
対応するSA3では、たとえば図5に示す予め記憶され
た関係から上記SA2において抽出された第1心拍周期
変動信号HFCRRと第2心拍周期変動信号LFCRRとの
比(LFCRR/HFCRR)に基づいて、生体の麻酔深度
DRRが決定される。Next, in SA3 corresponding to the first depth of anesthesia determination means 54, for example, the first heartbeat cycle fluctuation signal HFC RR and the second heartbeat cycle fluctuation extracted in SA2 from the previously stored relationship shown in FIG. The anesthesia depth D RR of the living body is determined based on the ratio with the signal LFC RR (LFC RR / HFC RR ).
【0022】次に、SA4では、連続血圧測定装置20
から入力された血圧値PSYS が読み込まれるとともに、
前記血圧値変動信号抽出手段58に対応するSA5にお
いて、血圧値PSYS のゆらぎに対してたとえば高速フィ
ーリエ変換(FFT)法或いは自己回帰(AR)法など
により周波数解析が実行されることにより、生体の呼吸
周波数の1/3乃至1/4程度の周波数帯付近(たとえ
ば0.07Hz)に発生するピークを有する周波数成分の
信号強度(信号パワー)が血圧値変動信号LFCSYS と
して抽出される。Next, at SA4, the continuous blood pressure measuring device 20
The blood pressure value P SYS input from is read and
In SA5 corresponding to the blood pressure value fluctuation signal extraction means 58, frequency analysis is performed on the fluctuation of the blood pressure value P SYS by , for example, a fast Fourier transform (FFT) method or an autoregressive (AR) method, so that the biological The signal strength (signal power) of a frequency component having a peak in the vicinity of a frequency band (for example, 0.07 Hz) of about 1/3 to 1/4 of the respiratory frequency is extracted as the blood pressure value fluctuation signal LFC SYS .
【0023】次いで、前記第2麻酔深度決定手段60に
対応するSA6では、たとえば図6に示す予め記憶され
た関係から上記SA5において抽出された血圧値変動信
号LFCSYS に基づいて、生体の麻酔深度DSYS が決定
される。[0023] Then, the in the second anesthetic depth determining means SA6 corresponding to 60, for example on the basis of a predetermined stored relationship shown in FIG. 6 in blood pressure fluctuation signal LFC SYS which is extracted in SA5, biological depth of anesthesia D SYS is determined.
【0024】続くSA7では、心拍周期のゆらぎに基づ
いて決定された麻酔深度DRRと血圧値のゆらぎに基づい
て決定された麻酔深度DSYS から、より信頼性の高い麻
酔深度Dが決定される。たとえば、麻酔深度DRRおよび
DSYS の値が相互に大きく異なる場合には、いずれが異
常値であるかがそれまでの経過などから決定され、正常
値と考えられる側の値が麻酔深度Dとして決定される。
また、麻酔深度DRRおよびDSYS の値がそれほど相違し
ない場合には、両者の平均値が麻酔深度Dとして決定さ
れる。そして、SA8では、上記SA7において決定さ
れた麻酔深度Dが表示器30に数字により或いはトレン
ドグラフなどにより定量的に表示される。この麻酔深度
Dは、たとえば図5或いは図6の横軸を所定の単位で区
切ることにより数字にて表現される。At SA7, a more reliable depth of anesthesia D is determined from the depth of anesthesia D RR determined based on the fluctuation of the heartbeat cycle and the depth of anesthesia D SYS determined based on the fluctuation of the blood pressure value. . For example, when the values of the anesthesia depths D RR and D SYS are greatly different from each other, which one is an abnormal value is determined from the progress until then, and the value considered to be a normal value is the anesthesia depth D. It is determined.
When the values of the anesthesia depths D RR and D SYS are not so different, the average value of the two is determined as the anesthesia depth D. Then, at SA8, the anesthesia depth D determined at SA7 is quantitatively displayed on the display 30 by a numeral or a trend graph. This anesthesia depth D is expressed by a number by dividing the horizontal axis of FIG. 5 or 6 into predetermined units.
【0025】上述のように、本実施例によれば、心拍周
期検出手段50に対応するSA1により連続的に検出さ
れた生体の心拍周期のゆらぎから、生体の呼吸に略同期
して発生する心拍周期の変動成分である第1心拍周期変
動信号HFCRRと、その第1心拍周期変動信号HFCRR
よりも低い所定の周波数成分から成る第2心拍周期変動
信号LFCRRとが、心拍周期変動信号抽出手段52に対
応するSA2により抽出される。そして、第1麻酔深度
決定手段54に対応するSA3により上記第1心拍周期
変動信号HFCRRと前記第2心拍周期変動信号LFCRR
との比(LFC RR/HFCRR)に基づいて生体の麻酔深
度DRRが決定される。したがって、客観的或いは定量的
に生体の麻酔深度DRRを決定でき、生体の麻酔深度DRR
を熟練などを要することなく正確に検出することができ
る。As described above, according to this embodiment,
It is continuously detected by SA1 corresponding to the period detection means 50.
Fluctuation of the heartbeat cycle of the living body is almost synchronized with the breathing of the living body
First heartbeat cycle change, which is a fluctuation component of the heartbeat cycle that occurs
Motion signal HFCRRAnd its first heartbeat cycle fluctuation signal HFCRR
Second heartbeat cycle fluctuation consisting of a predetermined frequency component lower than
Signal LFCRRCorrespond to the heartbeat period fluctuation signal extraction means 52.
It is extracted by the corresponding SA2. And the first anesthesia depth
The first heartbeat cycle is determined by SA3 corresponding to the determining means 54.
Fluctuating signal HFCRRAnd the second heartbeat cycle fluctuation signal LFCRR
Ratio with (LFC RR/ HFCRR) Based on the depth of anesthesia of the living body
Degree DRRIs determined. Therefore, objective or quantitative
The anesthesia depth of the living body DRRThe anesthesia depth D of the living bodyRR
Can be accurately detected without requiring skill
It
【0026】また、本実施例によれば、連続血圧検出手
段56により生体の血圧値PSYS が連続的に検出され、
その連続的に検出された生体の血圧値PSYS のゆらぎか
らその生体の呼吸よりも低い所定の周波数成分である血
圧値変動信号LFCSYS が血圧値変動信号抽出手段58
に対応するSA5により抽出されると、麻酔深度決定手
段60に対応するSA6により上記血圧値変動信号LF
CSYS の強度に基づいて生体の麻酔深度DSYS が決定さ
れる。したがって、客観的或いは定量的に生体の麻酔深
度DSYS を決定でき、生体の麻酔深度DSYS を熟練など
を要することなく正確に検出することができる。Further, according to this embodiment, the blood pressure value P SYS of the living body is continuously detected by the continuous blood pressure detecting means 56,
From the fluctuation of the continuously detected blood pressure value P SYS of the living body, the blood pressure value fluctuation signal LFC SYS which is a predetermined frequency component lower than the respiration of the living body is converted into the blood pressure value fluctuation signal extraction means 58.
When extracted by SA5 corresponding to, the blood pressure value fluctuation signal LF is obtained by SA6 corresponding to the anesthesia depth determining means 60.
The anesthesia depth D SYS of the living body is determined based on the strength of C SYS . Therefore, objective or quantitatively be determined anesthetic depth D SYS of the living body, can be accurately detected without requiring such skill the anesthetic depth D SYS of the living body.
【0027】また、本実施例によれば、麻酔深度決定手
段62に対応するSA7において、心拍周期TRRのゆら
ぎから決定された麻酔深度DRRと血圧値PSYS のゆらぎ
から決定された麻酔深度DSYS に基づいて、より信頼性
の高い麻酔深度Dが最終的に決定されるので、表示器3
0において定量的に表示される麻酔深度Dの信頼性が一
層高められる。Further, according to this embodiment, in SA7 corresponding to the anesthesia depth determining means 62, the anesthesia depth D RR determined from the fluctuation of the heartbeat cycle T RR and the anesthesia depth determined from the fluctuation of the blood pressure value P SYS. Since a more reliable depth of anesthesia D is finally determined based on D SYS , the indicator 3
The reliability of the anesthesia depth D quantitatively displayed at 0 is further enhanced.
【0028】以上、本発明の一実施例を図面に基づいて
説明したが、本発明はその他の態様においても適用され
る。Although one embodiment of the present invention has been described above with reference to the drawings, the present invention can be applied to other modes.
【0029】たとえば、前述の実施例では、心拍周期T
RRのゆらぎから麻酔深度DRRを求めるための手段50、
52、54と、血圧値PSYS のゆらぎから麻酔深度D
SYS を求めるための手段56、58、60とが設けられ
ていたが、いずれか一方が除去されても、麻酔深度を検
出する機能が得られる。For example, in the above-described embodiment, the heartbeat period T
Means 50 for obtaining anesthesia depth D RR from fluctuation of RR ,
52, 54 and fluctuation of blood pressure value P SYS to depth of anesthesia D
Means 56, 58 and 60 for determining SYS were provided, but even if either one is removed, the function of detecting the depth of anesthesia can be obtained.
【0030】また、前述の実施例では、心電誘導装置1
0により誘導された心電誘導波形(ECG)の周期、た
とえばR波の間隔を1拍毎に算出することにより生体の
心拍周期TRRが連続的に検出されていたが、よく知られ
たカフや圧脈波センサにより生体の動脈から検出された
脈波の周期を1脈波毎に算出したり、或いは光電脈波セ
ンサにより検出される容積脈波の周期を1脈波毎に算出
するものが設けられても差支えない。要するに、生体の
心拍周期を連続的に検出する心拍周期検出手段が設けら
れていればよいのである。たとえば、前記連続血圧測定
装置20の圧脈波検出プローブ22により検出される圧
脈波から心拍周期が検出される場合には心電誘導装置1
0が不要となる。Further, in the above-mentioned embodiment, the electrocardiographic induction device 1 is used.
The heartbeat cycle T RR of the living body was continuously detected by calculating the cycle of the electrocardiographically induced waveform (ECG) induced by 0, for example, the interval of the R wave every beat, but the well-known cuff Or a pulse wave sensor for calculating the pulse wave cycle detected from the artery of the living body for each pulse wave, or for calculating the pulse wave cycle detected by the photoelectric pulse wave sensor for each pulse wave May be provided. In short, it suffices if a heartbeat cycle detecting means for continuously detecting the heartbeat cycle of the living body is provided. For example, when the heartbeat cycle is detected from the pressure pulse wave detected by the pressure pulse wave detection probe 22 of the continuous blood pressure measurement device 20, the electrocardiographic induction device 1
0 becomes unnecessary.
【0031】また、前述の実施例の心拍周期TRR或いは
血圧値PSYS 、または麻酔深度DRR或いはDSYS として
は、一拍毎に求められた値が所定の期間内で平均された
移動平均値が用いられてもよい。Further, as the heartbeat period T RR or blood pressure value P SYS or the depth of anesthesia D RR or D SYS in the above-mentioned embodiment, the value obtained for each beat is averaged within a predetermined period to obtain a moving average. Values may be used.
【0032】また、前述の実施例の心拍周期変動信号抽
出手段52や血圧値変動信号抽出手段58は、低周波数
の微振動信号弁別用のデジタルフィルタから構成される
こともできる。Further, the heartbeat period fluctuation signal extracting means 52 and the blood pressure value fluctuation signal extracting means 58 of the above-mentioned embodiment may be constituted by a digital filter for discriminating a low frequency microvibration signal.
【0033】また、前述の実施例では、麻酔深度DSYS
を決定するために連続血圧検出手段56により検出され
た最高血圧値PSYS のゆらぎが用いられていたが、連続
血圧検出手段56により検出される平均血圧値PMEAN或
いは最低血圧値PDIA のゆらぎが用いられても差し支え
ない。In the above embodiment, the depth of anesthesia D SYS
Although the fluctuation of the systolic blood pressure value P SYS detected by the continuous blood pressure detecting means 56 is used to determine the fluctuation, the fluctuation of the mean blood pressure value P MEAN or the minimum blood pressure value P DIA detected by the continuous blood pressure detecting means 56 is used. Can be used.
【0034】また、前述の実施例では、第1心拍周期変
動信号HFCRRと第2心拍周期変動信号LFCRRとの比
(LFCRR/HFCRR)から生体の麻酔深度DRRが決定
され、血圧値変動信号LFCSYS の強度から生体の麻酔
深度DSYS が決定されていたが、それらの比(LFCRR
/HFCRR)或いは血圧値変動信号LFCSYS は、他の
パラメータにより修正或いは補正されても差し支えな
い。要するに、第1心拍周期変動信号HFCRRと第2心
拍周期変動信号LFCRRとの比(LFCRR/HFCRR)
に基づいて生体の麻酔深度DRRが決定され、血圧値変動
信号LFCSYS の強度に基づいて生体の麻酔深度DSYS
が決定されればよいのである。In the above-described embodiment, the anesthesia depth D RR of the living body is determined from the ratio (LFC RR / HFC RR ) of the first heartbeat cycle fluctuation signal HFC RR and the second heartbeat cycle fluctuation signal LFC RR to determine the blood pressure. The anesthesia depth D SYS of the living body was determined from the intensity of the value fluctuation signal LFC SYS , but their ratio (LFC RR
/ HFC RR ) or the blood pressure value fluctuation signal LFC SYS may be corrected or corrected by other parameters. In short, the ratio of the first heartbeat cycle fluctuation signal HFC RR and the second heartbeat cycle fluctuation signal LFC RR (LFC RR / HFC RR )
On the basis of the determined anesthetic depth D RR of the biological, anesthetic depth of a living body based on the intensity of the blood pressure fluctuation signal LFC SYS D SYS
Should be determined.
【0035】その他、一々説明はしないが、本発明は当
業者の知識の範囲内において種々の変形や変更が加えら
れ得るものである。Although not described one by one, the present invention can be variously modified and changed within the knowledge of those skilled in the art.
【図1】本発明の麻酔深度検出装置の一例を示す図であ
って、構成を示すブロック線図である。FIG. 1 is a diagram showing an example of the anesthesia depth detection device of the present invention, and is a block diagram showing the configuration.
【図2】図1の麻酔深度検出装置の制御機能の要部を説
明する機能ブロック線図である。FIG. 2 is a functional block diagram illustrating a main part of a control function of the anesthesia depth detection device in FIG.
【図3】図1の麻酔深度検出装置において検出される心
拍周期TRRの変動を示す図である。FIG. 3 is a diagram showing fluctuations in a heartbeat cycle T RR detected in the anesthesia depth detection device of FIG.
【図4】図1の麻酔深度検出装置において検出される心
拍周期TRRのゆらぎから抽出される、第1心拍周期変動
信号HFCRR、第2心拍周期変動信号LFCRR、心拍周
期直流成分DCRRをそれぞれ示す図である。4 is a first heartbeat cycle fluctuation signal HFC RR , a second heartbeat cycle fluctuation signal LFC RR , and a heartbeat cycle DC component DC RR extracted from fluctuations of the heartbeat cycle T RR detected by the anesthesia depth detection device of FIG. 1. It is a figure which respectively shows.
【図5】図1の麻酔深度検出装置において麻酔深度DRR
を決定するために用いられる関係を示す図である。FIG. 5: Anesthesia depth D RR in the anesthesia depth detection device of FIG.
FIG. 6 is a diagram showing a relationship used for determining
【図6】図1の麻酔深度検出装置において麻酔深度D
SYS を決定するために用いられる関係を示す図である。6 is an anesthesia depth D in the anesthesia depth detection device of FIG.
FIG. 6 is a diagram showing relationships used to determine SYS .
【図7】図1の麻酔深度検出装置の制御作動の要部を説
明するフローチャートである。FIG. 7 is a flowchart illustrating a main part of control operation of the anesthesia depth detection device in FIG.
50:心拍周期検出手段 52:心拍周期変動信号抽出手段 54:第1麻酔深度決定手段 56:連続血圧検出手段 58:血圧値変動信号抽出手段 60:第2麻酔深度決定手段 50: Heartbeat cycle detecting means 52: Heartbeat cycle fluctuation signal extracting means 54: First anesthesia depth determining means 56: Continuous blood pressure detecting means 58: Blood pressure value fluctuation signal extracting means 60: Second anesthesia depth determining means
Claims (2)
あって、 前記生体の心拍周期を連続的に検出する心拍周期検出手
段と、 該心拍周期検出手段により連続的に検出された生体の心
拍周期のゆらぎから、前記生体の呼吸に略同期して発生
する心拍周期の変動成分である第1心拍周期変動信号
と、該第1心拍周期変動成分よりも低い所定の周波数成
分から成る第2心拍周期変動信号とを抽出する心拍周期
変動信号抽出手段と、 該心拍周期変動信号抽出手段により抽出された前記第1
心拍周期変動信号と前記第2心拍周期変動信号との比に
基づいて、前記生体の麻酔深度を決定する麻酔深度決定
手段とを含むことを特徴とする麻酔深度検出装置。1. An apparatus for detecting a depth of anesthesia in a living body, comprising: a heartbeat cycle detecting means for continuously detecting a heartbeat cycle of the living body; and a living body detected continuously by the heartbeat cycle detecting means. A second heartbeat cycle fluctuation signal, which is a fluctuation component of the heartbeat cycle that is generated substantially in synchronization with the respiration of the living body due to fluctuations in the heartbeat cycle, and a second frequency component that is a predetermined frequency component lower than the first heartbeat cycle fluctuation component. Heartbeat cycle fluctuation signal extraction means for extracting a heartbeat cycle fluctuation signal, and the first pulse signal extracted by the heartbeat cycle fluctuation signal extraction means
An anesthesia depth detection device, comprising: anesthesia depth determination means for determining anesthesia depth of the living body based on a ratio between a heartbeat period fluctuation signal and the second heartbeat period fluctuation signal.
あって、 前記生体の血圧値を連続的に検出する連続血圧検出手段
と、 該連続血圧検出手段により連続的に検出された生体の血
圧値のゆらぎから、該生体の呼吸よりも低い所定の周波
数成分である血圧値変動信号を抽出する血圧値変動信号
抽出手段と、 前記血圧値変動信号の強度に基づいて前記生体の麻酔深
度を決定する麻酔深度決定手段とを含むことを特徴とす
る麻酔深度検出装置。2. An apparatus for detecting a depth of anesthesia in a living body, comprising: a continuous blood pressure detecting means for continuously detecting a blood pressure value of the living body; and a body pressure continuously detected by the continuous blood pressure detecting means. From the fluctuation of the blood pressure value, a blood pressure value fluctuation signal extracting means for extracting a blood pressure value fluctuation signal which is a predetermined frequency component lower than the respiration of the living body, and the anesthesia depth of the living body based on the strength of the blood pressure value fluctuation signal. An anesthesia depth detection device, comprising: anesthesia depth determination means for determining.
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13694895A JP3229775B2 (en) | 1995-06-02 | 1995-06-02 | Anesthesia depth detector |
| EP96914450A EP0774234B1 (en) | 1995-06-02 | 1996-05-24 | Anesthetic depth detector |
| EP99115332A EP0976361B1 (en) | 1995-06-02 | 1996-05-24 | Anesthetic depth measuring apparatus |
| DE69630406T DE69630406D1 (en) | 1995-06-02 | 1996-05-24 | Device for measuring the anesthetic depth |
| PCT/JP1996/001418 WO1996038087A1 (en) | 1995-06-02 | 1996-05-24 | Anesthetic depth detector |
| DE69616236T DE69616236T2 (en) | 1995-06-02 | 1996-05-24 | DEVICE FOR MEASURING ANESTHESIA DEPTH |
| US08/776,158 US5871450A (en) | 1995-06-02 | 1996-05-24 | Anesthetic depth measuring apparatus |
| US09/179,957 US5964713A (en) | 1995-06-02 | 1998-10-28 | Anesthetic depth measuring apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13694895A JP3229775B2 (en) | 1995-06-02 | 1995-06-02 | Anesthesia depth detector |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH08322824A true JPH08322824A (en) | 1996-12-10 |
| JP3229775B2 JP3229775B2 (en) | 2001-11-19 |
Family
ID=15187265
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP13694895A Expired - Fee Related JP3229775B2 (en) | 1995-06-02 | 1995-06-02 | Anesthesia depth detector |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3229775B2 (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6356775B1 (en) | 1999-04-20 | 2002-03-12 | Kyoho Machine Works. Ltd. | Biological data observation system |
| JP2003010319A (en) * | 2001-07-03 | 2003-01-14 | Nippon Colin Co Ltd | Dialyzer |
| JP2003010318A (en) * | 2001-07-02 | 2003-01-14 | Nippon Colin Co Ltd | Dialyzer |
| JP2017148183A (en) * | 2016-02-23 | 2017-08-31 | 日本光電工業株式会社 | Index output device, index output method, and index output program |
| CN119097296A (en) * | 2024-09-03 | 2024-12-10 | 淮安市第二人民医院 | Anesthesia efficacy evaluation system and method based on artificial intelligence |
-
1995
- 1995-06-02 JP JP13694895A patent/JP3229775B2/en not_active Expired - Fee Related
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6356775B1 (en) | 1999-04-20 | 2002-03-12 | Kyoho Machine Works. Ltd. | Biological data observation system |
| JP2003010318A (en) * | 2001-07-02 | 2003-01-14 | Nippon Colin Co Ltd | Dialyzer |
| JP2003010319A (en) * | 2001-07-03 | 2003-01-14 | Nippon Colin Co Ltd | Dialyzer |
| US6878272B2 (en) | 2001-07-03 | 2005-04-12 | Colin Corporation | Dialyzing apparatus |
| JP2017148183A (en) * | 2016-02-23 | 2017-08-31 | 日本光電工業株式会社 | Index output device, index output method, and index output program |
| CN119097296A (en) * | 2024-09-03 | 2024-12-10 | 淮安市第二人民医院 | Anesthesia efficacy evaluation system and method based on artificial intelligence |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3229775B2 (en) | 2001-11-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0774234B1 (en) | Anesthetic depth detector | |
| Mulder | Measurement and analysis methods of heart rate and respiration for use in applied environments | |
| US7927277B2 (en) | Methods for non-invasively monitoring health | |
| EP1273265B1 (en) | Monitoring a condition of a patient under anaesthesia or sedation | |
| US7553286B2 (en) | Real-time monitoring of the state of the autonomous nervous system of a patient | |
| US7713212B2 (en) | Method and system for consciously synchronizing the breathing cycle with the natural heart rate cycle | |
| JPH0832261B2 (en) | Mental tension monitor | |
| JP2000342690A (en) | Anesthetic depth monitoring device | |
| US5840039A (en) | Method and apparatus in connection with measuring the heartbeat rate of a person | |
| CN103445767A (en) | Sensing monitoring interaction control fully automatic autonomic nerve function detection instrument and detection method | |
| JPH11511036A (en) | Apparatus and method for time-dependent power spectrum analysis of physiological signals | |
| US7922664B2 (en) | Method and system for improving physiologic status and health via assessment of the dynamic respiratory arterial pressure wave using plethysmographic technique | |
| JP3415796B2 (en) | Periodic biological information measurement device | |
| JP3250474B2 (en) | Mental stress judgment device | |
| JP3229775B2 (en) | Anesthesia depth detector | |
| JPH08583A (en) | Apparatus for monitoring pulse wave transmission time | |
| JPH08322825A (en) | Anesthetic depth detector | |
| CN115243608B (en) | Method of detecting parameters indicative of activation of the sympathetic and parasympathetic nervous systems | |
| JP7658924B2 (en) | Heart Rate Detection System | |
| JPH11137527A (en) | Pulse wave transit time measurement device | |
| US20210196130A1 (en) | Method for estimating the physical condition of a person | |
| TW202416289A (en) | Interactive heart rate variability analysis parameter model and index generation system | |
| WO2024002485A1 (en) | Apparatus and method for determining a breathing protocol | |
| Carrasco-Sosa et al. | Instantaneous Time-Courses of Baroreflex Sensitivity, Sympathetic and Vagal Activities in Response to Valsalva Maneuver | |
| JPH1066680A (en) | Blood pressure monitoring device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| S803 | Written request for registration of cancellation of provisional registration |
Free format text: JAPANESE INTERMEDIATE CODE: R313803 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |